3.6 低延迟垃圾收集器

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟(Latency),三者共同构成了一个“不可能三角”。 要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的

图3-14中浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的。CMS和G1分别使用增量更新和原始快照(见3.4.6节)技术,实现了标记阶段的并发,不会因管理的堆内存变大,要标记的对象变多而导致停顿时间随之增长。

最后的两款收集器,Shenandoah和ZGC,几乎整个工作过程全部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定的,与堆的容量、堆中对象的数量没有正比例关系。这两款目前仍处于实验状态的收集器,被官方命名为“低延迟垃圾收集器”

3.6.1 Shenandoah收集器

Shenandoah作为第一款不由Oracle(包括以前的Sun)公司的虚拟机团队所领导开发的HotSpot垃圾收集器,不可避免地会受到一些来自“官方”的排挤。Oracle仍明确拒绝在OracleJDK 12中支持Shenandoah收集器,并执意在打包OracleJDK时通过条件编译完全排除掉了Shenandoah的代码,换句话说,Shenandoah是一款只有OpenJDK才会包含,而OracleJDK里反而不存在的收集器。

最初Shenandoah是由RedHat公司独立发展的新型收集器项目,在2014年RedHat把Shenandoah贡献给了OpenJDK,并推动它成为OpenJDK 12的正式特性之一。这个项目的目标 是实现一种能在任何堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的垃圾收集器。

Shenandoah反而更像是G1的下一代继承者,它们两者有着相似的堆内存布局,在初始标记、并发标记等许多阶段的处理思路上都高度一致,甚至还直接共享了一部分实现代码

而由于Shenandoah加入所带来的一些新特性,也有部分会出现在G1收集器中,譬 如在并发失败后作为“逃生门”的Full GC,G1就是由于合并了Shenandoah的代码才获得多线程FullGC的支持。

Shenandoah相比起G1又有什么改进呢?虽然Shenandoah也是使用基于Region的堆内存布局,同样有着用于存放大对象的Humongous Region,默认的回收策略也同样是优先处理回收价值最大的Region……但在管理堆内存方面,它与G1至少有三个明显的不同之处,最重要的当然是支持并发的整理算法,G1的回收阶段是可以多线程并行的,但却不能与用户线程并发。其次,Shenandoah(目前)是默认不使用分代收集的,换言之,不会有专门的新生代Region或者老年代Region的存在。 Shenandoah摒弃了在G1中耗费大量内存和计算资源去维护的记忆集,改用名为“连接矩阵”(Connection Matrix)的全局数据结构来记录跨Region的引用关系,降低了处理跨代指针时的记忆集维护消耗,也降低了伪共享问题(见3.4.5节)的发生概率。连接矩阵可以简单理解为一张二维表格,如果Region N有对象指向Region M,就在表格的N行M列中打上一个标记

Shenandoah收集器的工作过程大致可以划分为以下九个阶段(在最新版本的Shenandoah 2.0中,进一步强化了“部分收集”的特性,初始标记之前还有Initial Partial、Concurrent Partial和Final Partial阶段,它们可以不太严谨地理解为对应于以前分代收集中的Minor GC的工作):

  • 初始标记(Initial Marking):与G1一样,首先标记与GC Roots直接关联的对象,这个阶段仍是“Stop The World”的,但停顿时间与堆大小无关,只与GC Roots的数量相关。
  • 并发标记(Concurrent Marking):与G1一样,遍历对象图,标记出全部可达的对象,这个阶段是与用户线程一起并发的,时间长短取决于堆中存活对象的数量以及对象图的结构复杂程度。
  • 最终标记(Final Marking):与G1一样,处理剩余的SATB扫描,并在这个阶段统计出回收价值最高的Region,将这些Region构成一组回收集(Collection Set)。最终标记阶段也会有一小段短暂的停顿。
  • 并发清理(Concurrent Cleanup):这个阶段用于清理那些整个区域内连一个存活对象都没有找到的Region(这类Region被称为Immediate Garbage Region)。
  • 并发回收(Concurrent Evacuation):并发回收阶段是Shenandoah与之前HotSpot中其他收集器的核心差异。在这个阶段,Shenandoah要把回收集里面的存活对象先复制一份到其他未被使用的Region之中。复制对象这件事情如果将用户线程冻结起来再做那是相当简单的,但如果两者必须要同时并发进行的话,就变得复杂起来了。其困难点是在移动对象的同时,用户线程仍然可能不停对被移动的对象进行读写访问,移动对象是一次性的行为,但移动之后整个内存中所有指向该对象的引用都还是旧对象的地址,这是很难一瞬间全部改变过来的。对于并发回收阶段遇到的这些困难,Shenandoah将会通过读屏障和被称为“Brooks Pointers”的转发指针来解决(讲解完Shenandoah整个工作过程之后笔者还要再回头介绍它)。并发回收阶段运行的时间长短取决于回收集的大小。
  • 初始引用更新(Initial Update Reference):并发回收阶段复制对象结束后,还需要把堆中所有指向旧对象的引用修正到复制后的新地址,这个操作称为引用更新。引用更新的初始化阶段实际上并未做什么具体的处理,设立这个阶段只是为了建立一个线程集合点,确保所有并发回收阶段中进行的收集器线程都已完成分配给它们的对象移动任务而已。初始引用更新时间很短,会产生一个非常短暂的停顿
  • 并发引用更新(Concurrent Update Reference):真正开始进行引用更新操作,这个阶段是与用户线程一起并发的,时间长短取决于内存中涉及的引用数量的多少。并发引用更新与并发标记不同,它不再需要沿着对象图来搜索,只需要按照内存物理地址的顺序,线性地搜索出引用类型,把旧值改为新值即可。
  • 最终引用更新(Final Update Reference):解决了堆中的引用更新后,还要修正存在于GC Roots中的引用。这个阶段是Shenandoah的最后一次停顿,停顿时间只与GC Roots的数量相关。
  • 并发清理(Concurrent Cleanup):经过并发回收和引用更新之后,整个回收集中所有的Region已再无存活对象,这些Region都变成Immediate Garbage Regions了,最后再调用一次并发清理过程来回收这些Region的内存空间,供以后新对象分配使用。

以上对Shenandoah收集器这九个阶段的工作过程的描述可能拆分得略为琐碎,只要抓住其中 三个最重要的并发阶段(并发标记、并发回收、并发引用更新),就能比较容易理清Shenandoah是如何运作的了。

学习了Shenandoah收集器的工作过程,我们再来聊一下Shenandoah用以支持并行整理的核心概念——Brooks Pointer。“Brooks”是一个人的名字。他提出使用转发指针(Forwarding Pointer,也常被称为Indirection Pointer)来实现对象移动与用户程序并发的一种解决方案。

此前,要做类似的并发操作,通常是在被移动对象原有的内存上设置保护陷阱(Memory Protection Trap),一旦用户程序访问到归属于旧对象的内存空间就会产生自陷中段,进入预设好的异常处理器中,再由其中的代码逻辑把访问转发到复制后的新对象上。虽然确实能够实现对象移动与用户线程并发,但是如果没有操作系统层面的直接支持,这种方案将导致用户态频繁切换到核心态,代价是非常大的,不能频繁使用。

Brooks的新方案是在原有对象布局结构的最前面统一增加一个新的引用字段,在正常不处于并发移动的情况下,该引用指向对象自己。

从结构上来看,Brooks提出的转发指针与某些早期Java虚拟机使用过的句柄定位有一些相似之处,两者都是一种间接性的对象访问方式 有了转发指针,每次对象访问会带来一次额外的转向开销,尽管这个开销已经被优化到只有一行汇编指令的程度。收益自然是当对象拥有了一份新的副本时,只需要修改一处指针的值,即旧对象上转发指针的引用位置,使其指向新对象,便可将所有对该对象的访问转发到新的副本上。

需要注意,Brooks形式的转发指针在设计上决定了它是必然会出现多线程竞争问题的,如果收集器线程与用户线程发生的只是并发读取,那无论读到旧对象还是新对象上的字段,返回的结果都应该是一样的。读者不妨设想以下三件事情并发进行时的场景:

1)收集器线程复制了新的对象副本; 2)用户线程更新对象的某个字段; 3)收集器线程更新转发指针的引用值为新副本地址。

如果不做任何保护措施,让事件2在事件1、事件3之间发生的话,将导致的结果就是用户线程对对象的变更发生在旧对象上,所以这里必须针对转发指针的访问操作采取同步措施,实际上

Shenandoah收集器是通过比较并交换(Compare And Swap,CAS)操作来保证并发时对象的访问正确性的。

转发指针另一点必须注意的是Shenandoah会同时设置读、写屏障去拦截对象访问。

为了实现Brooks Pointer,Shenandoah在读、写屏障中都加入了额外的转发处理。数量庞大的读屏障带来的性能开销会是Shenandoah被诟病的关键点之一,所以计划在JDK 13中将Shenandoah的内存屏障模型改进为基于引用访问屏障(Load Reference Barrier)的实现,所谓“引用访问屏障”是指内存屏障只拦截对象中数据类型为引用类型的读写操作,而不去管原生数据类型等其他非引用字段的读写,这能够省去大量对原生类型、对象比较、对象加锁等场景中设置内存屏障所带来的消耗。

3.6.2 ZGC收集器

ZGC(Z Garbage Collector)是一款在JDK 11中新加入的具有实验性质的低延迟垃圾收集器,是由Oracle公司研发的。 ZGC和Shenandoah的目标是高度相似的,都希望在尽可能对吞吐量影响不太大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延迟。但是ZGC和 Shenandoah的实现思路又是差异显著的,如果说RedHat公司开发的Shen-andoah像是Oracle的G1收集器的实际继承者的话,那Oracle公司开发的ZGC就更像是Azul System公司独步天下的PGC(Pauseless GC)和C4(Concurrent Continuously CompactingCollector)收集器的同胞兄弟。

ZGC收集器是一款基于Region内存布局的,(暂时)不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器

与Shenandoah和G1不同的是,ZGC的Region具有动态性——动态创建和销毁,以及动态的区域容量大小。在x64硬件平台下,ZGC的Region可以具有大、中、小三类容量:

  • 小型Region(Small Region):容量固定为2MB,用于放置小于256KB的小对象。
  • 中型Region(Medium Region):容量固定为32MB,用于放置大于等于256KB但小于4MB的对象。
  • 大型Region(Large Region):容量不固定,可以动态变化,但必须为2MB的整数倍用于放置4MB或以上的大对象。每个大型Region中只会存放一个大对象,这也预示着虽然名字叫作“大型Region”,但它的实际容量完全有可能小于中型Region。大型Region在ZGC的实现中是不会被重分配(重分配是ZGC的一种处理动作,用于复制对象的收集器阶段)的,因为复制一个大对象的代价非常高昂。

ZGC收集器有一个标志性的设计是它采用的染色指针技术(Colored Pointer,其他类似的技术中可能将它称为Tag Pointer或者Version Pointer)。

从前,如果我们要在对象上存储一些额外的、只供收集器或者虚拟机本身使用的数据,通常会在对象头中增加额外的存储字段如对象的哈希码、分代年龄、锁记录等就是这样存储的。追踪 式收集算法的标记阶段就可能存在只跟指针打交道而不必涉及指针所引用的对象本身的场景。例如对象标记的过程中需要给对象打上三色标记(见3.4.6节),这些标记本质上就只和对象的引用有关,而与对象本身无关. HotSpot虚拟机的几种收集器有不同的标记实现方案,有的把标记直接记录在对象头上(如Serial收集器),有的把标记记录在与对象相互独立的数据结构上(如G1、Shenandoah使用了一种相当于堆内存的1/64大小的,称为BitMap的结构来记录标记信息),而ZGC的**==染色指针是最直接的、最纯粹的,它直接把标记信息记在引用对象的指针上==**,这时,与其说可达性分析是遍历对象图来标记对象,还不如说是遍历“引用图”来标记“引用”了。

染色指针是一种直接将少量额外的信息存储在指针上的技术

指针有64位。而在AMD64(主流的x86-64架构)架构中只支持到52位(4PB)的地址总线和48位(256TB)的虚拟地址空间。操作系统一侧也还会施加自己的约束,64位的Linux则分别支持47位(128TB)的进程虚拟地址空间和46位(64TB)的物理地址空间,64位的Windows系统甚至只支持44位(16TB)的物理地址空间。 ZGC的染色指针技术继续盯上了这剩下的46位指针宽度,将其高4位提取出来存储四个标志信息。通过这些标志位,虚拟机可以直接从指针中看到其引用对象的三色标记状态、是否进入了重分配集(即被移动过)、是否只能通过finalize()方法才能被访问到。当然,由于这些标志位进一步压缩了原本就只有46位的地址空间,也直接导致ZGC能够管理的内存不可以超过4TB( JDK 13计划是已经扩展到最大支持16TB)。

染色指针的三大优势:

  • 染色指针可以使得一旦某个Region的存活对象被移走之后,这个Region立即就能够被释放和重用掉,而不必等待整个堆中所有指向该Region的引用都被修正后才能清理。

    这点相比起Shenandoah是一个颇大的优势,使得理论上只要还有一个空闲Region,ZGC就能完成收集,而Shenandoah需要等到引用更新阶段结束以后才能释放回收集中的Region,这意味着堆中几乎所有对象都存活的极端情况,需要1∶1复制对象到新Region的话,就必须要有一半的空闲Region来完成收集。至于为什么染色指针能够导致这样的结果,笔者将在后续解释其“自愈”特性的时候进行解释。

  • 染色指针可以大幅减少在垃圾收集过程中内存屏障的使用数量,设置内存屏障,尤其是写屏障的目的通常是为了记录对象引用的变动情况,如果将这些信息直接维护在指针中,显然就可以省去一些专门的记录操作。实际上,到目前为止ZGC都并未使用任何写屏障,只使用了读屏障。

  • 染色指针有扩展性,可以用来记录更多与对象标记、重定位过程相关的数据,以便日后进一步提高性能。现在Linux下的64位指针还有前18位并未使用,它们虽然不能用来寻址,却可以通过其他手段用于信息记录。

要顺利应用染色指针有一个必须解决的前置问题:Java虚拟机作为一个普普通通的进程,能这样随意重新定义内存中某些指针的其中几位吗?

解决方案要涉及虚拟内存映射技术,如果所有进程都是共用同一块物理内存空间的,这样会导致不同进程之间的内存无法相互隔离,当一个进程污染了别的进程内存后,就只能对整个系统进行复位后才能得以恢复。为了解决这个问题,“保护模式”用于隔离进程。在保护模 式下处理器会使用分页管理机制把线性地址空间和物理地址空间分别划分为大小相同的块,这样的内存块被称为“”(Page)。通过在线性虚拟空间的页与物理地址间的页之间建立的映射表,分页管理机制会进行线性地址到物理地址空间的映射,完成线性地址到物理地址的转换。

不妨设想这样一个场景来类比:假如你要去“中山一路3号”这个地址拜访一位朋友,根据你所处城市的不同,譬如在广州或者在上海,是能够通过这个“相同的地址”定位到两个完全独立的物理位置的,这时地址与物理位置是一对多关系映射。

Linux/x86-64平台上的ZGC使用了多重映射(Multi-Mapping)将多个不同的虚拟内存地址映射到同一个物理内存地址上,这是一种多对一映射,意味着ZGC在虚拟内存中看到的地址空间要比实际的堆内存容量来得更大。把染色指针中的标志位看作是地址的分段符,那只要将这些不同的地址段都映射到同一个物理内存空间,经过多重映射转换后,就可以使用染色指针正常进行寻址了

ZGC的运作过程大致可划分为以下四个大的阶段。全部四个阶段都是可以并发执行的,仅是两个阶段中间会存在短暂的停顿小阶段,譬如初始化GC Root直接关联对象的Mark Start

  • 并发标记(Concurrent Mark):并发标记是遍历对象图做可达性分析的阶段,前后也要经过类似于G1、Shenandoah的初始标记、最终标记的短暂停顿,不同的是,**==ZGC的标记是在指针上==**而不是在对象上进行的,标记阶段会更新染色指针中的Marked 0、Marked 1标志位。
  • 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)。重分配集与G1收集器的回收集(Collection Set)还是有区别的,ZGC划分Region的目的并非为了像G1那样做收益优先的增量回收。相反,ZGC每次回收都会扫描所有的Region,用范围更大的扫描成本换取省去G1中记忆集的维护成本

    因此,ZGC的重分配集只是决定了里面的存活对象会被重新复制到其他的Region中,里面的Region会被释放,而并不能说回收行为就只是针对这个集合里面的Region进行,因为标记过程是针对全堆的。此外,在JDK 12的ZGC中开始支持的类卸载以及弱引用的处理,也是在这个阶段中完成的。

  • 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象到新对象的转向关系。得益于染色指针的支持,==ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中,如果用户线程此时并发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指针的“自愈”==(Self-Healing)能力。这样做的好处是只有第一次访问旧对象会陷入转发,也就是只慢一次,对比Shenandoah的Brooks转发指针,那是每次对象访问都必须付出的固定开销。
  • 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,这一点从目标角度看是与Shenandoah并发引用更新阶段一样的,但是ZGC的并发重映射很巧妙地把要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节省了一次遍历对象图的开销。一旦所有指针都被修正之后,原来记录新旧对象关系的转发表就可以释放掉了。

ZGC就完全没有使用记忆集,它甚至连分代都没有,因而完全没有用到写屏障,所以给用户线程带来的运行负担也要小得多。ZGC的这种选择也限制了它能承受的对象分配速率不会太高

可以想象以下场景来理解ZGC的这个劣势:ZGC准备要对一个很大的堆做一次完整的并发收集,假设其全过程要持续十分钟以上(请读者切勿混淆并发时间与停顿时间,ZGC立的Flag是停顿时间不超过十毫秒),在这段时间里面,由于应用的对象分配速率很高,将创造大量的新对象,这些新对象很难进入当次收集的标记范围,通常就只能全部当作存活对象来看待——尽管其中绝大部分对象都是朝生夕灭的,这就产生了大量的浮动垃圾。如果这种高速分配持续维持的话,每一次完整的并发收集周期都会很长,回收到的内存空间持续小于期间并发产生的浮动垃圾所占的空间,堆中剩余可腾挪的空间就越来越小了。目前唯一的办法就是尽可能地增加堆容量大小,获得更多喘息的时间。但是若要从根本上提升ZGC能够应对的对象分配速率,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。Azul的C4收集器实现了分代收集后,能够应对的对象分配速率就比 不分代的PGC收集器提升了十倍之多。

ZGC还有一个常在技术资料上被提及的优点是支持“NUMA-Aware”的内存分配。NUMA(Non-Uniform Memory Access,非统一内存访问架构)是一种为多处理器或者多核处理器的计算机所设计的内存架构。

由于摩尔定律逐渐失效,现代处理器因频率发展受限转而向多核方向发展,以前原本在北桥芯片中的内存控制器也被集成到了处理器内核中,这样每个处理器核心所在的裸晶(DIE)都有属于自己内存管理器所管理的内存,如果要访问被其他处理器核心管理的内存,就必须通过Inter-Connect通道来完成,这要比访问处理器的本地内存慢得多。在NUMA架构下,ZGC收集器会优先尝试在请求线程当前所处的处理器的本地内存上分配对象,以保证高效内存访问。在ZGC之前的收集器就只有针对吞吐量设计的Parallel Scavenge支持NUMA内存分配,如今ZGC也成为另外一个选择。

Shenandoah收集器和ZGC收集器的简单介绍相关推荐

  1. Spring boot自定义拦截器和拦截器重定向配置简单介绍~!

    大家好: 本文简单介绍一下用于权限控制的Spring boot拦截器配置,拦截器重定向问题. 开发工具:jdk1.8   idea2017(付费版,网上找的破解教程) 1,首先使用idea创建一个Sp ...

  2. python 类的使用(5)之类装饰器(类的装饰器和类作为装饰器)

    在阅读博客中,发现了类装饰器的存在,由于之前就在写类相关的专栏,这次就赶紧补上之前的内容啦.类装饰器这个词是有歧义的,因为类本身可以作为装饰器,一个类也可以被函数装饰器所装饰.今天就简单介绍一下这两种 ...

  3. JVM之(Shenandoah、ZGC收集器)(基于《深入理解Java虚拟机》之第三章垃圾收集器与内存分配策略)(下)

    上一篇丹丹学妹已经给我讲了七种经典的GC器,那到底怎么样的GC器才能称的上"完美"? asda这就涉及到了衡量GC器性能的三项最重要的指标:①.内存占用②.吞吐量 ③.低时延 ,有 ...

  4. G1、Shenandoah、ZGC收集器

    一.Garbage First 收集器 1.1.定义 Garbage First (简称G1)收集器开创了收集器面向局部收集的设计思路和基于 Region 的内存布局形式.G1 从整体来看是基于&qu ...

  5. ZGC收集器(学习笔记)

    ZGC收集器 一款在 JDK 11中新加入的具有实验性质的低延迟垃圾收集器 ZGC的目标是希望在尽可能对吞吐量影响不太大的前提下,实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延 ...

  6. (七)JVM成神路之GC分代篇:分代GC器、CMS收集器及YoungGC、FullGC日志剖析

    引言 在<GC基础篇>中曾谈到过分代以及分区回收的概念,但基础篇更多的是建立在GC的一些算法理论上进行高谈阔论,而本篇则重点会对于分代收集器的实现进行全面详解,其中会涵盖串行收集器.并行收 ...

  7. 【Android 内存优化】垃圾回收算法 ( 分代收集算法 | Serial 收集器 | ParNew 收集器 | Parallel Scavenge 收集器 | CMS 并发标记清除收集器 )

    文章目录 一. 分代收集算法 二. 垃圾回收器 / 收集器 ( GC ) 三. 串行收集器 ( Serial ) 四. ParNew 收集器 五. Parallel Scavenge 收集器 六. C ...

  8. 27.垃圾收集器(Serial收集器、ParNew收集器、Parallel收集器、Parallel Old 收集器、CMS收集器、G1收集器、常用的收集器组合)

    27.垃圾收集器 27.1.Serial收集器 27.2.ParNew收集器 27.3.Parallel收集器 27.4.Parallel Old 收集器 27.5.CMS收集器 27.6.G1收集器 ...

  9. java默认收集器_jvm默认垃圾收集器

    jdk1.7 默认垃圾收集器Parallel Scavenge(新生代)+Parallel Old(老年代) jdk1.8 默认垃圾收集器Parallel Scavenge(新生代)+Parallel ...

最新文章

  1. java socket聊天工具_java+socket 简易聊天工具
  2. SpringBoot升级到2.3.x后返回message为空
  3. 你不必害怕,岁月有的是时间让你遇见更好的人(沈善书)
  4. C#简单的生成随机数
  5. 几种程序的反汇编代码入口特征
  6. jq 改数组的k值_在JSON jq中修改键值数组
  7. 在Delphi中进行指纹仪的二次开发
  8. 突然觉得人类的进化是人类自主意愿…
  9. 阿里云短信服务不对个人开放?如何在阿里云市场免费购买短信服务?云市场购买到的短信服务如何使用?(以谷粒学院项目为例)
  10. 如何利用在线工具更改寸照底色
  11. 编程初学者如何缓解迷茫和焦虑?墙裂推荐此文,助你赢在起跑线
  12. 笔记本连接WIFI后,虚拟机不能上网问题解决
  13. [数学]三角函数与双曲函数及其导数和不定积分
  14. 嵌入式软件工程师一般都在开发什么?
  15. 在第一次使用德国小鸡要注意的地方
  16. 程序员眼睛的保护(爱护眼睛,你我做起)
  17. 深入浅出用户会员体系设计
  18. python读取哨兵卫星数据_科学网—【Python】批量下载Sentinel-2卫星数据 - 江佳乐的博文...
  19. 关于现代数学的前沿课题
  20. 硕士论文格式设置过程

热门文章

  1. 中图法分类号(计算机,自动化)
  2. 哪些适合跑步专用的耳机、跑步耳机前十最好排行
  3. 全面了解 ARM CP15协处理器 (深度好文)
  4. 走向深蓝·小白的机器学习
  5. 用python抢火车票_用 Python 代码自动抢火车票
  6. vista 之万能五笔7问题
  7. 疯狂Java讲义(八)----第一部分
  8. android 极光推送开源,极光推送 - Android攻城狮的个人空间 - OSCHINA - 中文开源技术交流社区...
  9. 计算机绘图图框实验报告,南京邮电大学工程制图报告模版.doc
  10. 给老板减刑系列之hadoop 安全缺陷分析之一:kerberos 的缺陷