前几天去厦门开会(DDAP10),全英文演讲加之大家口音都略重,说实话听演讲主要靠看ppt,摘出一篇听懂的写篇博客纪念一下吧。

11.2 Session-A 13:30-18:00 WICC G201

Time Speaker No. Title
14:30-15:00 Wei Lin ST-07 Dynamical time series analytics: From networks construction to dynamics prediction

主要讲了他的两个工作,一个是重构的工作,一个是预测的工作,分别发表在PRE和PNAS上。

第一篇工作

Detection of time delays and directional interactions based on time series from complex dynamical systems

ABSTRACT

Data-based and model-free accurate identification of intrinsic(固有) time delays and directional interactions.

METHOD

Given a time series x(t)x(t)x(t), one forms a manifold(流形) MX∈RnM_X\in R^nMXRn based on delay coordinate embedding: X(t)=[x(t),x(t−δt),...,x(t−(n−1)δt)]X(t) = [x(t),x(t − \delta t), . . . ,x(t − (n − 1)\delta t)]X(t)=[x(t),x(tδt),...,x(t(n1)δt)], where nnn is the embedding dimension and δt\delta tδt is a proper time lag.

CME method:

Say we are given time series x(t)x(t)x(t) and y(t)y(t)y(t) as well as a set of possible time delays: Γ={τ1,τ2,…,τm}\Gamma = \{\tau_1,\tau_2, … ,\tau_m\}Γ={τ1,τ2,,τm}. For each candidate time delay τi\tau_iτi, we let z(t)=x(t−τi)z(t) = x(t − \tau_i)z(t)=x(tτi) and form the manifolds MYM_YMY and MZM_ZMZ with nyn_yny and nzn_znz being the respective embedding dimensions. For each point Y(t^)∈MYY(\hat{t}) \in M_YY(t^)MY , we find KKK nearest neighbors Y(tj)(j=1,2,…,K)Y(t_j)(j = 1,2, …,K)Y(tj)(j=1,2,,K), which are mapped to the mutual neighbors Z(tj)∈MZ(j=1,2,…,K)Z(t_j) \in M_Z(j = 1,2, …,K)Z(tj)MZ(j=1,2,,K) by the cross map. We then estimate Z(t)Z(t)Z(t) by averaging these mutual neighbors through Z^(t^)∣MY=(1/K)∑j=1KZ(tj)\hat{Z}(\hat{t})|M_Y=(1/K)\sum^K_{j=1}Z(t_j)Z^(t^)MY=(1/K)j=1KZ(tj). Finally, we define the CME score as

s(τ)=(nZ)−1trace(ΣZ^−1cov(Z^,Z)ΣZ−1)s(\tau)=(n_Z)^{-1}trace(\Sigma_{\hat{Z}}^{-1}cov(\hat{Z},Z)\Sigma_Z^{-1})s(τ)=(nZ)1trace(ΣZ^1cov(Z^,Z)ΣZ1)

It is straightforward to show 0≤s≤10\leq s\leq 10s1. The larger the value of sss, the stronger the driving force from x(t−τ)x(t−\tau)x(tτ) to y(t)y(t)y(t). In a plot of s(τ)s(\tau)s(τ), if there is a peak at τk∈Γ\tau_k\in \GammaτkΓ, the time delay from XXX to YYY can be identified as τk\tau_kτk.
可以理解为如果xxx是以延迟τk\tau_kτk作用于yyy,那么当yyy的情况(YYY)类似时,τk\tau_kτk之前的xxx(也就是zzz)的情况(ZZZ)也应该类似(协方差大,相关性强),形式上和pearson相关系数一样。

RESULTS

To validate our CME method, we begin with a discrete-time logistic model of two non-identical species:

Xt+1=Xt(γx−γxXt−K1Yt−τ1)X_{t+1}=X_t(\gamma_x-\gamma_xX_t-K_1Y_{t-\tau_1})Xt+1=Xt(γxγxXtK1Ytτ1)

Yt+1=Yt(γy−γyYt−K2Xt−τ2)Y_{t+1}=Y_t(\gamma_y-\gamma_yY_t-K_2X_{t-\tau_2})Yt+1=Yt(γyγyYtK2Xtτ2)

where γx=3.78,γy=3.77\gamma_x=3.78, \gamma_y = 3.77γx=3.78,γy=3.77, K1K_1K1 and K2K_2K2 are the coupling parameters, and τ1\tau_1τ1 and τ2\tau_2τ2 are the intrinsic time delays that we aim to determine from time series.

后面也举了几个微分方程的例子。

疑问:他所举例都是两个节点的连接,并没有把方法运用到网络中。

第二篇工作

Randomly distributed embedding making short-term high-dimensional data predictable

Abstract

In this work, we propose a model-free framework, named randomly distributed embedding (RDE), to achieve accurate future state prediction based on short-term high-dimensional data.
From the observed data of high-dimensional variables, the RDE framework randomly generates a sufficient number of low-dimensional “nondelay embeddings” and maps each of them to a “delay embedding,” which is constructed from the data of a to be predicted target variable.
Any of these mappings can perform as a low-dimensional weak predictor for future state prediction, and all of such mappings generate a distribution of predicted future states.

用机器学习embedding的思想,把随机选取若干个变量当作特征,预测指定节点的值,然后进行embedding。

RDE Framework

For each index tuple l=(li,l2,...,lL)l = (l_i, l_2, ..., l_L)l=(li,l2,...,lL), a component of such a mapping, denoted by ϕl\phi_lϕl , can be obtained as a predictor for the target variable xk(t)x_k (t)xk(t) in the form of

xk(t+τ)=ϕl(xl1(t),xl2(t),...,xlL(t))x_k(t+\tau)=\phi_l(x_{l_1}(t),x_{l_2}(t),...,x_{l_L}(t))xk(t+τ)=ϕl(xl1(t),xl2(t),...,xlL(t))

Notice that LLL is much lower than the dimension nnn of the entire system. Then, typical approximation frameworks with usual fitting algorithms could be used to implement this predictor. In this paper, we apply the Gaussian Process Regression method to fit each ϕl\phi_lϕl .

Specifically, better prediction can be estimated by

x^k(t+τ)=E[x^kl(t+τ)]\hat{x}_k(t+\tau)=E[\hat{x}^l_k(t+\tau)]x^k(t+τ)=E[x^kl(t+τ)]

where E[⋅]E[\cdot]E[] represents an estimation based on the available probability information of the random variablex^kl\hat{x}^l_kx^kl. A straightforward scheme to obtain this estimation is to use the expectation of the distribution as the final prediction value [i.e., x^k(t+τ)=∫xp(x)dx\hat{x}_k(t+\tau)=\int{xp(x)dx}x^k(t+τ)=xp(x)dx , where p(x)p(x)p(x) denotes the probability density function of the random variable x^kl\hat{x}^l_kx^kl].

In light of the feature bagging strategy in machine learning, each random embedding is treated as a feature, and thus, the final prediction value is estimated by the aggregated average of the selected features: that is,

xk(t+τ)=∑iwix^kl(t+τ)x_k(t+\tau)=\sum_iw_i\hat{x}^l_k(t+\tau)xk(t+τ)=iwix^kl(t+τ)

where each wiw_iwi is a weight related to the in-sample fitting error of ϕi\phi_iϕi and the equation represents the best fitting errors for the final prediction.

Methods

Given time series data sampled from nnn variables of a system with length mmm (i.e., x(t)∈Rn,t=t1,t2,...,tmx(t)\in R_n , t = t_1, t_2, . . . , t_mx(t)Rn,t=t1,t2,...,tm, where ti=tI−1+τti = t_{I−1} + \tauti=tI1+τ), one can estimate the box-counting dimension ddd of the system’s dynamics and choose embedding dimension L>2dL>2dL>2d. Assume that the target variable to be predicted is represented as xkx_kxk. The RDE algorithm is listed as follows:

  • Randomly pick s tuples from (1,2,…,n)(1, 2, …, n)(1,2,,n) with replacement, and each tuple contains LLL numbers.
  • For the lllth tuple (l1,l2,…,lL)(l_1, l_2, …, l_L)(l1,l2,,lL), fit a predictor ϕi\phi_iϕi so as to minimize ∑I=1m−1∣∣xk(ti+τ)−ϕl(xl1(ti),xl2(ti),…,xlL(ti)∣∣\sum_{I=1}^{m-1}||x_k(t_i+\tau) − \phi_l(x_{l_1}(t_i), x_{l_2}(t_i ), …, x_{l_L}(ti)||I=1m1xk(ti+τ)ϕl(xl1(ti),xl2(ti),,xlL(ti). Standard fitting algorithms could be adopted. In this paper, Gaussian Process Regression is used.
  • Use each predictor ϕl\phi_lϕl , and make one-step prediction x^kl(t∗+τ)=ϕl(xl1(t∗),xl2(t∗),…,xlL(t∗)\hat{x}^l_k(t^*+\tau)=\phi_l(x_{l_1}(t^*),x_{l_2}(t^*), …, x_{l_L}(t^*)x^kl(t+τ)=ϕl(xl1(t),xl2(t),,xlL(t) for a specific future time t∗+τt^*+\taut+τ.
  • Multiple predicted values form a set {x^kl(t∗+τ)}\{\hat{x}^l_k(t^* + \tau)\}{x^kl(t+τ)}. Exclude the outliers from the set, and use the Kernel Density Estimation method to approximate the probability density function p(x)p(x)p(x) of its distribution.
  • 将预测值的分布的平均当作是预测值. Otherwise, calculate the in-sample prediction error δl\delta_lδl for the fitted ϕl\phi_lϕl using the leave-one-out method. Based on the rank of the in-sample error, rrr best tuples are picked out, and the final prediction is given by the aggregated average in the form of xk(t+τ)=∑irwix^kl(t+τ)x_k(t+\tau)=\sum_i^rw_i\hat{x}^l_k(t+\tau)xk(t+τ)=irwix^kl(t+τ), where the weight wi=exp(−δi/δ1)∑jexp(−δj/δ1)w_i=\frac{exp(−\delta_i/\delta_1)}{\sum_j exp(−\delta_j/\delta_1)}wi=jexp(δj/δ1)exp(δi/δ1) .

Result

As particularly shown in Fig. 1, with the n-dimensional time series data xi(t),i=1,2,...,nx_i(t), i = 1, 2, . . . , nxi(t),i=1,2,...,n, two kinds of 3D (threedimensional) attractors can be reconstructed.



加噪声和选取不同的训练时间长度对结果的影响


SNR 是信噪比;RDE 是本文的方法(randomly distributed embedding);MVE 是 multiview embedding method;RBF表示RDE采用RBF (radial basis function) network来进行预测的方法; SVE 是 the classic single-variable embedding method。

疑问:混沌系统具有长时间不可预测性,如果不准确预测参数,长时间的预测是不可能的。文章选取的预测时间都很短,也没有探究随着时间的推移误差变化情况;所加噪声不大的情况下,效果也变差的比较快。

【阅读笔记】Dynamical time series analytics相关推荐

  1. Traffic Flow Forecasting: Comparison of Modeling Approaches文献阅读笔记(一)

    今天开始陆续更新之前文章的阅读笔记,有一些文章是辅助实验简单读的,有一些文章是精读的.这里也不做分类了,只是每次在开头提一下相关信息. 文章链接:戳我 主要工作:描述了历史 平均值.时间序列.神经网络 ...

  2. Qt文档阅读笔记-加载HeightMap(高度图)构造3D地形图

    Qt文档阅读笔记-加载HeightMap(高度图)构造3D地形图 QHeightMapSurfaceDataProxy:是Q3DSurface的一个基本代理类. 他是专门加载高度图. 高度图是没有X, ...

  3. Qt文档阅读笔记-Rotations Example相关

    Rotations Example文档阅读笔记 使用这种方式,对y轴和z轴进行旋转. QQuaternion yRotation = QQuaternion::fromAxisAndAngle(0.0 ...

  4. 行为识别阅读笔记(paper + parted code):Beyond Frame-level CNN Saliency-Aware 3-D CNN with LSTM for Video Acti

    行为识别阅读笔记(paper+ parted code):Beyond Frame-level CNN Saliency-Aware 3-DCNN with LSTM for Video Action ...

  5. 毫米波目标检测论文 阅读笔记 | Radar Transformer: An Object Classification Network Based on 4D MMW Imaging Radar

    毫米波目标检测论文 | Radar Transformer: An Object Classification Network Based on 4D MMW Imaging Radar Jie Ba ...

  6. 华为又开始放大招了?CV新架构:VanillaNet: the Power of Minimalism in Deep Learning 论文阅读笔记

    华为又开始放大招了?CV新架构:VanillaNet: the Power of Minimalism in Deep Learning 论文阅读笔记 一.Abstract 二.引言 三.单个 Van ...

  7. trainer setup_Detectron2源码阅读笔记-(一)Configamp;Trainer

    一.代码结构概览 1.核心部分 configs:储存各种网络的yaml配置文件 datasets:存放数据集的地方 detectron2:运行代码的核心组件 tools:提供了运行代码的入口以及一切可 ...

  8. VoxelNet阅读笔记

    作者:Tom Hardy Date:2020-02-11 来源:VoxelNet阅读笔记

  9. Transformers包tokenizer.encode()方法源码阅读笔记

    Transformers包tokenizer.encode()方法源码阅读笔记_天才小呵呵的博客-CSDN博客_tokenizer.encode

最新文章

  1. COMPUTER HARDWARE OPENCART 主题模板 ABC-0059
  2. 【递归】桐桐的递归函数
  3. mysql内部损坏_mysql表损坏故障案例
  4. PHP进程1608占用了9012,swoole (ERRNO 9012): worker exit timeout, forced to terminate
  5. 计算机专业指南作业6,计算机专业指南的学习心得体会
  6. 【实例解析】某水泥企业应用商业智能提升管理效率
  7. 本科、硕士、博士的区别
  8. FFmpeg源代码简单分析:makefile
  9. 微信小程序登录-开发文档
  10. 修改mysql数据库的长度_修改mysql数据库的长度
  11. 怎样做产品能甩同行一个时代?李彦宏说AI思维助你降维攻击
  12. Apache Spark源码走读(九)如何进行代码跟读使用Intellij idea调试Spark源码
  13. 名帖136 刘春霖 楷书《楷书帖选》
  14. 浅析政务OA办公系统的关键功能
  15. 亚马逊差评怎么删?常用的几种删差评方法介绍
  16. 高防CDN有什么特点?
  17. Cocoapods的安装 简单教程(有待完善)
  18. 汤道生对话亚马逊CTO:安全不只是技术,要从战略视角系统构建
  19. ASCII,GBK,Unicode(UTF-32/UTF-8),乱码,ANSI详解
  20. VBS带你领略脚本语言的快乐!(实战篇—刷字数)

热门文章

  1. Android View Binding使用介绍
  2. win10家庭版怎么开启Administrator超级管理员帐户
  3. Initializing Spring FrameworkServlet ‘uaa‘
  4. 【YBT高效进阶】1基础算法/1逆推算法/2奇怪汉诺塔
  5. Java 并发编程解析 | 如何正确理解Java领域中的内存模型,主要是解决了什么问题?
  6. SAP.PA认证培训视频教程(58集)
  7. 在处理时有错误发生: sogoupinyin
  8. Linux磁盘分配 把home的空间扩容给root
  9. c语言中if(a字节4),【鲁班】的意思是什么?【鲁班】是什么意思?
  10. 安科瑞ARD3M电动机保护器在红叶中的实际应用