H1H_1H1​ is an n×mn\times mn×m matrix ( n>mn > mn>m ) with orthonormal columns, so that H1′H1=ImH_1'H_1 = I_mH1′​H1​=Im​. The set (or space) of all such matrices H1H_1H1​ is called the Stiefel manfold, denoted by Vm,nV_{m,n}Vm,n​.Thus
Vm,n={H1(n×m):H1′H1=Im}V_{m,n} =\{H_1(n\times m):H_1'H_1 = I_m\}Vm,n​={H1​(n×m):H1′​H1​=Im​}
There are 12m(m+1)\frac{1}{2} m ( m + 1)21​m(m+1) functionally independent conditions on the mnmnmn elements of H1∈Vm,nH_1\in V_{m,n}H1​∈Vm,n​ implied by the equation H1′H1=ImH_1'H_1 = I_mH1′​H1​=Im​. Hence the elements of H1H_1H1​ can be regarded as the coordinates of a point on a mn−12m(m+1)mn - \frac{1}{2} m ( m + 1)mn−21​m(m+1)-dimensional surface in mn-dimensional Euclidean space.If H1=(hi,j)(i=1,...,n;j=1,...,m)H_1 = ( h_{i,j}) ( i =1 , . . . ,n; j = 1 , . . . ,m)H1​=(hi,j​)(i=1,...,n;j=1,...,m) then since ∑i=1n∑j=1mhi,j2=m\sum _{i=1}^n\sum_{j=1}^m h_{i,j}^2 = m∑i=1n​∑j=1m​hi,j2​=m this surface is a subset of the sphere of radius m1/2m^{1/2}m1/2 in mn-dimensional space.

The 12m(m+1)\frac{1}{2} m ( m + 1)21​m(m+1) functionally independent conditions:
<hj,hj>=1,(j=1,...,m)<hi,hj>=0,(i>j)\begin {aligned} &<h_j,h_j>=1, (j = 1 , . . . ,m)\\ &<h_i,h_j>=0, (i>j) \end{aligned}​<hj​,hj​>=1,(j=1,...,m)<hi​,hj​>=0,(i>j)​

Two special cases are the following:

a) m=nm=nm=n
Vm,m≡O(m)={H1(m×m):H1′H1=Im}V_{m,m}\equiv O(m)=\{H_1(m\times m):H_1'H_1 = I_m\}Vm,m​≡O(m)={H1​(m×m):H1′​H1​=Im​}
Here the elements of O(m)O(m)O(m) can be regarded as the coordinates of a point on a 12m(m−1)\frac{1}{2} m ( m - 1)21​m(m−1)-dimensional surface in Euclidean m2m^2m2-space and the surface is a subset of the sphere of radius m1/2m^{1/2}m1/2 in m2m^2m2-space.

a) m=1m=1m=1
V1,n≡Sn={H1(n×1):H1′H1=1}V_{1,n}\equiv S_n=\{H_1(n\times 1):H_1'H_1 = 1\}V1,n​≡Sn​={H1​(n×1):H1′​H1​=1}
the unit sphere in RnR^nRn. This is, of course, an n−1n - 1n−1 dimensional surface in RnR^nRn.

THEOREM 1
∫Vm,nH1′dH1=2mπmn/2Γm(12n)(1)\int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1'dH_1}}} = \frac{2^m\pi ^{mn / 2}}{\Gamma _m (\frac{1}{2}n)} \tag 1∫Vm,n​​H1′​dH1​=Γm​(21​n)2mπmn/2​(1)

Proof: Let ZZZ be an n×m,(n≥m)n\times m,(n\ge m)n×m,(n≥m) random matrix whose elements are
all independent N(0,1)N(0,1)N(0,1) random variables. The density function of ZZZ (that is,
the joint density function of the mn elements of ZZZ ) is

f(Z)=(2π)−mn/2exp(−12∑i=1n∑j=1mZij2)=(2π)−mn/2etr(−12Z′Z)(2)\begin {aligned} f({\rm {\bf Z}}) &={\left( {2\pi } \right)^{-mn / 2}}\mathrm{exp}\left( - \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^m Z_{ij}^2 \right)\\ &={\left( {2\pi } \right)^{-mn / 2}}\mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf Z'Z}}} \right) \end{aligned} \tag 2f(Z)​=(2π)−mn/2exp(−21​i=1∑n​j=1∑m​Zij2​)=(2π)−mn/2etr(−21​Z′Z)​(2)
It is very known that
∫Rn×mf(Z)(dZ)=1\int_{R^{n\times m}} f({\rm {\bf Z}})(d{\bf Z})=1∫Rn×m​f(Z)(dZ)=1
That is
∫⋯∫Zij∈(−∞,∞)etr(−12Z′Z)(dZ)=(2π)mn/2{\int\cdots\int}_{Z_{ij}\in(-\infty,\infty)} \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf Z'Z}}} \right)(d{\bf Z})={\left( {2\pi } \right)^{mn / 2}}∫⋯∫Zij​∈(−∞,∞)​etr(−21​Z′Z)(dZ)=(2π)mn/2

where (dZ)=∏ijdZij,(i=1,...,n,j=1,...,m)(d{\bf Z})=\prod_{ij}d Z_{ij},(i=1,...,n, j=1,...,m)(dZ)=∏ij​dZij​,(i=1,...,n,j=1,...,m).

Put Z=H1T{\bf Z} = H_1 TZ=H1​T, where H1∈Vm,nH_1\in V_{m,n}H1​∈Vm,n​ and TTT is upper-triangular with positive diagonal elements, then from 2.13 of ref1
(dZ)=∏i=1mtiin−i(dT)(H1′dH1)(3)\left( {d{\rm {\bf Z}}} \right) = \prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\left( {H_1'dH_1} \right) \tag 3(dZ)=i=1∏m​tiin−i​(dT)(H1′​dH1​)(3)

∫etr(−12Z′Z)(dZ)=∫etr(−12T′T)∏i=1mtiin−i(dT)∫(H1′dH1)\int \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf Z'Z}}} \right)(d{\bf Z})= \int \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf T'T}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\int\left( {H_1'dH_1} \right)∫etr(−21​Z′Z)(dZ)=∫etr(−21​T′T)i=1∏m​tiin−i​(dT)∫(H1′​dH1​)

∫etr(−12T′T)∏i=1mtiin−i(dT)=∏i<j,j=2mexp⁡(−12tij2)dtij∫∏i=1mexp⁡(−12tii2)tiin−idtii=(2π)m(m−1)/4∏i=1m∫si>0exp⁡(−si)(2si)(n−i−1)/2dsi=πm(m−1)/4∏i=1mΓ[n−i+12]2m(m−1)/4∏i=1m2(n−i−1)/2=Γm(n2)⋅2mn/2−m.\begin {aligned} &\int \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf T'T}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\\&= \prod_{i<j,j=2}^m\exp(-\frac{1}{2}t_{ij}^2)dt_{ij}\int \prod_{i=1}^m\exp(-\frac{1}{2}t_{ii}^2)t_{ii}^{n - i}dt_{ii}\\ &=(2\pi)^{m(m-1)/4} \prod_{i=1}^m\int_{s_i>0}\exp(-s_i)(2s_i)^{(n-i-1)/2}ds_i\\ &=\pi^{m(m-1)/4} \prod_{i=1}^m\Gamma \left [\frac{n-i+1}{2}\right ]2^{m(m-1)/4}\prod_{i=1}^m 2^{(n-i-1)/2}\\ &=\Gamma_m(\frac{n}{2})\cdot 2^{mn/2-m}. \end{aligned}​∫etr(−21​T′T)i=1∏m​tiin−i​(dT)=i<j,j=2∏m​exp(−21​tij2​)dtij​∫i=1∏m​exp(−21​tii2​)tiin−i​dtii​=(2π)m(m−1)/4i=1∏m​∫si​>0​exp(−si​)(2si​)(n−i−1)/2dsi​=πm(m−1)/4i=1∏m​Γ[2n−i+1​]2m(m−1)/4i=1∏m​2(n−i−1)/2=Γm​(2n​)⋅2mn/2−m.​
Then
∫Vm,nH1′dH1=2mπmn/2Γm(12n)\int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1'dH_1}}} = \frac{2^m\pi ^{mn / 2}}{\Gamma _m (\frac{1}{2}n)} ∫Vm,n​​H1′​dH1​=Γm​(21​n)2mπmn/2​
End of proof. ♢\diamondsuit♢

Here
Γm(n2)=πm(m−1)/4∏i=1mΓ[n−i+12](4)\Gamma_m(\frac{n}{2})=\pi^{m(m-1)/4} \prod_{i=1}^m\Gamma \left [\frac{n-i+1}{2}\right ]\tag 4 Γm​(2n​)=πm(m−1)/4i=1∏m​Γ[2n−i+1​](4)
Like Γ(n)=∫x>0e−xxndx\Gamma(n)=\int_{x>0}e^{-x}x^n dxΓ(n)=∫x>0​e−xxndx
Γm(n)=∫A>0etr(−A)(det⁡A)(n−(m+1)/2)dA(5)\Gamma_m(n)=\int_{A>0} \mathrm {etr}(-A)(\det A)^{(n-(m+1)/2)}dA\tag 5 Γm​(n)=∫A>0​etr(−A)(detA)(n−(m+1)/2)dA(5)
where A is a positive m×mm\times mm×m matrix. Using A=T′TA=T'TA=T′T and
dA=2m∏i=1mtiim−i+1(dT)(6)dA=2^m\prod_{i=1}^m t_{ii}^{m-i+1}(dT)\tag 6dA=2mi=1∏m​tiim−i+1​(dT)(6)

Γm(n)=∏i<j,j=2mexp⁡(−tij2)dtij∏i=1m∫2exp⁡(−tii2)tii2n−idtii=πm(m−1)/4∏i=1m∫ui>0exp⁡(−ui)uin−i/2−1/2dui=πm(m−1)/4∏i=1mΓ(n−i/2+1/2)\begin{aligned} \Gamma_m(n)&= \prod_{i<j,j=2}^m\exp(-t_{ij}^2)dt_{ij} \prod_{i=1}^m\int 2\exp(-t_{ii}^2)t_{ii}^{2n - i}dt_{ii}\\ &=\pi^{m(m-1)/4}\prod_{i=1}^m\int_{u_i>0} \exp(-u_{i})u_{i}^{n - i/2-1/2}du_{i}\\ &=\pi^{m(m-1)/4}\prod_{i=1}^m\Gamma(n-i/2+1/2) \end{aligned}Γm​(n)​=i<j,j=2∏m​exp(−tij2​)dtij​i=1∏m​∫2exp(−tii2​)tii2n−i​dtii​=πm(m−1)/4i=1∏m​∫ui​>0​exp(−ui​)uin−i/2−1/2​dui​=πm(m−1)/4i=1∏m​Γ(n−i/2+1/2)​

THEOREM 1C (for complex)
∫Vm,nH1HdH1=2mπmnΓ~m(n)(7)\int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1^HdH_1}}} = \frac{2^m\pi ^{mn}}{\widetilde{\Gamma}_m (n)}\tag 7 ∫Vm,n​​H1H​dH1​=Γm​(n)2mπmn​(7)

Proof: Let ZZZ be an n×m,(n≥m)n\times m,(n\ge m)n×m,(n≥m) random matrix whose elements are
all independent N(0,1)N(0,1)N(0,1) random complex variables with real and imagine part of N(0,1/2)N(0,1/2)N(0,1/2) . The density function of ZZZ (that is, the joint density function of the mn elements of ZZZ ) is

f(Z)=(π)−mnexp(−∑i=1n∑j=1mZij∗Zij)=(π)−mnetr(−ZHZ)(8)\begin {aligned} f({\rm {\bf Z}}) &={\left( {\pi } \right)^{-mn}} \mathrm{exp}\left( - \sum_{i=1}^n\sum_{j=1}^m Z_{ij}^*Z_{ij} \right)\\ &={\left( {\pi } \right)^{-mn}} \mathrm{etr}\left( { - { {\bf Z^HZ}}} \right) \end{aligned}\tag 8f(Z)​=(π)−mnexp(−i=1∑n​j=1∑m​Zij∗​Zij​)=(π)−mnetr(−ZHZ)​(8)
It is very known that
∫Cn×mf(Z)(dZ)=1\int_{\mathcal{C}^{n\times m}} f({\rm {\bf Z}})(d{\bf Z})=1 ∫Cn×m​f(Z)(dZ)=1
That is
∫⋯∫Zijetr(−ZHZ)(dZ)=(π)mn{\int\cdots\int}_{Z_{ij}} \mathrm{etr}\left( { - {\rm {\bf Z^HZ}}} \right)(d{\bf Z})={\left( {\pi } \right)^{mn }} ∫⋯∫Zij​​etr(−ZHZ)(dZ)=(π)mn
where (dZ)=⋀ijdZij,(i=1,...,n,j=1,...,m)(d{\bf Z})=\bigwedge_{ij}d Z_{ij},(i=1,...,n, j=1,...,m)(dZ)=⋀ij​dZij​,(i=1,...,n,j=1,...,m).

Put Z=H1T{\bf Z} = H_1 TZ=H1​T, where H1∈Vm,nH_1\in V_{m,n}H1​∈Vm,n​ and TTT is upper-triangular with positive diagonal elements, then from 2.13 of ref1
(dZ)=∏i=1mtii2n−2i+1(dT)(H1HdH1)(9)\left( {d{\rm {\bf Z}}} \right) = \prod\limits_{i = 1}^m {t_{ii}^{2n - 2i+1} } \left( {dT} \right)\left( {H_1^HdH_1} \right)\tag 9 (dZ)=i=1∏m​tii2n−2i+1​(dT)(H1H​dH1​)(9)

∫etr(−ZHZ)(dZ)=∫etr(−THT)∏i=1mtii2n−2i+1(dT)∫(H1HdH1)\int \mathrm{etr}\left( { - {\rm {\bf Z^HZ}}} \right)(d{\bf Z})= \int \mathrm{etr}\left( { - {\rm {\bf T^HT}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{2n - 2i+1} } \left( {dT} \right)\int\left( {H_1^HdH_1} \right) ∫etr(−ZHZ)(dZ)=∫etr(−THT)i=1∏m​tii2n−2i+1​(dT)∫(H1H​dH1​)

∫etr(−THT)∏i=1mtii2n−2i+1(dT)=∏i<j,i=1,j=2mexp⁡(−ℜ(tij)2)dℜ(tij)exp⁡(−ℑ(tij)2)dℑ(tij)∫∏i=1mexp⁡(−tii2)tii2n−2i+1dtii=(π)m(m−1)/2∏i=1m∫si>02−1exp⁡(−si)(si)n−idsi=πm(m−1)/2∏i=1mΓ[n−i+1]2−m=Γ~m(n).2−m.\begin {aligned} &\int \mathrm{etr}\left( { - {\rm {\bf T^HT}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{2n - 2i+1} } \left( {dT} \right)\\&= \prod_{i<j,i=1,j=2}^m\exp(-\Re(t_{ij})^2)d\Re(t_{ij})\exp(-\Im(t_{ij})^2)d\Im(t_{ij})\int \prod_{i=1}^m\exp(-t_{ii}^2)t_{ii}^{2n - 2i+1}dt_{ii}\\ &=(\pi)^{m(m-1)/2} \prod_{i=1}^m\int_{s_i>0}2^{-1}\exp(-s_i)(s_i)^{n-i}ds_i\\ &=\pi^{m(m-1)/2} \prod_{i=1}^m\Gamma \left [{n-i+1}\right ]2^{-m}\\ &=\widetilde{\Gamma}_m(n).2^{-m}. \end{aligned}​∫etr(−THT)i=1∏m​tii2n−2i+1​(dT)=i<j,i=1,j=2∏m​exp(−ℜ(tij​)2)dℜ(tij​)exp(−ℑ(tij​)2)dℑ(tij​)∫i=1∏m​exp(−tii2​)tii2n−2i+1​dtii​=(π)m(m−1)/2i=1∏m​∫si​>0​2−1exp(−si​)(si​)n−idsi​=πm(m−1)/2i=1∏m​Γ[n−i+1]2−m=Γm​(n).2−m.​
Note: Here tij,i<jt_{ij},i<jtij​,i<j are complex, tiit_{ii}tii​ are real.
Then
∫Vm,nH1HdH1=2mπmnΓ~m(n)\int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1^HdH_1}}} = \frac{2^m\pi ^{mn}}{\widetilde{\Gamma} _m (n)} ∫Vm,n​​H1H​dH1​=Γm​(n)2mπmn​
End of proof. ♢♢\diamondsuit \diamondsuit♢♢

Here
Γ~m(n)=πm(m−1)/2∏i=1mΓ[n−i+1](10)\widetilde{\Gamma}_m(n)=\pi^{m(m-1)/2} \prod_{i=1}^m\Gamma \left [{n-i+1}\right ]\tag {10} Γm​(n)=πm(m−1)/2i=1∏m​Γ[n−i+1](10)
Like Γ(n)=∫x>0e−xxndx\Gamma(n)=\int_{x>0}e^{-x}x^n dxΓ(n)=∫x>0​e−xxndx
Γ~m(n)=∫A>0etr(−A)(det⁡A)n−mdA(11)\begin{aligned} \widetilde{\Gamma}_m(n)=\int_{A>0}\mathrm {etr}(-A)(\det A)^{n-m}dA \end{aligned} \tag {11}Γm​(n)=∫A>0​etr(−A)(detA)n−mdA​(11)
where A is a positive m×mm\times mm×m complex matrix. Using A=T′TA=T'TA=T′T and
dA=2m∏i=1mtii2m−2i+1(dT)det⁡A=∏i=1mtii2(12)\begin{aligned} dA=2^m\prod_{i=1}^m t_{ii}^{2m-2i+1}(dT)\\ \det A=\prod_{i=1}^m t_{ii}^2 \tag {12} \end{aligned}dA=2mi=1∏m​tii2m−2i+1​(dT)detA=i=1∏m​tii2​​(12)

Γ~m(n)=∏i<j,i=1,j=2mexp⁡(−∣tij∣2)dℜ(tij)dℑ(tij)∏i=1m∫2exp⁡(−tii2)tii2n−2i+1dtii=πm(m−1)/2∏i=1m∫ui>0exp⁡(−ui)uin−idui=πm(m−1)/2∏i=1mΓ(n−i+1)\begin{aligned} \widetilde{\Gamma}_m(n)&= \prod_{i<j,i=1,j=2}^m\exp(-|t_{ij}|^2)d\Re(t_{ij})d\Im(t_{ij}) \prod_{i=1}^m\int 2\exp(-t_{ii}^2)t_{ii}^{2n - 2i+1}dt_{ii}\\ &=\pi^{m(m-1)/2}\prod_{i=1}^m\int_{u_i>0} \exp(-u_{i})u_{i}^{n - i}du_{i} \\ &=\pi^{m(m-1)/2}\prod_{i=1}^m\Gamma(n-i+1) \end{aligned}Γm​(n)​=i<j,i=1,j=2∏m​exp(−∣tij​∣2)dℜ(tij​)dℑ(tij​)i=1∏m​∫2exp(−tii2​)tii2n−2i+1​dtii​=πm(m−1)/2i=1∏m​∫ui​>0​exp(−ui​)uin−i​dui​=πm(m−1)/2i=1∏m​Γ(n−i+1)​

Derivation of (6): for A=T′TA=T'TA=T′T.
a11=t112da11=2t11dt11a21=t12t11da21=t11dt12+∗a31=t13t11da31=t11dt13+∗⋯⋯am1=t1mt11dam1=t11dt1m+∗a22=t122+t222da22=2t22dt22+∗a32=t13t12+t23t22da32=t22dt23+∗⋯⋯am2=t1mt12+t2mt22dam2=t22dt2m+∗⋯⋯amm=tmm2+∗damm=2tmmdtmm+∗\begin{aligned} \begin{array}{ll} a_{11}=t_{11}^2 & da_{11}=2t_{11}dt_{11}\\ a_{21}=t_{12}t_{11} & da_{21}=t_{11}dt_{12}+*\\ a_{31}=t_{13}t_{11} & da_{31}=t_{11}dt_{13}+*\\ \cdots &\cdots\\ a_{m1}=t_{1m}t_{11} & da_{m1}=t_{11}dt_{1m}+*\\ a_{22}=t_{12}^2+t_{22}^2 & da_{22}=2t_{22}dt_{22}+*\\ a_{32}=t_{13}t_{12}+ t_{23}t_{22}& da_{32}=t_{22}dt_{23}+*\\ \cdots &\cdots\\ a_{m2}=t_{1m}t_{12}+ t_{2m}t_{22}& da_{m2}=t_{22}dt_{2m}+*\\ \cdots &\cdots\\ a_{mm}=t_{mm}^2+* & da_{mm}=2t_{mm}dt_{mm}+* \end{array} \end{aligned}a11​=t112​a21​=t12​t11​a31​=t13​t11​⋯am1​=t1m​t11​a22​=t122​+t222​a32​=t13​t12​+t23​t22​⋯am2​=t1m​t12​+t2m​t22​⋯amm​=tmm2​+∗​da11​=2t11​dt11​da21​=t11​dt12​+∗da31​=t11​dt13​+∗⋯dam1​=t11​dt1m​+∗da22​=2t22​dt22​+∗da32​=t22​dt23​+∗⋯dam2​=t22​dt2m​+∗⋯damm​=2tmm​dtmm​+∗​​
dA=2m∏i=1mtiim−i+1⋀i≤j,j=1mdtij\begin{aligned} dA=2^m\prod_{i=1}^m t_{ii}^{m-i+1}\bigwedge_{i\le j,j=1}^m dt_{ij}\end{aligned}dA=2mi=1∏m​tiim−i+1​i≤j,j=1⋀m​dtij​​
Derivation of (12):
For a complex matrix A=THTA=T^HTA=THT,
aiia_{ii}aii​ are real, daii=2tiidtii+∗da_{ii}=2t_{ii}dt_{ii}+*daii​=2tii​dtii​+∗,
aij=xij+yij,i>ja_{ij}=x_{ij}+y_{ij}, i> jaij​=xij​+yij​,i>j are complex,including real part xijx_{ij}xij​ and imagine part yijy_{ij}yij​,
dxij=tiidℜ(tji)+∗,dyij=−tiidℑ(tji)+∗\begin{aligned}dx_{ij}=t_{ii}d\Re({t}_{ji})+*,\\dy_{ij}=-t_{ii}d\Im({t}_{ji})+* \end{aligned}dxij​=tii​dℜ(tji​)+∗,dyij​=−tii​dℑ(tji​)+∗​
So
dA=2m∏i=1mtii2m−2i+1⋀i≤j,j=1mdtij\begin{aligned} dA=2^m\prod_{i=1}^m t_{ii}^{2m-2i+1}\bigwedge_{i\le j,j=1}^m dt_{ij}\end{aligned}dA=2mi=1∏m​tii2m−2i+1​i≤j,j=1⋀m​dtij​​

THEOREM 2.1.13. Let ZZZ be an n×m,(n≥m)n\times m, ( n \ge m )n×m,(n≥m) matrix of rank m and
write Z=H1TZ= H_1TZ=H1​T, where H1H_1H1​ is an n×mn\times mn×m matrix with H1′H1=ImH_1'H_1=I_mH1′​H1​=Im​, and T is an m×mm\times mm×m upper-triangular matrix with positive diagonal elements. Let H2H_2H2​ (a function of H1H_1H1​ ) be an n×(n−m)n \times ( n - m )n×(n−m) matrix such that H=[H1:H2)H = [ H_1 : H_2)H=[H1​:H2​)is an orthogonal n×nn \times nn×n matrix and write H=[h1,...hm:hm+1,...hn]H=[h_1,. .. h_m: h_{m+1},. . . h_n]H=[h1​,...hm​:hm+1​,...hn​], where h1,...hmh_1,. .. h_mh1​,...hm​ are the columns of H1H_1H1​ and hm+1,...hnh_{m+1},. . . h_nhm+1​,...hn​ are the columns of H2H_2H2​. Then
(dZ)=∏i=1mtiin−i(dT)(H1′dH1)(13)\begin{aligned} \left( {d{\rm {\bf Z}}} \right) = \prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\left( {H_1'dH_1} \right) \end{aligned} \tag {13}(dZ)=i=1∏m​tiin−i​(dT)(H1′​dH1​)​(13)

Proof. Z=H1T⟹dZ=dH1.T+H1.dTZ= H_1T\Longrightarrow dZ=dH_1.T+H_1.dTZ=H1​T⟹dZ=dH1​.T+H1​.dT hence
H′dZ=[H1′H2′¨]dZ=[H1′dH1T+H1′H1dTH2′dH1T+H2′H1dT]=[H1′dH1T+dTH2′dH1T]\begin {aligned} H'{d{\bf Z}}&= \begin{bmatrix} H_1'\\ \ddot{H_2'} \end{bmatrix} d {\bf Z}=\begin{bmatrix} H_1'dH_1T+H_1'H_1dT\\ H_2'dH_1T+H_2'H_1dT \end{bmatrix} \\ &=\begin{bmatrix} H_1'dH_1T+dT\\ H_2'dH_1T \end{bmatrix} \end{aligned}H′dZ​=[H1′​H2′​¨​​]dZ=[H1′​dH1​T+H1′​H1​dTH2′​dH1​T+H2′​H1​dT​]=[H1′​dH1​T+dTH2′​dH1​T​]​

since H1′H1=Im,H1′H2=0H_1'H_1=I_m, H_1'H_2=0H1′​H1​=Im​,H1′​H2​=0. By Theorem 2.1.4 the exterior product of the elements on the left side of (13) is
(H′dZ)=(det⁡H′)m(dZ)=(dZ)(13.1)\begin {aligned} \left( H'{d{\rm {\bf Z}}} \right) = (\det H')^m (d{\bf Z})=(d{\bf Z}) \end{aligned}\tag {13.1}(H′dZ)=(detH′)m(dZ)=(dZ)​(13.1)
Proof of (13.1).
(dZ)=⋀j=1m⋀i=1ndZij=⋀j=1m(dZj)\begin {aligned} \left( {d{\rm {\bf Z}}} \right) =\bigwedge_{j=1}^m\bigwedge_{i=1}^n dZ_{ij}=\bigwedge_{j=1}^m (dZ_{j}) \end{aligned}(dZ)=j=1⋀m​i=1⋀n​dZij​=j=1⋀m​(dZj​)​
Considering exterior product of the same element dxΛdx=0dx\Lambda dx=0dxΛdx=0, here dZijΛdZij=0dZ_{ij}\Lambda dZ_{ij}=0dZij​ΛdZij​=0, and the definition of determinant (the algebraic sum of products of different rows and column of the matrix),

(H′dZj)=(h11dZ1j+h21dZ2j+⋯+hn1dZnjh12dZ1j+h22dZ2j+⋯+hn2dZnj⋯h1ndZ1j+h2ndZ2j+⋯+hnndZnj)=det⁡(H)⋀i=1ndZij=det⁡(H)(dZj)\begin {aligned} (H'dZ_{j}) &=\begin{pmatrix} h_{11}dZ_{1j}+h_{21}dZ_{2j}+\cdots+h_{n1}dZ_{nj}\\ h_{12}dZ_{1j}+h_{22}dZ_{2j}+\cdots+h_{n2}dZ_{nj}\\ \cdots\\ h_{1n}dZ_{1j}+h_{2n}dZ_{2j}+\cdots+h_{nn}dZ_{nj}\\ \end{pmatrix}\\ &=\det(H)\bigwedge_{i=1}^n dZ_{ij}=\det(H)( dZ_{j}) \end{aligned}(H′dZj​)​=⎝⎜⎜⎛​h11​dZ1j​+h21​dZ2j​+⋯+hn1​dZnj​h12​dZ1j​+h22​dZ2j​+⋯+hn2​dZnj​⋯h1n​dZ1j​+h2n​dZ2j​+⋯+hnn​dZnj​​⎠⎟⎟⎞​=det(H)i=1⋀n​dZij​=det(H)(dZj​)​

(H′dZ)=⋀j=1m(H′dZj)=det⁡(H)m(dZ)=(dZ)\begin{aligned} \left( H'{d{\rm {\bf Z}}} \right) =\bigwedge_{j=1}^m (H'dZ_{j})=\det(H)^m(d\rm{Z})=(d\rm{Z}) \end{aligned}(H′dZ)=j=1⋀m​(H′dZj​)=det(H)m(dZ)=(dZ)​
for det⁡(H)=1\det (H)=1det(H)=1.
End of proof of (13.1).

First consider the matrix H2′dH1TH_2' dH_1 TH2′​dH1​T. The (j−m)(j- m)(j−m)th row of H2′dH1TH_2' dH_1 TH2′​dH1​T is
(hj′dh1,⋯,,,...,hj′dhm)T,(m+1≤j≤n).\begin{aligned}\begin{matrix} (h_j'dh_1,\cdots, ,,..., h_j'dh_m)T, &&&( m + 1 \le j \le n ) . \end{matrix}\end{aligned}(hj′​dh1​,⋯,,,...,hj′​dhm​)T,​​​(m+1≤j≤n).​​
((hj′dh1,⋯,,,...,hj′dhm)T)=(det⁡T)⋀i=1mhj′dhi.\begin{aligned} ((h_j'dh_1,\cdots, ,,..., h_j'dh_m)T)=(\det T)\bigwedge_{i=1}^m h_j'dh_i. \end{aligned}((hj′​dh1​,⋯,,,...,hj′​dhm​)T)=(detT)i=1⋀m​hj′​dhi​.​
so
(H2′dH1T)=(det⁡T)n−m⋀j=m+1n⋀i=1mhj′dhi.(13.2)\begin{aligned} (H_2' dH_1 T)=(\det T)^{n-m} \bigwedge_{j=m+1}^n \bigwedge_{i=1}^m h_j'dh_i. \end{aligned}\tag{13.2}(H2′​dH1​T)=(detT)n−mj=m+1⋀n​i=1⋀m​hj′​dhi​.​(13.2)

Now consider the upper matrix H1′dH1T+dTH_1' dH_1 T+dTH1′​dH1​T+dT. First note that since H1′H1=ImH_1' H_1=I_mH1′​H1​=Im​, we have
H1′dH1+dH1′.H1=0\begin{aligned} H_1' dH_1+dH_1'.H_1=0 \end{aligned}H1′​dH1​+dH1′​.H1​=0​
so that
H1′dH1=−dH1′.H1=−(H1′dH1)′,(13.2)\begin{aligned} H_1' dH_1=-dH_1'.H_1=-(H_1' dH_1)', \end{aligned}\tag {13.2}H1′​dH1​=−dH1′​.H1​=−(H1′​dH1​)′,​(13.2)
and hence H1′dH1H_1' dH_1H1′​dH1​, is skew-symmetric:
H1′dH1=[0−h2′dh1⋯−hm′dh1h2′dh10⋯−hm′dh2h3′dh1h3′dh2⋯−hm′dh3⋮⋮⋮hm′dh1hm′dh20](13.3)\begin{aligned} H_1' dH_1=\begin{bmatrix} 0 & -h_2'dh_1 & \cdots & -h_m'dh_1\\ h_2'dh_1 & 0 & \cdots & -h_m'dh_2\\ h_3'dh_1 & h_3'dh_2 & \cdots & -h_m'dh_3\\ \vdots & \vdots & &\vdots\\ h_m'dh_1 & h_m'dh_2 & &0 \end{bmatrix} \end{aligned}\tag{13.3}H1′​dH1​=⎣⎢⎢⎢⎢⎢⎡​0h2′​dh1​h3′​dh1​⋮hm′​dh1​​−h2′​dh1​0h3′​dh2​⋮hm′​dh2​​⋯⋯⋯​−hm′​dh1​−hm′​dh2​−hm′​dh3​⋮0​⎦⎥⎥⎥⎥⎥⎤​​(13.3)

Postmultiplying this by the upper-triangular matrix T gives the following matrix, where only the subdiagonal elements are given, and where, in addition, terms of the form hi′dhjh_i' d h_jhi′​dhj​ are ignored if they have appeared already in a previous column:
(My comment: hi′dhjh_i' d h_jhi′​dhj​ can be considered as a direction, the exterior product of the same directional vector is 0.)
H1′dH1T=[0∗⋯∗∗h2′dh1t11∗⋯∗∗h3′dh1t11h3′dh2t22+∗⋯∗∗⋮⋮⋮hm′dh1t11hm′dh2t22+∗−hm′dhmtm−1,m−1+∗∗](13.4)\begin{aligned} H_1' dH_1T=\begin{bmatrix} 0 & * & \cdots & *& *\\ h_2'dh_1t_{11} & * & \cdots & *& *\\ h_3'dh_1t_{11} & h_3'dh_2t_{22}+* & \cdots & *& *\\ \vdots & \vdots & &\vdots\\ h_m'dh_1t_{11} & h_m'dh_2t_{22}+* & &-h_m'dh_mt_{m-1,m-1}+*& * \end{bmatrix} \end{aligned}\tag{13.4}H1′​dH1​T=⎣⎢⎢⎢⎢⎢⎡​0h2′​dh1​t11​h3′​dh1​t11​⋮hm′​dh1​t11​​∗∗h3′​dh2​t22​+∗⋮hm′​dh2​t22​+∗​⋯⋯⋯​∗∗∗⋮−hm′​dhm​tm−1,m−1​+∗​∗∗∗∗​⎦⎥⎥⎥⎥⎥⎤​​(13.4)

Column by column, the exterior product of the subdiagonal elements (under the diagonal)of H1′dH1T+dTH_1' dH_1 T+dTH1′​dH1​T+dT is (remember that dTdTdT is upper-triangular)

t11m−1t22m−2⋯tm−1,m−1⋀i=1m⋀j=i+1mhj′dhi.\begin{aligned} t_{11}^{m-1}t_{22}^{m-2}\cdots t_{m-1,m-1}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^m h_j'dh_i. \end{aligned}t11m−1​t22m−2​⋯tm−1,m−1​i=1⋀m​j=i+1⋀m​hj′​dhi​.​
(H1′dH1T+dT)=t11m−1t22m−2⋯tm−1,m−1⋀i=1m⋀j=i+1mhj′dhi(dT).\begin{aligned} (H_1' dH_1T+dT)=t_{11}^{m-1}t_{22}^{m-2}\cdots t_{m-1,m-1}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^m h_j'dh_i(dT). \end{aligned}(H1′​dH1​T+dT)=t11m−1​t22m−2​⋯tm−1,m−1​i=1⋀m​j=i+1⋀m​hj′​dhi​(dT).​

The exterior product of the elements of H2′dH1TH_2' dH_1 TH2′​dH1​T
and the subdiagonal elements of H1′dH1T+dTH_1' dH_1 T+dTH1′​dH1​T+dT is
∏i=1mtiin−i⋀i=1m⋀j=i+1nhj′dhi=∏i=1mtiin−i(H1′dH1).(13.5)\begin{aligned} \prod_{i=1}^m t_{ii}^{n-i}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^n h_j'dh_i=\prod_{i=1}^m t_{ii}^{n-i}(H_1'dH_1). \end{aligned}\tag{13.5}i=1∏m​tiin−i​i=1⋀m​j=i+1⋀n​hj′​dhi​=i=1∏m​tiin−i​(H1′​dH1​).​(13.5)

The exterior product of the elements of $ H_1’ dH_1 T+dT$ on and
above the diagonal is
⋀i≤jm+terms involving dH1.\begin{aligned} \bigwedge_{i\le j}^m + \textrm {terms involving }{d}H_1. \end{aligned}i≤j⋀m​+terms involving dH1​.​
The terms of dH1{d}H_1dH1​ do not contribute to the total exterior product.Hence the exterior product of the elements of the right side of (13) is
∏i=1mtiin−i⋀i=1m⋀j=i+1nhj′dhi=∏i=1mtiin−i(dT)(H1′dH1).\begin{aligned} \prod_{i=1}^m t_{ii}^{n-i}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^n h_j'dh_i=\prod_{i=1}^m t_{ii}^{n-i}(dT)(H_1'dH_1). \end{aligned}i=1∏m​tiin−i​i=1⋀m​j=i+1⋀n​hj′​dhi​=i=1∏m​tiin−i​(dT)(H1′​dH1​).​
where (H1′dH1)=⋀i=1m⋀j=i+1n(H_1'dH_1)=\bigwedge_{i=1}^m\bigwedge_{j=i+1}^n(H1′​dH1​)=⋀i=1m​⋀j=i+1n​.
My comment: Why not (H′dH1)(H'dH_1)(H′dH1​) ?
End of proof of (13).

For complex matrix ZZZ and unitary matrix H1:H2H_1:H_2H1​:H2​, considering the real part and imagine part,
(H2HdH1T)=(det⁡T)2n−2m⋀j=m+1n⋀i=1mhjHdhi.\begin{aligned} (H_2^H dH_1 T)=(\det T)^{2n-2m} \bigwedge_{j=m+1}^n \bigwedge_{i=1}^m h_j^Hdh_i. \end{aligned}(H2H​dH1​T)=(detT)2n−2mj=m+1⋀n​i=1⋀m​hjH​dhi​.​

Now consider the upper matrix H1HdH1T+dTH_1^H dH_1 T+dTH1H​dH1​T+dT. First note that since H1HH1=ImH_1^H H_1=I_mH1H​H1​=Im​, we have
H1HdH1+dH1H.H1=0\begin{aligned} H_1^H dH_1+dH_1^H.H_1=0 \end{aligned}H1H​dH1​+dH1H​.H1​=0​
so that
H1HdH1=−dH1H.H1=−(H1HdH1)H,\begin{aligned} H_1^H dH_1=-dH_1^H.H_1=-(H_1^H dH_1)^H, \end{aligned}H1H​dH1​=−dH1H​.H1​=−(H1H​dH1​)H,​
and hence H1HdH1H_1^H dH_1H1H​dH1​, is skew-symmetric:
H1HdH1=[h1Hdh1−h2Hdh1⋯−hmHdh1h2Hdh1h2Hdh2⋯−hmHdh2h3Hdh1h3Hdh2⋯−hmHdh3⋮⋮⋮hmHdh1hmHdh2hmHdhm]\begin{aligned} H_1^H dH_1=\begin{bmatrix} h_1^Hdh_1 & -h_2^Hdh_1 & \cdots & -h_m^Hdh_1\\ h_2^Hdh_1 & h_2^Hdh_2 & \cdots & -h_m^Hdh_2\\ h_3^Hdh_1 & h_3^Hdh_2 & \cdots & -h_m^Hdh_3\\ \vdots & \vdots & &\vdots\\ h_m^Hdh_1 & h_m^Hdh_2 & &h_m^Hdh_m \end{bmatrix} \end{aligned}H1H​dH1​=⎣⎢⎢⎢⎢⎢⎡​h1H​dh1​h2H​dh1​h3H​dh1​⋮hmH​dh1​​−h2H​dh1​h2H​dh2​h3H​dh2​⋮hmH​dh2​​⋯⋯⋯​−hmH​dh1​−hmH​dh2​−hmH​dh3​⋮hmH​dhm​​⎦⎥⎥⎥⎥⎥⎤​​
where HiHdHi,(i=1,2,...,m)H_i^H dH_i, (i=1,2,...,m)HiH​dHi​,(i=1,2,...,m) are with imagine parts only.

Postmultiplying this by the upper-triangular matrix T gives the following matrix, where only the subdiagonal elements (and on the diaonal for complex matrix form)are given, and where, in addition, terms of the form hiHdhjh_i^Hdh_jhiH​dhj​ are ignored if they have appeared already in a previous column:
H1HdH1T=[h1Hdh1t11∗⋯∗h2Hdh1t11h2Hdh2t22+∗⋯∗h3Hdh1t11h3Hdh2t22+∗⋯∗⋮⋮⋮⋮hmHdh1t11hmHdh2t22+∗⋯hmHdhmtmm+∗]\begin{aligned} H_1^H dH_1T=\begin{bmatrix} h_1^Hdh_1t_{11} & * & \cdots & *\\ h_2^Hdh_1t_{11} & h_2^Hdh_2t_{22}+* & \cdots & *\\ h_3^Hdh_1t_{11} & h_3^Hdh_2t_{22}+* & \cdots & *\\ \vdots & \vdots &\vdots&\vdots\\ h_m^Hdh_1t_{11} & h_m^Hdh_2t_{22}+* & \cdots & h_m^Hdh_mt_{mm}+* \end{bmatrix} \end{aligned}H1H​dH1​T=⎣⎢⎢⎢⎢⎢⎡​h1H​dh1​t11​h2H​dh1​t11​h3H​dh1​t11​⋮hmH​dh1​t11​​∗h2H​dh2​t22​+∗h3H​dh2​t22​+∗⋮hmH​dh2​t22​+∗​⋯⋯⋯⋮⋯​∗∗∗⋮hmH​dhm​tmm​+∗​⎦⎥⎥⎥⎥⎥⎤​​

Column by column, the exterior product of the subdiagonal elements (under the diagonal)of H1′dH1T+dTH_1' dH_1 T+dTH1′​dH1​T+dT is (remember that dTdTdT is upper-triangular)

t112(m−1)+1t222(m−2)+1⋯tm,m⋀i=1m⋀j=i+1mhj′dhi.\begin{aligned} t_{11}^{2(m-1)+1}t_{22}^{2(m-2)+1}\cdots t_{m,m}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^m h_j'dh_i. \end{aligned}t112(m−1)+1​t222(m−2)+1​⋯tm,m​i=1⋀m​j=i+1⋀m​hj′​dhi​.​
Each element under diagonal contribute 2 tiit_{ii}tii​, and the element on diagonal contribute 1 tiit_{ii}tii​.
(H1HdH1T+dT)=t112m−1t222m−3⋯tm,m⋀i=1m⋀j=imhjHdhi(dT).\begin{aligned} (H_1^H dH_1T+dT)=t_{11}^{2m-1}t_{22}^{2m-3}\cdots t_{m,m}\bigwedge_{i=1}^m\bigwedge_{j=i}^m h_j^Hdh_i(dT). \end{aligned}(H1H​dH1​T+dT)=t112m−1​t222m−3​⋯tm,m​i=1⋀m​j=i⋀m​hjH​dhi​(dT).​

The exterior product of the elements of H2HdH1TH_2^H dH_1 TH2H​dH1​T
and the subdiagonal elements (and imagine part on diagonal , considering dtiidt_{ii}dtii​ are real) of H1HdH1T+dTH_1^H dH_1 T+dTH1H​dH1​T+dT is
∏i=1mtiin−i⋀i=1m⋀j=inhjHdhi=∏i=1mtiin−i(H1HdH1).\begin{aligned} \prod_{i=1}^m t_{ii}^{n-i}\bigwedge_{i=1}^m\bigwedge_{j=i}^n h_j^Hdh_i=\prod_{i=1}^m t_{ii}^{n-i}(H_1^HdH_1). \end{aligned}i=1∏m​tiin−i​i=1⋀m​j=i⋀n​hjH​dhi​=i=1∏m​tiin−i​(H1H​dH1​).​
Here (H1HdH1)=⋀i=1m⋀j=inhjHdhi(H_1^HdH_1)=\bigwedge_{i=1}^m\bigwedge_{j=i}^n h_j^Hdh_i(H1H​dH1​)=⋀i=1m​⋀j=in​hjH​dhi​.

The exterior product of the elements of H1′dH1T+dTH_1' dH_1 T+dTH1′​dH1​T+dT on diagnal (real part) and above the diagonal is
⋀i≤jm+terms involving dH1.\begin{aligned} \bigwedge_{i\le j}^m + \textrm {terms involving }{d}H_1. \end{aligned}i≤j⋀m​+terms involving dH1​.​
The terms of dH1{d}H_1dH1​ do not contribute to the total exterior product.Hence the exterior product of the elements of the right side is
∏i=1mtii2n−2i+1⋀i=1m⋀j=inhjHdhi=∏i=1mtii2n−2i+1(dT)(H1HdH1).\begin{aligned} \prod_{i=1}^m t_{ii}^{2n-2i+1}\bigwedge_{i=1}^m\bigwedge_{j=i}^n h_j^Hdh_i=\prod_{i=1}^m t_{ii}^{2n-2i+1}(dT)(H_1^HdH_1). \end{aligned}i=1∏m​tii2n−2i+1​i=1⋀m​j=i⋀n​hjH​dhi​=i=1∏m​tii2n−2i+1​(dT)(H1H​dH1​).​

  1. Aspect of Multivariate Statistics Theory

  2. Eigenvalues and Condition Number of Random Matrics

Orthogonal Matrix Integration相关推荐

  1. 正交矩阵 Orthogonal Matrix

    文章目录 正交矩阵 Orthogonal Matrix 正交 标准正交 正交矩阵 正交矩阵的行(row) 正交矩阵 Orthogonal Matrix 正交 在线性代数中正交(orthogonal)这 ...

  2. 正交矩阵(orthogonal matrix)

    方阵,值为实数,行向量和列向量均为正交的单位向量,它的转置矩阵就是逆矩阵.行列式为1或者-1.

  3. UNITY_MATRIX_IT_MV[Matrix]

    http://blog.csdn.net/cubesky/article/details/38682975 前面发了一篇关于unity Matrix的文章. http://blog.csdn.NET/ ...

  4. 【李宏毅2020 ML/DL】P57 Unsupervised Learning - Linear Methods | PCA Matrix Factorization

    我已经有两年 ML 经历,这系列课主要用来查缺补漏,会记录一些细节的.自己不知道的东西. 已经有人记了笔记(很用心,强烈推荐):https://github.com/Sakura-gh/ML-note ...

  5. 矩阵等式 matrix identity(numpy仿真)

    一.矩阵乘法 Ci,j=A[i]TB[:,j] C_{i,j}=A[i]^TB[:, j] AA 的第 ii 行,BB 的第 jj 列的内积. 所以考虑如下的标量形式: ∑i∑jαiαjzTizj \ ...

  6. Eigenvalue of random matrix

    THEOREM 1 ∫ V m , n H 1 ′ d H 1 = 2 m π m n / 2 Γ m ( 1 2 n ) \int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf ...

  7. 【线性代数】4-4:正交基和Gram算法(Orthogonal Bases and Gram-Schmidt)

    title: [线性代数]4-4:正交基和Gram算法(Orthogonal Bases and Gram-Schmidt) categories: Mathematic Linear Algebra ...

  8. mpf6_Time Series Data_quandl_更正kernel PCA_AIC_BIC_trend_log_return_seasonal_decompose_sARIMAx_ADFull

    In financial portfolios, the returns on their constituent(/kənˈstɪtʃuənt/组成的,构成的) assets depend on a ...

  9. [转载]常用数学专业名词的英语

    目录 前言 数学分支的英文: 命题的英文: 数学中常见数词的英语: 点的英文: 线的英文: 面的英文: 角的英文: 距离的英文: 多边形的英文: 三角形的英文: 四边形的英文: 圆的英文: 多面体的英 ...

最新文章

  1. Android之ListView异步加载网络图片(优化缓存机制)
  2. C语言中长度为0的数组
  3. 14 篇论文为你呈现「迁移学习」研究全貌 | 论文集精选 #04
  4. Altium Designer敷铜的规则设定
  5. 【51Nod - 1010 】只包含因子2 3 5的数 (打表,有坑越界)
  6. 安装Orchard错误
  7. SVN与TortoiseSVN实战:冲突详解(一)
  8. 新场景 + 新应用,Flink 在机器学习领域的生产落地
  9. mysql事务一致性实现原理_MySQL -- 事务的实现原理
  10. 给cad文件加密的软件,CAD文件加密软件哪个好用
  11. 网易云音乐转码MP3
  12. 如何向弱智程序员解释区块链
  13. 阿里短信单发,批量发送
  14. java:调节图片透明度(支持透明背景)
  15. 计算机研究生哪个子专业最容易考公务员
  16. 贝壳找房的2021,依然充满变数
  17. CC2530 ADC学习
  18. 单片机控制数码管自动显示1-99
  19. springboot状态机模式
  20. sql语句关联关系的+号

热门文章

  1. 计算机专业保研攻略(二):研究方向与复习规划(必看干货)
  2. python打印100以内质数_怎么用python打印100以内的质数
  3. 下班后我都学了什么1 | Hive
  4. 老鼠和毒药(面试题)
  5. 公司局域网控制电脑开机与关机 不用购买第三方开机设备 远程办公必备
  6. SF习题答案(2)(LF-Induction)
  7. 中科大软件学院,系统建模课程,往年期末考试例题
  8. 手诊学习 很准的手诊
  9. 幸福婚礼策划PPT模板
  10. 防空导弹六自由度仿真(源代码)