RAW格式简介

RAW的原意就是“未经加工”。可以理解为:RAW图像就是CMOS或者CCD图像感应器将捕捉到的光源信号转化为数字信号的原始数据。RAW文件是一种记录了数码相机传感器的原始信息,同时记录了由相机拍摄所产生的一些元数据(Metadata,如ISO的设置、快门速度、光圈值、白平衡等)的文件。RAW是未经处理、也未经压缩的格式,可以把RAW概念化为“原始图像编码数据”或更形象的称为“数字底片”。RAW格式的全称是RAW Image Format,在编程中称之为原始。

JPG格式

JPEG(Joint Photographic Experts Group)是JPEG标准的产物,该标准由国际标准化组织(ISO)制订,是面向连续色调静止图像的一种压缩标准。 JPEG格式是最常用的图像文件格式,后缀名为.jpg或.jpeg。

代码

raw2jpg.cpp

// clang++ -o2 --std=c++14 raw2jpg.cpp
// cl /Ox /MD /EHsc raw2jpg.cpp#if defined(_WIN32)
#define _CRT_SECURE_NO_WARNINGS
#endif#include <cstdio>
#include <cstdint>
#include <vector>
#include <memory>
#include <stdexcept>#include "zoomlogic.h"// https://github.com/serge-rgb/TinyJPEG
#define TJE_IMPLEMENTATION
#include "tiny_jpeg.h"#if defined(_WIN32)
#define binfp(m,fp) freopen(nullptr, m, fp)
#else
#define binfp(m,fp) (fp)
#endifstruct cfile
{void operator()(FILE* fp) const{if (fp != stdin && fp != stdout)fclose(fp);}using ptr = std::unique_ptr<FILE, cfile>;
};const int rawBytesPerPixel = 2;
const int components = 3;static void loadRawRgb16(std::vector<uint8_t>& dest, FILE* fpIn, int width, int height)
{auto srcStride = width * rawBytesPerPixel; // 16bitstd::vector<uint8_t> src(srcStride);auto dstStride = width * components;auto size = dstStride * height;dest.resize(size);for (int c = 0; c < components; c++) // assuming RGB{for (int i = 0; i < height; i++){auto p = &dest[i * dstStride + c];std::fread(&src[0], 1, srcStride, fpIn);auto q = &src[1]; // pointer to higher byte in little endian pixel valuefor (int j = 0; j < width; j++){*p = *q;p += components;q += rawBytesPerPixel;}}}
}static std::vector<uint8_t> loadRawRgb16(const char* fileName, int width, int height)
{cfile::ptr fpIn(std::strcmp(fileName, "-") ? std::fopen(fileName, "rb") : binfp("rb", stdin));if (!fpIn)throw std::runtime_error("Invalid input file name.");std::vector<uint8_t> raw;loadRawRgb16(raw, fpIn.get(), width, height);return raw;
}static void fwrite_wrapper(void* context, void* data, int size) { fwrite(data, 1, size, reinterpret_cast<FILE*>(context)); }int main(int argc, char* argv[])
{try{if (argc < 5){fprintf(stderr, "USAGE: raw2jpg INPUT OUTPUT WIDTH HEIGHT [OUTPUT_WIDTH OUTPUT_HEIGHT [QUALITY]]\n\n""PARAMETERS:\n""  INPUT   Input RAW file name or - to read from stdin.\n""  OUTPUT  Output RAW file name or - to write out to stdout.\n");return 1;}auto input = argv[1];auto output = argv[2];auto width = atoi(argv[3]);auto height = atoi(argv[4]);auto outWidth = argc > 6 ? atoi(argv[5]) : 0;auto outHeight = argc > 7 ? atoi(argv[6]) : 0;auto quality = argc > 8 ? atoi(argv[7]) * 3 / 100 : 2; // [0 100] -> [0 3]if (width <= 0 || height <= 0)throw std::runtime_error("Invalid width/height.\n");if (quality < 0 || quality > 3)throw std::runtime_error("quality value out of range [0 100].\n");auto raw = loadRawRgb16(input, width, height);cfile::ptr fpOut(std::strcmp(output, "-") ? std::fopen(output, "wb") : binfp("wb", stdout));if (!fpOut.get())throw std::runtime_error("Invalid output file name.\n");if (outWidth && outHeight){auto outStride = outWidth * components;std::vector<uint8_t> buffer(outStride * outHeight);Zoom::rescale<components>(&buffer[0], outStride,0, 0, outWidth, outHeight, outWidth, outHeight,&raw[0], width * components,width, height);buffer.swap(raw);width = outWidth;height = outHeight;}auto ret = tje_encode_with_func(fwrite_wrapper, fpOut.get(),quality, width, height, components, &raw[0]);if (!ret)throw std::runtime_error("tje_encode_with_func failed.");}catch (std::runtime_error& e){fprintf(stderr, "Error: %s\n", e.what());return -1;}
}

tiny_jpeg.h

/*** tiny_jpeg.h** Tiny JPEG Encoder*  - Sergio Gonzalez** This is a readable and simple single-header JPEG encoder.** Features*  - Implements Baseline DCT JPEG compression.*  - No dynamic allocations.** This library is coded in the spirit of the stb libraries and mostly follows* the stb guidelines.** It is written in C99. And depends on the C standard library.* Works with C++11*** ==== Thanks ====**  AssociationSirius (Bug reports)*  Bernard van Gastel (Thread-safe defaults, BSD compilation)*** ==== License ====** This software is in the public domain. Where that dedication is not* recognized, you are granted a perpetual, irrevocable license to copy and* modify this file as you see fit.**/// ============================================================
// Usage
// ============================================================
// Include "tiny_jpeg.h" to and use the public interface defined below.
//
// You *must* do:
//
//      #define TJE_IMPLEMENTATION
//      #include "tiny_jpeg.h"
//
// in exactly one of your C files to actually compile the implementation.// Here is an example program that loads a bmp with stb_image and writes it
// with Tiny JPEG/*
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define TJE_IMPLEMENTATION
#include "tiny_jpeg.h"
int main()
{int width, height, num_components;unsigned char* data = stbi_load("in.bmp", &width, &height, &num_components, 0);if ( !data ) {puts("Could not find file");return EXIT_FAILURE;}if ( !tje_encode_to_file("out.jpg", width, height, num_components, data) ) {fprintf(stderr, "Could not write JPEG\n");return EXIT_FAILURE;}return EXIT_SUCCESS;
}
*/#ifdef __cplusplus
extern "C"
{#endif#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"  // We use {0}, which will zero-out the struct.
#pragma GCC diagnostic ignored "-Wmissing-braces"
#pragma GCC diagnostic ignored "-Wpadded"
#endif// ============================================================
// Public interface:
// ============================================================#ifndef TJE_HEADER_GUARD
#define TJE_HEADER_GUARD// - tje_encode_to_file -
//
// Usage:
//  Takes bitmap data and writes a JPEG-encoded image to disk.
//
//  PARAMETERS
//      dest_path:          filename to which we will write. e.g. "out.jpg"
//      width, height:      image size in pixels
//      num_components:     3 is RGB. 4 is RGBA. Those are the only supported values
//      src_data:           pointer to the pixel data.
//
//  RETURN:
//      0 on error. 1 on success.int tje_encode_to_file(const char* dest_path,const int width,const int height,const int num_components,const unsigned char* src_data);// - tje_encode_to_file_at_quality -
//
// Usage:
//  Takes bitmap data and writes a JPEG-encoded image to disk.
//
//  PARAMETERS
//      dest_path:          filename to which we will write. e.g. "out.jpg"
//      quality:            3: Highest. Compression varies wildly (between 1/3 and 1/20).
//                          2: Very good quality. About 1/2 the size of 3.
//                          1: Noticeable. About 1/6 the size of 3, or 1/3 the size of 2.
//      width, height:      image size in pixels
//      num_components:     3 is RGB. 4 is RGBA. Those are the only supported values
//      src_data:           pointer to the pixel data.
//
//  RETURN:
//      0 on error. 1 on success.int tje_encode_to_file_at_quality(const char* dest_path,const int quality,const int width,const int height,const int num_components,const unsigned char* src_data);// - tje_encode_with_func -
//
// Usage
//  Same as tje_encode_to_file_at_quality, but it takes a callback that knows
//  how to handle (or ignore) `context`. The callback receives an array `data`
//  of `size` bytes, which can be written directly to a file. There is no need
//  to free the data.typedef void tje_write_func(void* context, void* data, int size);int tje_encode_with_func(tje_write_func* func,void* context,const int quality,const int width,const int height,const int num_components,const unsigned char* src_data);#endif // TJE_HEADER_GUARD// Implementation: In exactly one of the source files of your application,
// define TJE_IMPLEMENTATION and include tiny_jpeg.h// ============================================================
// Internal
// ============================================================
#ifdef TJE_IMPLEMENTATION#define tjei_min(a, b) ((a) < b) ? (a) : (b);
#define tjei_max(a, b) ((a) < b) ? (b) : (a);#if defined(_MSC_VER)
#define TJEI_FORCE_INLINE __forceinline
// #define TJEI_FORCE_INLINE __declspec(noinline)  // For profiling
#else
#define TJEI_FORCE_INLINE static // TODO: equivalent for gcc & clang
#endif// Only use zero for debugging and/or inspection.
#define TJE_USE_FAST_DCT 1// C std lib
#include <assert.h>
#include <inttypes.h>
#include <math.h>   // floorf, ceilf
#include <stdio.h>  // FILE, puts
#include <string.h> // memcpy#define TJEI_BUFFER_SIZE 1024#ifdef _WIN32#include <windows.h>
#ifndef snprintf
#define snprintf sprintf_s
#endif
// Not quite the same but it works for us. If I am not mistaken, it differs
// only in the return value.#endif#ifndef NDEBUG#ifdef _WIN32
#define tje_log(msg) fputs(msg, stderr); //OutputDebugStringA(msg)
#elif defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
#define tje_log(msg) puts(msg)
#else
#warning "need a tje_log definition for your platform for debugging purposes (not needed if compiling with NDEBUG)"
#endif#else  // NDEBUG
#define tje_log(msg)
#endif  // NDEBUGtypedef struct
{void*           context;tje_write_func* func;
} TJEWriteContext;typedef struct
{// Huffman data.uint8_t         ehuffsize[4][257];uint16_t        ehuffcode[4][256];uint8_t const * ht_bits[4];uint8_t const * ht_vals[4];// Cuantization tables.uint8_t         qt_luma[64];uint8_t         qt_chroma[64];// fwrite by default. User-defined when using tje_encode_with_func.TJEWriteContext write_context;// Buffered output. Big performance win when using the usual stdlib implementations.size_t          output_buffer_count;uint8_t         output_buffer[TJEI_BUFFER_SIZE];
} TJEState;// ============================================================
// Table definitions.
//
// The spec defines tjei_default reasonably good quantization matrices and huffman
// specification tables.
//
//
// Instead of hard-coding the final huffman table, we only hard-code the table
// spec suggested by the specification, and then derive the full table from
// there.  This is only for didactic purposes but it might be useful if there
// ever is the case that we need to swap huffman tables from various sources.
// ============================================================// K.1 - suggested luminance QT
static const uint8_t tjei_default_qt_luma_from_spec[] =
{16,11,10,16, 24, 40, 51, 61,12,12,14,19, 26, 58, 60, 55,14,13,16,24, 40, 57, 69, 56,14,17,22,29, 51, 87, 80, 62,18,22,37,56, 68,109,103, 77,24,35,55,64, 81,104,113, 92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103, 99,
};// Unused
#if 0
static const uint8_t tjei_default_qt_chroma_from_spec[] =
{// K.1 - suggested chrominance QT17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,
};
#endifstatic const uint8_t tjei_default_qt_chroma_from_paper[] =
{// Example QT from JPEG paper16,  12, 14,  14, 18, 24,  49,  72,11,  10, 16,  24, 40, 51,  61,  12,13,  17, 22,  35, 64, 92,  14,  16,22,  37, 55,  78, 95, 19,  24,  29,56,  64, 87,  98, 26, 40,  51,  68,81, 103, 112, 58, 57, 87,  109, 104,121,100, 60,  69, 80, 103, 113, 120,103, 55, 56,  62, 77, 92,  101, 99,
};// == Procedure to 'deflate' the huffman tree: JPEG spec, C.2// Number of 16 bit values for every code length. (K.3.3.1)
static const uint8_t tjei_default_ht_luma_dc_len[16] =
{0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0
};
// values
static const uint8_t tjei_default_ht_luma_dc[12] =
{0,1,2,3,4,5,6,7,8,9,10,11
};// Number of 16 bit values for every code length. (K.3.3.1)
static const uint8_t tjei_default_ht_chroma_dc_len[16] =
{0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0
};
// values
static const uint8_t tjei_default_ht_chroma_dc[12] =
{0,1,2,3,4,5,6,7,8,9,10,11
};// Same as above, but AC coefficients.
static const uint8_t tjei_default_ht_luma_ac_len[16] =
{0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d
};
static const uint8_t tjei_default_ht_luma_ac[] =
{0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xA1, 0x08, 0x23, 0x42, 0xB1, 0xC1, 0x15, 0x52, 0xD1, 0xF0,0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0A, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x25, 0x26, 0x27, 0x28,0x29, 0x2A, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7,0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3, 0xC4, 0xC5,0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA, 0xE1, 0xE2,0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,0xF9, 0xFA
};static const uint8_t tjei_default_ht_chroma_ac_len[16] =
{0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77
};
static const uint8_t tjei_default_ht_chroma_ac[] =
{0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xA1, 0xB1, 0xC1, 0x09, 0x23, 0x33, 0x52, 0xF0,0x15, 0x62, 0x72, 0xD1, 0x0A, 0x16, 0x24, 0x34, 0xE1, 0x25, 0xF1, 0x17, 0x18, 0x19, 0x1A, 0x26,0x27, 0x28, 0x29, 0x2A, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,0x49, 0x4A, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,0x69, 0x6A, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,0x88, 0x89, 0x8A, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9A, 0xA2, 0xA3, 0xA4, 0xA5,0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7, 0xB8, 0xB9, 0xBA, 0xC2, 0xC3,0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6, 0xD7, 0xD8, 0xD9, 0xDA,0xE2, 0xE3, 0xE4, 0xE5, 0xE6, 0xE7, 0xE8, 0xE9, 0xEA, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8,0xF9, 0xFA
};// ============================================================
// Code
// ============================================================// Zig-zag order:
static const uint8_t tjei_zig_zag[64] =
{0,   1,  5,  6, 14, 15, 27, 28,2,   4,  7, 13, 16, 26, 29, 42,3,   8, 12, 17, 25, 30, 41, 43,9,  11, 18, 24, 31, 40, 44, 53,10, 19, 23, 32, 39, 45, 52, 54,20, 22, 33, 38, 46, 51, 55, 60,21, 34, 37, 47, 50, 56, 59, 61,35, 36, 48, 49, 57, 58, 62, 63,
};// Memory order as big endian. 0xhilo -> 0xlohi which looks as 0xhilo in memory.
static uint16_t tjei_be_word(const uint16_t le_word)
{uint16_t lo = (le_word & 0x00ff);uint16_t hi = ((le_word & 0xff00) >> 8);return (uint16_t)((lo << 8) | hi);
}// ============================================================
// The following structs exist only for code clarity, debugability, and
// readability. They are used when writing to disk, but it is useful to have
// 1-packed-structs to document how the format works, and to inspect memory
// while developing.
// ============================================================static const uint8_t tjeik_jfif_id[] = "JFIF";
static const uint8_t tjeik_com_str[] = "Created by Tiny JPEG Encoder";// TODO: Get rid of packed structs!
#pragma pack(push)
#pragma pack(1)
typedef struct
{uint16_t SOI;// JFIF header.uint16_t APP0;uint16_t jfif_len;uint8_t  jfif_id[5];uint16_t version;uint8_t  units;uint16_t x_density;uint16_t y_density;uint8_t  x_thumb;uint8_t  y_thumb;
} TJEJPEGHeader;typedef struct
{uint16_t com;uint16_t com_len;char     com_str[sizeof(tjeik_com_str) - 1];
} TJEJPEGComment;// Helper struct for TJEFrameHeader (below).
typedef struct
{uint8_t  component_id;uint8_t  sampling_factors;    // most significant 4 bits: horizontal. 4 LSB: vertical (A.1.1)uint8_t  qt;                  // Quantization table selector.
} TJEComponentSpec;typedef struct
{uint16_t         SOF;uint16_t         len;                   // 8 + 3 * frame.num_componentsuint8_t          precision;             // Sample precision (bits per sample).uint16_t         height;uint16_t         width;uint8_t          num_components;        // For this implementation, will be equal to 3.TJEComponentSpec component_spec[3];
} TJEFrameHeader;typedef struct
{uint8_t component_id;                 // Just as with TJEComponentSpecuint8_t dc_ac;                        // (dc|ac)
} TJEFrameComponentSpec;typedef struct
{uint16_t              SOS;uint16_t              len;uint8_t               num_components;  // 3.TJEFrameComponentSpec component_spec[3];uint8_t               first;  // 0uint8_t               last;  // 63uint8_t               ah_al;  // o
} TJEScanHeader;
#pragma pack(pop)static void tjei_write(TJEState* state, const void* data, size_t num_bytes, size_t num_elements)
{size_t to_write = num_bytes * num_elements;// Cap to the buffer available size and copy memory.size_t capped_count = tjei_min(to_write, TJEI_BUFFER_SIZE - 1 - state->output_buffer_count);memcpy(state->output_buffer + state->output_buffer_count, data, capped_count);state->output_buffer_count += capped_count;assert (state->output_buffer_count <= TJEI_BUFFER_SIZE - 1);// Flush the buffer.if ( state->output_buffer_count == TJEI_BUFFER_SIZE - 1 ) {state->write_context.func(state->write_context.context, state->output_buffer, (int)state->output_buffer_count);state->output_buffer_count = 0;}// Recursively calling ourselves with the rest of the buffer.if (capped_count < to_write) {tjei_write(state, (uint8_t*)data+capped_count, to_write - capped_count, 1);}
}static void tjei_write_DQT(TJEState* state, const uint8_t* matrix, uint8_t id)
{uint16_t DQT = tjei_be_word(0xffdb);tjei_write(state, &DQT, sizeof(uint16_t), 1);uint16_t len = tjei_be_word(0x0043); // 2(len) + 1(id) + 64(matrix) = 67 = 0x43tjei_write(state, &len, sizeof(uint16_t), 1);assert(id < 4);uint8_t precision_and_id = id;  // 0x0000 8 bits | 0x00idtjei_write(state, &precision_and_id, sizeof(uint8_t), 1);// Write matrixtjei_write(state, matrix, 64*sizeof(uint8_t), 1);
}typedef enum
{TJEI_DC = 0,TJEI_AC = 1
} TJEHuffmanTableClass;static void tjei_write_DHT(TJEState* state,uint8_t const * matrix_len,uint8_t const * matrix_val,TJEHuffmanTableClass ht_class,uint8_t id)
{int num_values = 0;for ( int i = 0; i < 16; ++i ) {num_values += matrix_len[i];}assert(num_values <= 0xffff);uint16_t DHT = tjei_be_word(0xffc4);// 2(len) + 1(Tc|th) + 16 (num lengths) + ?? (num values)uint16_t len = tjei_be_word(2 + 1 + 16 + (uint16_t)num_values);assert(id < 4);uint8_t tc_th = (uint8_t)((((uint8_t)ht_class) << 4) | id);tjei_write(state, &DHT, sizeof(uint16_t), 1);tjei_write(state, &len, sizeof(uint16_t), 1);tjei_write(state, &tc_th, sizeof(uint8_t), 1);tjei_write(state, matrix_len, sizeof(uint8_t), 16);tjei_write(state, matrix_val, sizeof(uint8_t), (size_t)num_values);
}
// ============================================================
//  Huffman deflation code.
// ============================================================// Returns all code sizes from the BITS specification (JPEG C.3)
static uint8_t* tjei_huff_get_code_lengths(uint8_t huffsize[/*256*/], uint8_t const * bits)
{int k = 0;for ( int i = 0; i < 16; ++i ) {for ( int j = 0; j < bits[i]; ++j ) {huffsize[k++] = (uint8_t)(i + 1);}huffsize[k] = 0;}return huffsize;
}// Fills out the prefixes for each code.
static uint16_t* tjei_huff_get_codes(uint16_t codes[], uint8_t* huffsize, int64_t count)
{uint16_t code = 0;int k = 0;uint8_t sz = huffsize[0];for(;;) {do {assert(k < count);codes[k++] = code++;} while (huffsize[k] == sz);if (huffsize[k] == 0) {return codes;}do {code = (uint16_t)(code << 1);++sz;} while( huffsize[k] != sz );}
}static void tjei_huff_get_extended(uint8_t* out_ehuffsize,uint16_t* out_ehuffcode,uint8_t const * huffval,uint8_t* huffsize,uint16_t* huffcode, int64_t count)
{int k = 0;do {uint8_t val = huffval[k];out_ehuffcode[val] = huffcode[k];out_ehuffsize[val] = huffsize[k];k++;} while ( k < count );
}
// ============================================================// Returns:
//  out[1] : number of bits
//  out[0] : bits
TJEI_FORCE_INLINE void tjei_calculate_variable_length_int(int value, uint16_t out[2])
{int abs_val = value;if ( value < 0 ) {abs_val = -abs_val;--value;}out[1] = 1;while( abs_val >>= 1 ) {++out[1];}out[0] = (uint16_t)(value & ((1 << out[1]) - 1));
}// Write bits to file.
TJEI_FORCE_INLINE void tjei_write_bits(TJEState* state,uint32_t* bitbuffer, uint32_t* location,uint16_t num_bits, uint16_t bits)
{//   v-- location//  [                     ]   <-- bit buffer// 32                     0//// This call pushes to the bitbuffer and saves the location. Data is pushed// from most significant to less significant.// When we can write a full byte, we write a byte and shift.// Push the stack.uint32_t nloc = *location + num_bits;*bitbuffer |= (uint32_t)(bits << (32 - nloc));*location = nloc;while ( *location >= 8 ) {// Grab the most significant byte.uint8_t c = (uint8_t)((*bitbuffer) >> 24);// Write it to file.tjei_write(state, &c, 1, 1);if ( c == 0xff )  {// Special case: tell JPEG this is not a marker.char z = 0;tjei_write(state, &z, 1, 1);}// Pop the stack.*bitbuffer <<= 8;*location -= 8;}
}// DCT implementation by Thomas G. Lane.
// Obtained through NVIDIA
//  http://developer.download.nvidia.com/SDK/9.5/Samples/vidimaging_samples.html#gpgpu_dct
//
// QUOTE:
//  This implementation is based on Arai, Agui, and Nakajima's algorithm for
//  scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
//  Japanese, but the algorithm is described in the Pennebaker & Mitchell
//  JPEG textbook (see REFERENCES section in file README).  The following code
//  is based directly on figure 4-8 in P&M.
//
static void tjei_fdct (float * data)
{float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;float tmp10, tmp11, tmp12, tmp13;float z1, z2, z3, z4, z5, z11, z13;float *dataptr;int ctr;/* Pass 1: process rows. */dataptr = data;for ( ctr = 7; ctr >= 0; ctr-- ) {tmp0 = dataptr[0] + dataptr[7];tmp7 = dataptr[0] - dataptr[7];tmp1 = dataptr[1] + dataptr[6];tmp6 = dataptr[1] - dataptr[6];tmp2 = dataptr[2] + dataptr[5];tmp5 = dataptr[2] - dataptr[5];tmp3 = dataptr[3] + dataptr[4];tmp4 = dataptr[3] - dataptr[4];/* Even part */tmp10 = tmp0 + tmp3;    /* phase 2 */tmp13 = tmp0 - tmp3;tmp11 = tmp1 + tmp2;tmp12 = tmp1 - tmp2;dataptr[0] = tmp10 + tmp11; /* phase 3 */dataptr[4] = tmp10 - tmp11;z1 = (tmp12 + tmp13) * ((float) 0.707106781); /* c4 */dataptr[2] = tmp13 + z1;    /* phase 5 */dataptr[6] = tmp13 - z1;/* Odd part */tmp10 = tmp4 + tmp5;    /* phase 2 */tmp11 = tmp5 + tmp6;tmp12 = tmp6 + tmp7;/* The rotator is modified from fig 4-8 to avoid extra negations. */z5 = (tmp10 - tmp12) * ((float) 0.382683433); /* c6 */z2 = ((float) 0.541196100) * tmp10 + z5; /* c2-c6 */z4 = ((float) 1.306562965) * tmp12 + z5; /* c2+c6 */z3 = tmp11 * ((float) 0.707106781); /* c4 */z11 = tmp7 + z3;        /* phase 5 */z13 = tmp7 - z3;dataptr[5] = z13 + z2;  /* phase 6 */dataptr[3] = z13 - z2;dataptr[1] = z11 + z4;dataptr[7] = z11 - z4;dataptr += 8;     /* advance pointer to next row */}/* Pass 2: process columns. */dataptr = data;for ( ctr = 8-1; ctr >= 0; ctr-- ) {tmp0 = dataptr[8*0] + dataptr[8*7];tmp7 = dataptr[8*0] - dataptr[8*7];tmp1 = dataptr[8*1] + dataptr[8*6];tmp6 = dataptr[8*1] - dataptr[8*6];tmp2 = dataptr[8*2] + dataptr[8*5];tmp5 = dataptr[8*2] - dataptr[8*5];tmp3 = dataptr[8*3] + dataptr[8*4];tmp4 = dataptr[8*3] - dataptr[8*4];/* Even part */tmp10 = tmp0 + tmp3;    /* phase 2 */tmp13 = tmp0 - tmp3;tmp11 = tmp1 + tmp2;tmp12 = tmp1 - tmp2;dataptr[8*0] = tmp10 + tmp11; /* phase 3 */dataptr[8*4] = tmp10 - tmp11;z1 = (tmp12 + tmp13) * ((float) 0.707106781); /* c4 */dataptr[8*2] = tmp13 + z1; /* phase 5 */dataptr[8*6] = tmp13 - z1;/* Odd part */tmp10 = tmp4 + tmp5;    /* phase 2 */tmp11 = tmp5 + tmp6;tmp12 = tmp6 + tmp7;/* The rotator is modified from fig 4-8 to avoid extra negations. */z5 = (tmp10 - tmp12) * ((float) 0.382683433); /* c6 */z2 = ((float) 0.541196100) * tmp10 + z5; /* c2-c6 */z4 = ((float) 1.306562965) * tmp12 + z5; /* c2+c6 */z3 = tmp11 * ((float) 0.707106781); /* c4 */z11 = tmp7 + z3;        /* phase 5 */z13 = tmp7 - z3;dataptr[8*5] = z13 + z2; /* phase 6 */dataptr[8*3] = z13 - z2;dataptr[8*1] = z11 + z4;dataptr[8*7] = z11 - z4;dataptr++;          /* advance pointer to next column */}
}
#if !TJE_USE_FAST_DCT
static float slow_fdct(int u, int v, float* data)
{#define kPI 3.14159265ffloat res = 0.0f;float cu = (u == 0) ? 0.70710678118654f : 1;float cv = (v == 0) ? 0.70710678118654f : 1;for ( int y = 0; y < 8; ++y ) {for ( int x = 0; x < 8; ++x ) {res += (data[y * 8 + x]) *cosf(((2.0f * x + 1.0f) * u * kPI) / 16.0f) *cosf(((2.0f * y + 1.0f) * v * kPI) / 16.0f);}}res *= 0.25f * cu * cv;return res;
#undef kPI
}
#endif#define ABS(x) ((x) < 0 ? -(x) : (x))static void tjei_encode_and_write_MCU(TJEState* state,float* mcu,
#if TJE_USE_FAST_DCTfloat* qt,  // Pre-processed quantization matrix.
#elseuint8_t* qt,
#endifuint8_t* huff_dc_len, uint16_t* huff_dc_code, // Huffman tablesuint8_t* huff_ac_len, uint16_t* huff_ac_code,int* pred,  // Previous DC coefficientuint32_t* bitbuffer,  // Bitstack.uint32_t* location)
{int du[64];  // Data unit in zig-zag orderfloat dct_mcu[64];memcpy(dct_mcu, mcu, 64 * sizeof(float));#if TJE_USE_FAST_DCTtjei_fdct(dct_mcu);for ( int i = 0; i < 64; ++i ) {float fval = dct_mcu[i];fval *= qt[i];
#if 0fval = (fval > 0) ? floorf(fval + 0.5f) : ceilf(fval - 0.5f);
#elsefval = floorf(fval + 1024 + 0.5f);fval -= 1024;
#endifint val = (int)fval;du[tjei_zig_zag[i]] = val;}
#elsefor ( int v = 0; v < 8; ++v ) {for ( int u = 0; u < 8; ++u ) {dct_mcu[v * 8 + u] = slow_fdct(u, v, mcu);}}for ( int i = 0; i < 64; ++i ) {float fval = dct_mcu[i] / (qt[i]);int val = (int)((fval > 0) ? floorf(fval + 0.5f) : ceilf(fval - 0.5f));du[tjei_zig_zag[i]] = val;}
#endifuint16_t vli[2];// Encode DC coefficient.int diff = du[0] - *pred;*pred = du[0];if ( diff != 0 ) {tjei_calculate_variable_length_int(diff, vli);// Write number of bits with Huffman codingtjei_write_bits(state, bitbuffer, location, huff_dc_len[vli[1]], huff_dc_code[vli[1]]);// Write the bits.tjei_write_bits(state, bitbuffer, location, vli[1], vli[0]);} else {tjei_write_bits(state, bitbuffer, location, huff_dc_len[0], huff_dc_code[0]);}// ==== Encode AC coefficients ====int last_non_zero_i = 0;// Find the last non-zero element.for ( int i = 63; i > 0; --i ) {if (du[i] != 0) {last_non_zero_i = i;break;}}for ( int i = 1; i <= last_non_zero_i; ++i ) {// If zero, increase count. If >=15, encode (FF,00)int zero_count = 0;while ( du[i] == 0 ) {++zero_count;++i;if (zero_count == 16) {// encode (ff,00) == 0xf0tjei_write_bits(state, bitbuffer, location, huff_ac_len[0xf0], huff_ac_code[0xf0]);zero_count = 0;}}tjei_calculate_variable_length_int(du[i], vli);assert(zero_count < 0x10);assert(vli[1] <= 10);uint16_t sym1 = (uint16_t)((uint16_t)zero_count << 4) | vli[1];assert(huff_ac_len[sym1] != 0);// Write symbol 1  --- (RUNLENGTH, SIZE)tjei_write_bits(state, bitbuffer, location, huff_ac_len[sym1], huff_ac_code[sym1]);// Write symbol 2  --- (AMPLITUDE)tjei_write_bits(state, bitbuffer, location, vli[1], vli[0]);}if (last_non_zero_i != 63) {// write EOB HUFF(00,00)tjei_write_bits(state, bitbuffer, location, huff_ac_len[0], huff_ac_code[0]);}return;
}enum {TJEI_LUMA_DC,TJEI_LUMA_AC,TJEI_CHROMA_DC,TJEI_CHROMA_AC,
};#if TJE_USE_FAST_DCT
struct TJEProcessedQT
{float chroma[64];float luma[64];
};
#endif// Set up huffman tables in state.
static void tjei_huff_expand(TJEState* state)
{assert(state);state->ht_bits[TJEI_LUMA_DC]   = tjei_default_ht_luma_dc_len;state->ht_bits[TJEI_LUMA_AC]   = tjei_default_ht_luma_ac_len;state->ht_bits[TJEI_CHROMA_DC] = tjei_default_ht_chroma_dc_len;state->ht_bits[TJEI_CHROMA_AC] = tjei_default_ht_chroma_ac_len;state->ht_vals[TJEI_LUMA_DC]   = tjei_default_ht_luma_dc;state->ht_vals[TJEI_LUMA_AC]   = tjei_default_ht_luma_ac;state->ht_vals[TJEI_CHROMA_DC] = tjei_default_ht_chroma_dc;state->ht_vals[TJEI_CHROMA_AC] = tjei_default_ht_chroma_ac;// How many codes in total for each of LUMA_(DC|AC) and CHROMA_(DC|AC)int32_t spec_tables_len[4] = { 0 };for ( int i = 0; i < 4; ++i ) {for ( int k = 0; k < 16; ++k ) {spec_tables_len[i] += state->ht_bits[i][k];}}// Fill out the extended tables..uint8_t huffsize[4][257];uint16_t huffcode[4][256];for ( int i = 0; i < 4; ++i ) {assert (256 >= spec_tables_len[i]);tjei_huff_get_code_lengths(huffsize[i], state->ht_bits[i]);tjei_huff_get_codes(huffcode[i], huffsize[i], spec_tables_len[i]);}for ( int i = 0; i < 4; ++i ) {int64_t count = spec_tables_len[i];tjei_huff_get_extended(state->ehuffsize[i],state->ehuffcode[i],state->ht_vals[i],&huffsize[i][0],&huffcode[i][0], count);}
}static int tjei_encode_main(TJEState* state,const unsigned char* src_data,const int width,const int height,const int src_num_components)
{if (src_num_components != 3 && src_num_components != 4) {return 0;}if (width > 0xffff || height > 0xffff) {return 0;}#if TJE_USE_FAST_DCTstruct TJEProcessedQT pqt;// Again, taken from classic japanese implementation.///* For float AA&N IDCT method, divisors are equal to quantization* coefficients scaled by scalefactor[row]*scalefactor[col], where*   scalefactor[0] = 1*   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7* We apply a further scale factor of 8.* What's actually stored is 1/divisor so that the inner loop can* use a multiplication rather than a division.*/static const float aan_scales[] = {1.0f, 1.387039845f, 1.306562965f, 1.175875602f,1.0f, 0.785694958f, 0.541196100f, 0.275899379f};// build (de)quantization tablesfor(int y=0; y<8; y++) {for(int x=0; x<8; x++) {int i = y*8 + x;pqt.luma[y*8+x] = 1.0f / (8 * aan_scales[x] * aan_scales[y] * state->qt_luma[tjei_zig_zag[i]]);pqt.chroma[y*8+x] = 1.0f / (8 * aan_scales[x] * aan_scales[y] * state->qt_chroma[tjei_zig_zag[i]]);}}
#endif{ // Write headerTJEJPEGHeader header;// JFIF header.header.SOI = tjei_be_word(0xffd8);  // Sequential DCTheader.APP0 = tjei_be_word(0xffe0);uint16_t jfif_len = sizeof(TJEJPEGHeader) - 4 /*SOI & APP0 markers*/;header.jfif_len = tjei_be_word(jfif_len);memcpy(header.jfif_id, (void*)tjeik_jfif_id, 5);header.version = tjei_be_word(0x0102);header.units = 0x01;  // Dots-per-inchheader.x_density = tjei_be_word(0x0060);  // 96 DPIheader.y_density = tjei_be_word(0x0060);  // 96 DPIheader.x_thumb = 0;header.y_thumb = 0;tjei_write(state, &header, sizeof(TJEJPEGHeader), 1);}{  // Write commentTJEJPEGComment com;uint16_t com_len = 2 + sizeof(tjeik_com_str) - 1;// Commentcom.com = tjei_be_word(0xfffe);com.com_len = tjei_be_word(com_len);memcpy(com.com_str, (void*)tjeik_com_str, sizeof(tjeik_com_str)-1);tjei_write(state, &com, sizeof(TJEJPEGComment), 1);}// Write quantization tables.tjei_write_DQT(state, state->qt_luma, 0x00);tjei_write_DQT(state, state->qt_chroma, 0x01);{  // Write the frame marker.TJEFrameHeader header;header.SOF = tjei_be_word(0xffc0);header.len = tjei_be_word(8 + 3 * 3);header.precision = 8;assert(width <= 0xffff);assert(height <= 0xffff);header.width = tjei_be_word((uint16_t)width);header.height = tjei_be_word((uint16_t)height);header.num_components = 3;uint8_t tables[3] = {0,  // Luma component gets luma table (see tjei_write_DQT call above.)1,  // Chroma component gets chroma table1,  // Chroma component gets chroma table};for (int i = 0; i < 3; ++i) {TJEComponentSpec spec;spec.component_id = (uint8_t)(i + 1);  // No particular reason. Just 1, 2, 3.spec.sampling_factors = (uint8_t)0x11;spec.qt = tables[i];header.component_spec[i] = spec;}// Write to file.tjei_write(state, &header, sizeof(TJEFrameHeader), 1);}tjei_write_DHT(state, state->ht_bits[TJEI_LUMA_DC],   state->ht_vals[TJEI_LUMA_DC], TJEI_DC, 0);tjei_write_DHT(state, state->ht_bits[TJEI_LUMA_AC],   state->ht_vals[TJEI_LUMA_AC], TJEI_AC, 0);tjei_write_DHT(state, state->ht_bits[TJEI_CHROMA_DC], state->ht_vals[TJEI_CHROMA_DC], TJEI_DC, 1);tjei_write_DHT(state, state->ht_bits[TJEI_CHROMA_AC], state->ht_vals[TJEI_CHROMA_AC], TJEI_AC, 1);// Write start of scan{TJEScanHeader header;header.SOS = tjei_be_word(0xffda);header.len = tjei_be_word((uint16_t)(6 + (sizeof(TJEFrameComponentSpec) * 3)));header.num_components = 3;uint8_t tables[3] = {0x00,0x11,0x11,};for (int i = 0; i < 3; ++i) {TJEFrameComponentSpec cs;// Must be equal to component_id from frame header above.cs.component_id = (uint8_t)(i + 1);cs.dc_ac = (uint8_t)tables[i];header.component_spec[i] = cs;}header.first = 0;header.last  = 63;header.ah_al = 0;tjei_write(state, &header, sizeof(TJEScanHeader), 1);}// Write compressed data.float du_y[64];float du_b[64];float du_r[64];// Set diff to 0.int pred_y = 0;int pred_b = 0;int pred_r = 0;// Bit stackuint32_t bitbuffer = 0;uint32_t location = 0;for ( int y = 0; y < height; y += 8 ) {for ( int x = 0; x < width; x += 8 ) {// Block loop: ====for ( int off_y = 0; off_y < 8; ++off_y ) {for ( int off_x = 0; off_x < 8; ++off_x ) {int block_index = (off_y * 8 + off_x);int src_index = (((y + off_y) * width) + (x + off_x)) * src_num_components;int col = x + off_x;int row = y + off_y;if(row >= height) {src_index -= (width * (row - height + 1)) * src_num_components;}if(col >= width) {src_index -= (col - width + 1) * src_num_components;}assert(src_index < width * height * src_num_components);uint8_t r = src_data[src_index + 0];uint8_t g = src_data[src_index + 1];uint8_t b = src_data[src_index + 2];float luma = 0.299f   * r + 0.587f    * g + 0.114f    * b - 128;float cb   = -0.1687f * r - 0.3313f   * g + 0.5f      * b;float cr   = 0.5f     * r - 0.4187f   * g - 0.0813f   * b;du_y[block_index] = luma;du_b[block_index] = cb;du_r[block_index] = cr;}}tjei_encode_and_write_MCU(state, du_y,
#if TJE_USE_FAST_DCTpqt.luma,
#elsestate->qt_luma,
#endifstate->ehuffsize[TJEI_LUMA_DC], state->ehuffcode[TJEI_LUMA_DC],state->ehuffsize[TJEI_LUMA_AC], state->ehuffcode[TJEI_LUMA_AC],&pred_y, &bitbuffer, &location);tjei_encode_and_write_MCU(state, du_b,
#if TJE_USE_FAST_DCTpqt.chroma,
#elsestate->qt_chroma,
#endifstate->ehuffsize[TJEI_CHROMA_DC], state->ehuffcode[TJEI_CHROMA_DC],state->ehuffsize[TJEI_CHROMA_AC], state->ehuffcode[TJEI_CHROMA_AC],&pred_b, &bitbuffer, &location);tjei_encode_and_write_MCU(state, du_r,
#if TJE_USE_FAST_DCTpqt.chroma,
#elsestate->qt_chroma,
#endifstate->ehuffsize[TJEI_CHROMA_DC], state->ehuffcode[TJEI_CHROMA_DC],state->ehuffsize[TJEI_CHROMA_AC], state->ehuffcode[TJEI_CHROMA_AC],&pred_r, &bitbuffer, &location);}}// Finish the image.{ // Flushif (location > 0 && location < 8) {tjei_write_bits(state, &bitbuffer, &location, (uint16_t)(8 - location), 0);}}uint16_t EOI = tjei_be_word(0xffd9);tjei_write(state, &EOI, sizeof(uint16_t), 1);if (state->output_buffer_count) {state->write_context.func(state->write_context.context, state->output_buffer, (int)state->output_buffer_count);state->output_buffer_count = 0;}return 1;
}int tje_encode_to_file(const char* dest_path,const int width,const int height,const int num_components,const unsigned char* src_data)
{int res = tje_encode_to_file_at_quality(dest_path, 3, width, height, num_components, src_data);return res;
}static void tjei_stdlib_func(void* context, void* data, int size)
{FILE* fd = (FILE*)context;fwrite(data, size, 1, fd);
}// Define public interface.
int tje_encode_to_file_at_quality(const char* dest_path,const int quality,const int width,const int height,const int num_components,const unsigned char* src_data)
{FILE* fd = fopen(dest_path, "wb");if (!fd) {tje_log("Could not open file for writing.");return 0;}int result = tje_encode_with_func(tjei_stdlib_func, fd,quality, width, height, num_components, src_data);result |= 0 == fclose(fd);return result;
}int tje_encode_with_func(tje_write_func* func,void* context,const int quality,const int width,const int height,const int num_components,const unsigned char* src_data)
{if (quality < 1 || quality > 3) {tje_log("[ERROR] -- Valid 'quality' values are 1 (lowest), 2, or 3 (highest)\n");return 0;}TJEState state = { 0 };uint8_t qt_factor = 1;switch(quality) {case 3:for ( int i = 0; i < 64; ++i ) {state.qt_luma[i]   = 1;state.qt_chroma[i] = 1;}break;case 2:qt_factor = 10;// don't break. fall through.case 1:for ( int i = 0; i < 64; ++i ) {state.qt_luma[i]   = tjei_default_qt_luma_from_spec[i] / qt_factor;if (state.qt_luma[i] == 0) {state.qt_luma[i] = 1;}state.qt_chroma[i] = tjei_default_qt_chroma_from_paper[i] / qt_factor;if (state.qt_chroma[i] == 0) {state.qt_chroma[i] = 1;}}break;default:assert(!"invalid code path");break;}TJEWriteContext wc = { 0 };wc.context = context;wc.func = func;state.write_context = wc;tjei_huff_expand(&state);int result = tjei_encode_main(&state, src_data, width, height, num_components);return result;
}
// ============================================================
#endif // TJE_IMPLEMENTATION
// ============================================================
//
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic pop
#endif#ifdef __cplusplus
}  // extern C
#endif

zoomlogic.h

/*
Copyright (c) 2010 Takashi Kawasaki <espresso3389 _at_ gmail.com>
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/#ifndef _zoomlogic_h_
#define _zoomlogic_h_#include <vector>
#include <cstring>#ifdef _WIN32
#define USE_FAST_FLOOR 1 // actually for Intel X86 based processors
#define BIGENDIAN 0
#else
#define USE_FAST_FLOOR 0
#define BIGENDIAN 0 // ???
#endif#define PZI_RESTRICT// implementations in _zoomimpl_core_ is not for normal use; please use
// Zoom::rescale.
namespace _zoomimpl_core_
{using FLOAT = double;using u8 = uint8_t;enum {CHECK_SATURATION = false};//------------------------------------------------------------------------template<typename TYPE, size_t SIZE> struct FASTFLOOR{static TYPE fast_floor(double val){return (TYPE)val;}};//------------------------------------------------------------------------// Typical double to int cast is so slow on Intel X86 architecture that// we had better use alternative algorithm to do so.// Works for -32728 to 32727.99999236688template<typename TYPE_32> struct FASTFLOOR<TYPE_32,4>{static TYPE_32 fast_floor(double val){#if USE_FAST_FLOORval = val + (68719476736.0 * 1.5);enum {IMAN = BIGENDIAN ? 1 : 0};return (((TYPE_32*)&val)[IMAN] >> 16);
#elsereturn (TYPE_32)val;
#endif}};//------------------------------------------------------------------------template<typename INTTYPE> INTTYPE fast_floor(double val){return FASTFLOOR<INTTYPE, sizeof(INTTYPE)>::fast_floor(val);}//------------------------------------------------------------------------inline size_t fast_floor_u(double val) {return fast_floor<size_t>(val);}inline long fast_floor_i(double val) {return fast_floor<long>(val);}//------------------------------------------------------------------------inline size_t fast_floor_u(float val) {return (size_t)val;}inline long fast_floor_i(float val) {return (long)val;}//------------------------------------------------------------------------struct SHRINK_MAP{size_t delta;FLOAT rx;};//------------------------------------------------------------------------inline size_t create_shrink_map(SHRINK_MAP* PZI_RESTRICT ioMap,size_t inLeft,size_t inRight,size_t inSrcWidth,FLOAT dx){size_t r = inRight;ioMap -= inLeft;FLOAT lx = dx * inLeft;size_t xx = fast_floor_u(lx);FLOAT rx = lx - (FLOAT)xx;for(size_t x = inLeft; x <= inRight; x++){FLOAT lxNext = dx * (x + 1);size_t xxNext = fast_floor_u(lxNext);if(r == inRight && xxNext + 1 >= inSrcWidth)r = x;ioMap[x].delta = xxNext - xx;ioMap[x].rx = rx;xx = xxNext;rx = lxNext - (FLOAT)xxNext;}return r - inLeft;}//------------------------------------------------------------------------template<size_t CHANNELS, bool FREE_END> void shrink_horz(FLOAT* PZI_RESTRICT outDest,const u8* PZI_RESTRICT inSrc,size_t inDestR,size_t inDestWidth,const SHRINK_MAP* PZI_RESTRICT inMap,FLOAT dx = 0){const FLOAT* d = outDest;const u8* s = inSrc;size_t x;for(x = 0; x < inDestR; x++){const SHRINK_MAP& m0 = inMap[x];const SHRINK_MAP& m1 = inMap[x + 1];const size_t delta = m0.delta;if(delta == 0){const FLOAT d0 = m1.rx - m0.rx;const FLOAT d1 = m0.rx + m1.rx;const FLOAT r0 = (2 - d1)  * d0 / 2;const FLOAT r1 = d1 * d0 / 2;for(size_t i = 0; i < CHANNELS; i++)outDest[i] = r0 * inSrc[i];inSrc += CHANNELS;for(size_t i = 0; i < CHANNELS; i++)outDest[i] += r1 * inSrc[i];inSrc -= CHANNELS;outDest += CHANNELS;}else if(delta == 1){const FLOAT r0 = (1 - m0.rx) * (1 - m0.rx) / 2;const FLOAT r1 = (1 - m0.rx * m0.rx + m1.rx * (2 - m1.rx)) / 2;const FLOAT r2 = m1.rx * m1.rx / 2;for(size_t i = 0; i < CHANNELS; i++)outDest[i] = r0 * inSrc[i];inSrc += CHANNELS;for(size_t i = 0; i < CHANNELS; i++)outDest[i] += r1 * inSrc[i];inSrc += CHANNELS;for(size_t i = 0; i < CHANNELS; i++)outDest[i] += r2 * inSrc[i];inSrc -= CHANNELS;outDest += CHANNELS;}else{const FLOAT r0 = (1 - m0.rx) * (1 - m0.rx) / 2;const FLOAT r1 = (2 - m0.rx * m0.rx) / 2;const FLOAT r2 = (m1.rx * (2 - m1.rx) + 1) / 2;const FLOAT r3 = m1.rx * m1.rx / 2;for(size_t i = 0; i < CHANNELS; i++)outDest[i] = r0 * inSrc[i];inSrc += CHANNELS;for(size_t i = 0; i < CHANNELS; i++)outDest[i] += r1 * inSrc[i];inSrc += CHANNELS;for(size_t j = 2; j < delta; j++){for(size_t i = 0; i < CHANNELS; i++)outDest[i] += inSrc[i];inSrc += CHANNELS;}for(size_t i = 0; i < CHANNELS; i++)outDest[i] += r2 * inSrc[i];inSrc += CHANNELS;for(size_t i = 0; i < CHANNELS; i++)outDest[i] += r3 * inSrc[i];inSrc -= CHANNELS;outDest += CHANNELS;}}if(!FREE_END){for(; x < inDestWidth; x++){for(size_t i = 0; i < CHANNELS; i++)outDest[i] = dx * inSrc[i];outDest += CHANNELS;}return;}}//------------------------------------------------------------------------inline void mul_copy(FLOAT* PZI_RESTRICT outDest,size_t inSize,const FLOAT* PZI_RESTRICT inSrc,FLOAT m){for(size_t x = 0; x < inSize; x++)outDest[x] = inSrc[x] * m;}//------------------------------------------------------------------------inline void accumulate(FLOAT* PZI_RESTRICT outDest,size_t inSize,const FLOAT* PZI_RESTRICT inSrc,FLOAT m){for(size_t x = 0; x < inSize; x++)outDest[x] += inSrc[x] * m;}//------------------------------------------------------------------------template<size_t CHANNELS> void enlarge(u8* PZI_RESTRICT outDest,long inDestRowStride,size_t inDestLeft,size_t inDestTop,size_t inDestWidth,size_t inDestHeight,size_t inDestAllWidth,size_t inDestAllHeight,const u8* PZI_RESTRICT inSrc,size_t inSrcRowStride,size_t inSrcWidth,size_t inSrcHeight){const FLOAT dx = (FLOAT)inSrcWidth / inDestAllWidth; // dx <= 1.0const FLOAT dy = (FLOAT)inSrcHeight / inDestAllHeight; // dx <= 1.0const size_t inDestRight = inDestLeft + inDestWidth;const size_t inDestBottom = inDestTop + inDestHeight;outDest -= inDestTop * inDestRowStride;for(size_t y = inDestTop; y < inDestBottom; y++){FLOAT ly = dy * y;if(ly < 0) ly = 0;size_t yy = fast_floor_u(ly);FLOAT ry = ly - (FLOAT)yy;u8* p = outDest + y * inDestRowStride;const u8* q0 = inSrc + yy * inSrcRowStride;const u8* q1;if(yy + 1 == inSrcHeight)q1 = q0;elseq1 = q0 + inSrcRowStride;for(size_t x = inDestLeft; x < inDestRight; x++){FLOAT lx = dx * x;if(lx < 0) lx = 0;size_t xx = fast_floor_u(lx);FLOAT rx = lx - (FLOAT)xx;const u8* qx0 = q0 + xx * CHANNELS;const u8* qx1 = q1 + xx * CHANNELS;if(xx + 1 == inSrcWidth){for(size_t i = 0; i < CHANNELS; i++){long v = fast_floor_i(qx0[i] * (1.0 - ry) + qx1[i]* ry);//if(v < 0) v = 0; else if(v > 255) v = 255;*p++ = (u8)v;}continue;}for(size_t i = 0; i < CHANNELS; i++){long v = fast_floor_i(((1.0 - rx) * qx0[i] + rx * qx0[i + CHANNELS]) * (1.0 - ry)+ ((1.0 - rx) * qx1[i] + rx * qx1[i + CHANNELS]) * ry);//if(v < 0) v = 0; else if(v > 255) v = 255;*p++ = (u8)v;}}}}//------------------------------------------------------------------------template<size_t CHANNELS> void shrink(u8* PZI_RESTRICT outDest,long inDestRowStride,size_t inDestLeft,size_t inDestTop,size_t inDestWidth,size_t inDestHeight,size_t inDestAllWidth,size_t inDestAllHeight,const u8* PZI_RESTRICT inSrc,size_t inSrcRowStride,size_t inSrcWidth,size_t inSrcHeight){const FLOAT dx = (FLOAT)inSrcWidth / inDestAllWidth; // dx >= 1.0const FLOAT dy = (FLOAT)inSrcHeight / inDestAllHeight; // dy >= 1.0const size_t inDestRight = inDestLeft + inDestWidth;const size_t inDestBottom = inDestTop + inDestHeight;const size_t lineSize = inDestWidth * CHANNELS;std::vector<FLOAT> buf(lineSize);std::vector<FLOAT> tmpBuf(lineSize * 2);FLOAT* line0 = &tmpBuf[0];FLOAT* line1 = &line0[lineSize];size_t left = fast_floor_u(inDestLeft * dx);std::vector<SHRINK_MAP> smap(inDestWidth + 1);const size_t inDestR = create_shrink_map(&smap[0], inDestLeft, inDestRight, inSrcWidth, dx);inSrc += left * CHANNELS;FLOAT ly1 = dy * inDestTop;size_t yy1 = fast_floor_u(ly1);FLOAT ry1 = ly1 - (FLOAT)yy1;const u8* src = inSrc + yy1 * inSrcRowStride;shrink_horz<CHANNELS, false>(line0, src, inDestR, inDestWidth, &smap[0], dx);if(yy1 + 1 < inSrcHeight){src += inSrcRowStride;shrink_horz<CHANNELS, false>(line1, src, inDestR, inDestWidth, &smap[0], dx);}for(size_t y = inDestTop; y < inDestBottom; y++){FLOAT ly0 = ly1;size_t yy0 = yy1;FLOAT ry0 = ry1;size_t y1 = y + 1;ly1 = dy * y1;yy1 = fast_floor_u(ly1);ry1 = ly1 - (FLOAT)yy1;if(yy0 + 1 >= inSrcHeight || yy1 + 1 >= inSrcHeight){for(size_t x = 0; x < lineSize; x++){long f = fast_floor_i(line0[x] / dx);if(CHECK_SATURATION){if(f < 0) f = 0; else if(f > 255) f = 255;}outDest[x] = (u8)f;}const u8* pCopySrc = outDest;for(y++; y < inDestBottom; y++){outDest += inDestRowStride;std::memcpy(outDest, pCopySrc, lineSize);}return;}if(yy0 == yy1){FLOAT d0 = ry1 - ry0;FLOAT d1 = ry0 + ry1;FLOAT r0 = (2 - d1)  * d0 / 2;FLOAT r1 = d1 * d0 / 2;mul_copy(&buf[0], lineSize, line0, r0);accumulate(&buf[0], lineSize,yy1 + 1 < inSrcHeight ? line1 : line0, r1);}else if(yy0 + 1 == yy1){FLOAT r0 = (1 - ry0) * (1 - ry0) / 2;FLOAT r1 = (1 - ry0 * ry0 + ry1 * (2 - ry1)) / 2;FLOAT r2 = ry1 * ry1 / 2;mul_copy(&buf[0], lineSize, line0, r0);accumulate(&buf[0], lineSize, line1, r1);src = inSrc + (yy0 + 2) * inSrcRowStride;shrink_horz<CHANNELS, false>(line0, src, inDestR, inDestWidth, &smap[0], dx);accumulate(&buf[0], lineSize, line0, r2);std::swap(line0, line1);}else{FLOAT r0 = (1 - ry0) * (1 - ry0) / 2;FLOAT r1 = (2 - ry0 * ry0) / 2;FLOAT r2 = (ry1 * (2 - ry1) + 1) / 2;FLOAT r3 = ry1 * ry1 / 2;mul_copy(&buf[0], lineSize, line0, r0);accumulate(&buf[0], lineSize, line1, r1);src = inSrc + (yy0 + 2) * inSrcRowStride;for(size_t i = yy0 + 2; i < yy1; i++){shrink_horz<CHANNELS, false>(line0, src, inDestR, inDestWidth, &smap[0], dx);accumulate(&buf[0], lineSize, line0, 1);src += inSrcRowStride;}shrink_horz<CHANNELS, false>(line0, src, inDestR, inDestWidth, &smap[0], dx);accumulate(&buf[0], lineSize, line0, r2);src += inSrcRowStride;shrink_horz<CHANNELS, false>(line1, src, inDestR, inDestWidth, &smap[0], dx);accumulate(&buf[0], lineSize, line1, r3);}FLOAT d = dx * dy;for(size_t x = 0; x < lineSize; x++){long f = fast_floor_i(buf[x] / d);if(CHECK_SATURATION){if(f < 0) f = 0; else if(f > 255) f = 255;}outDest[x] = (u8)f;}outDest += inDestRowStride;}}} // _zoomimpl_core_namespace Zoom
{using namespace _zoomimpl_core_;//------------------------------------------------------------------------template<size_t CHANNELS> void rescale(u8* PZI_RESTRICT outDest,long inDestRowStride,size_t inDestLeft,size_t inDestTop,size_t inDestWidth,size_t inDestHeight,size_t inDestAllWidth,size_t inDestAllHeight,const u8* PZI_RESTRICT inSrc,size_t inSrcRowStride,size_t inSrcWidth,size_t inSrcHeight){if(inDestAllWidth == inSrcWidth && inDestAllHeight == inSrcHeight){size_t bytes2Copy = inDestWidth * CHANNELS;size_t h = inDestHeight;inSrc += inDestLeft * CHANNELS + inDestTop * inDestRowStride;for(size_t y = 0; y < h; y++){std::memcpy(outDest, inSrc, bytes2Copy);outDest += inDestRowStride;inSrc += inSrcRowStride;}return;}if(inDestAllWidth >= inSrcWidth || inDestAllHeight >= inSrcHeight)enlarge<CHANNELS>(outDest, inDestRowStride,inDestLeft, inDestTop, inDestWidth, inDestHeight,inDestAllWidth, inDestAllHeight,inSrc, inSrcRowStride, inSrcWidth, inSrcHeight);elseshrink<CHANNELS>(outDest, inDestRowStride,inDestLeft, inDestTop, inDestWidth, inDestHeight,inDestAllWidth, inDestAllHeight,inSrc, inSrcRowStride, inSrcWidth, inSrcHeight);}
}#endif // _zoomlogic_h_

编译:

arm-linux-gnueabihf-g++ -O2 --std=c++14 raw2jpg.cpp -o raw2jpg

RAW格式转为JPG格式方法及代码相关推荐

  1. 腾讯视频下载视频QLV格式转为MP4格式

    腾讯视频下载视频QLV格式转为MP4格式(最新) 腾讯视频跟新之后缓存路径 现在里面就没有vodcache文件夹了,所以也没有tdl文件了,那么之前大部分教程里在cmd命令中用copy/E 0*.td ...

  2. word学习/word如何显示空格/LaTeX格式转为Word格式/ latex中的公式格式如何转换成word中的公式格式/excel复制到word表格过大超出

    以windows的word365为例进行讲解,主要分为显示,公式,表格,图片,审阅以及写作方式(含Latex格式转换). 常用快捷键: f4: cmd + y 查找: cmd + shift + h ...

  3. java实现CAD图纸文件DWG格式转为PDF格式

    通过java代码实现CAD图纸文件DWG格式转为PDF格式 这种DWG格式转PDF功能比较少,网上资料也不多,大部分都是让你用第三方插件去做的:我自己找了一下,还是有这方面的jar的,然后整理了一下, ...

  4. 如何将FLAC格式转为MP3格式

    FLAC是一种无损压缩格式,也就是说音频以FLAC编码压缩后不会丢失任何信息,并且将FLAC文件还原后与压缩前的文件内容相同.由于FLAC的无损压缩性质导致它所占储存空间也很大,特别对于喜欢听音乐的爱 ...

  5. python快速批量将jpg图片格式转为pgm格式

    python快速批量将jpg或者png图片格式转为pgm格式. 代码里两个部分要改成你自己的路径,已经在代码备注. import os import cv2path = r'D:\DeepLearni ...

  6. Convert PLY to VTK Using PCL 1.6.0 or PCL 1.8.0 使用PCL库将PLY格式转为VTK格式

    PLY格式是比较流行的保存点云Point Cloud的格式,可以用MeshLab等软件打开,而VTK是医学图像处理中比较常用的格式,可以使用VTK库和ITK库进行更加复杂的运算处理.我们可以使用Par ...

  7. Sql:成功解决将sql输出的datetime时间格式转为常规格式

    Sql:成功解决将sql输出的datetime时间格式转为常规格式 目录 SQL应用案例 1.将sql输出的datetime时间格式转为常规格式 SQL应用案例 1.将sql输出的datetime时间 ...

  8. ffmpeg学习日记604-指令-将视频格式转为H264格式

    ffmpeg学习日记604-指令-将视频格式转为H264格式 在第四篇中,想要解码视频,缺没有弄清楚怎样的一个数据流,现在又明晰了一点,所谓的h264编解码,并不是直接将视频格式,通过h264编解码为 ...

  9. 【EXCEL】杂乱日期格式转为统一形式 / 任意日期格式转为文本格式 / 日前变成杂乱数字“43xxx”怎么办 【数据清洗】

    文章目录 情景,将各种日期格式转为"2019-01"格式 方案 第一步:开始选项卡 - 数字栏 - 格式选为"短日期" 第二步:YEAR.MONTH.DAY函数 ...

  10. 使用Mac终端将mp3/m4r格式转为caf格式

    iOS开发 AudioServices(音效播放)的使用 AudioToolbox.framework是一套基于C语言的框架,使用它来播放音效其本质是将短音频注册到系统声音服务(System Soun ...

最新文章

  1. opencv感兴趣区域ROI的图像混合操作
  2. (完全解决)ValueError: Invalid RGBA argument: 0.2
  3. spoon kettle连接数据库失败解决方法
  4. java扫雷具有win7_Win7系统自带扫雷游戏打不开的解决方法
  5. tomcat4 请求的处理——初步分析
  6. typeorm mysql2_指南 - 使用 TypeORM 和 Express 的示例 - 《TypeORM v0.2.20 中文文档》 - 书栈网 · BookStack...
  7. linux dma 拷贝内存数据_原来 8 张图,就可以搞懂「零拷贝」了
  8. Andorid音频工具tinymix,tinyplay,tinycap使用
  9. 【装饰者模式】Decorator Pattern
  10. 报文分析4、TCP协议的头结构
  11. nodejs爬虫与python爬虫_不再羡慕python,nodejs爬虫撸起袖子就是干,爬取宅男女神网大姐姐的高清图片!...
  12. 程序员之禅的10条黄金法则
  13. mac python3 sns UserWarning: findfont: Font family ['SimHei'] not found
  14. TM1668 与 CT1668 驱动有差异?
  15. OpenCV图像处理知识点梳理
  16. 获取网站后台权限理解
  17. 【新书速递】实用安全多方计算导论
  18. 倚天剑与屠龙刀java_菜鸟入门 java语言学习六大要点
  19. 模板引擎---template的简单使用
  20. Access denied for user ‘root‘@‘localhost‘(using password:YES)解决方法

热门文章

  1. 多迪技术总监揭秘:网络营销需要学习哪些技能?
  2. Windows 文件比较工具winmerge
  3. 助力工业物联网,工业大数据之业务系统结构【三】
  4. Laravel Homestead的安装和使用
  5. web worker介绍以及应用场景
  6. RTP、RTCP、RTSP、RSVP介绍
  7. aspera在mac和win下的使用命令整理
  8. App()和GetApp()
  9. 微信小程序之Material Design——input组件
  10. vue怎么显示/下载后端返回的 .docx文档