java内存模型以及GC(垃圾回收监视器)调优

原文:http://www.journaldev.com/2856/java-jvm-memory-model-and-garbage-collection-monitoring-tuning

Understanding JVM Memory Model is very important if you want to understand the working of Java Garbage Collection. Today we will look into different parts of JVM memory and how to monitor and perform garbage collection tuning.

Java (JVM) Memory Model

As you can see in the above image, JVM memory is divided into separate parts. At broad level, JVM Heap memory is physically divided into two parts – Young Generation and Old Generation.

Young Generation

Young generation is the place where all the new objects are created. When young generation is filled, garbage collection is performed. This garbage collection is called Minor GC. Young Generation is divided into three parts – Eden Memory and two Survivor Memory spaces.

Important Points about Young Generation Spaces:

  • Most of the newly created objects are located in the Eden memory space.
  • When Eden space is filled with objects, Minor GC is performed and all the survivor objects are moved to one of the survivor spaces.
  • Minor GC also checks the survivor objects and move them to the other survivor space. So at a time, one of the survivor space is always empty.
  • Objects that are survived after many cycles of GC, are moved to the Old generation memory space. Usually it’s done by setting a threshold for the age of the young generation objects before they become eligible to promote to Old generation.

Old Generation

Old Generation memory contains the objects that are long lived and survived after many rounds of Minor GC. Usually garbage collection is performed in Old Generation memory when it’s full. Old Generation Garbage Collection is called Major GC and usually takes longer time.

Stop the World Event

All the Garbage Collections are “Stop the World” events because all application threads are stopped until the operation completes.

Since Young generation keeps short-lived objects, Minor GC is very fast and the application doesn’t get affected by this.

However Major GC takes longer time because it checks all the live objects. Major GC should be minimized because it will make your application unresponsive for the garbage collection duration. So if you have a responsive application and there are a lot of Major Garbage Collection happening, you will notice timeout errors.

The duration taken by garbage collector depends on the strategy used for garbage collection. That’s why it’s necessary to monitor and tune the garbage collector to avoid timeouts in the highly responsive applications.

Permanent Generation

Permanent Generation or “Perm Gen” contains the application metadata required by the JVM to describe the classes and methods used in the application. Note that Perm Gen is not part of Java Heap memory.

Perm Gen is populated by JVM at runtime based on the classes used by the application. Perm Gen also contains Java SE library classes and methods. Perm Gen objects are garbage collected in a full garbage collection.

Method Area

Method Area is part of space in the Perm Gen and used to store class structure (runtime constants and static variables) and code for methods and constructors.

Memory Pool

Memory Pools are created by JVM memory managers to create a pool of immutable objects, if implementation supports it. String Pool is a good example of this kind of memory pool. Memory Pool can belong to Heap or Perm Gen, depending on the JVM memory manager implementation.

Runtime Constant Pool

Runtime constant pool is per-class runtime representation of constant pool in a class. It contains class runtime constants and static methods. Runtime constant pool is the part of method area.

Java Stack Memory

Java Stack memory is used for execution of a thread. They contain method specific values that are short-lived and references to other objects in the heap that are getting referred from the method. You should read Difference between Stack and Heap Memory.

Java Heap Memory Switches

Java provides a lot of memory switches that we can use to set the memory sizes and their ratios. Some of the commonly used memory switches are:

VM Switch VM Switch Description
-Xms For setting the initial heap size when JVM starts
-Xmx For setting the maximum heap size.
-Xmn For setting the size of the Young Generation, rest of the space goes for Old Generation.
-XX:PermGen For setting the initial size of the Permanent Generation memory
-XX:MaxPermGen For setting the maximum size of Perm Gen
-XX:SurvivorRatio For providing ratio of Eden space and Survivor Space, for example if Young Generation size is 10m and VM switch is -XX:SurvivorRatio=2 then 5m will be reserved for Eden Space and 2.5m each for both the Survivor spaces. The default value is 8.
-XX:NewRatio For providing ratio of old/new generation sizes. The default value is 2.

Most of the times, above options are sufficient, but if you want to check out other options too then please check JVM Options Official Page.

Java Garbage Collection

Java Garbage Collection is the process to identify and remove the unused objects from the memory and free space to be allocated to objects created in the future processing. One of the best feature of java programming language is the automatic garbage collection, unlike other programming languages such as C where memory allocation and deallocation is a manual process.

Garbage Collector is the program running in the background that looks into all the objects in the memory and find out objects that are not referenced by any part of the program. All these unreferenced objects are deleted and space is reclaimed for allocation to other objects.

One of the basic way of garbage collection involves three steps:

  1. Marking: This is the first step where garbage collector identifies which objects are in use and which ones are not in use.
  2. Normal Deletion: Garbage Collector removes the unused objects and reclaim the free space to be allocated to other objects.
  3. Deletion with Compacting: For better performance, after deleting unused objects, all the survived objects can be moved to be together. This will increase the performance of allocation of memory to newer objects.

There are two problems with simple mark and delete approach.

  1. First one is that it’s not efficient because most of the newly created objects will become unused
  2. Secondly objects that are in-use for multiple garbage collection cycle are most likely to be in-use for future cycles too.

The above shortcomings with the simple approach is the reason that Java Garbage Collection is Generational and we have Young Generation and Old Generation spaces in the heap memory. I have already explained above how objects are scanned and moved from one generational space to another based on the Minor GC and Major GC.

Java Garbage Collection Types

There are five types of garbage collection types that we can use in our applications. We just need to use JVM switch to enable the garbage collection strategy for the application. Let’s look at each of them one by one.

  1. Serial GC (-XX:+UseSerialGC): Serial GC uses the simple mark-sweep-compact approach for young and old generations garbage collection i.e Minor and Major GC.

    Serial GC is useful in client-machines such as our simple stand alone applications and machines with smaller CPU. It is good for small applications with low memory footprint.

  2. Parallel GC (-XX:+UseParallelGC): Parallel GC is same as Serial GC except that is spawns N threads for young generation garbage collection where N is the number of CPU cores in the system. We can control the number of threads using -XX:ParallelGCThreads=n JVM option.

    Parallel Garbage Collector is also called throughput collector because it uses multiple CPUs to speed up the GC performance. Parallel GC uses single thread for Old Generation garbage collection.

  3. Parallel Old GC (-XX:+UseParallelOldGC): This is same as Parallel GC except that it uses multiple threads for both Young Generation and Old Generation garbage collection.
  4. Concurrent Mark Sweep (CMS) Collector (-XX:+UseConcMarkSweepGC): CMS Collector is also referred as concurrent low pause collector. It does the garbage collection for Old generation. CMS collector tries to minimize the pauses due to garbage collection by doing most of the garbage collection work concurrently with the application threads.

    CMS collector on young generation uses the same algorithm as that of the parallel collector. This garbage collector is suitable for responsive applications where we can’t afford longer pause times. We can limit the number of threads in CMS collector using -XX:ParallelCMSThreads=n JVM option.

  5. G1 Garbage Collector (-XX:+UseG1GC): The Garbage First or G1 garbage collector is available from Java 7 and it’s long term goal is to replace the CMS collector. The G1 collector is a parallel, concurrent, and incrementally compacting low-pause garbage collector.

    Garbage First Collector doesn’t work like other collectors and there is no concept of Young and Old generation space. It divides the heap space into multiple equal-sized heap regions. When a garbage collection is invoked, it first collects the region with lesser live data, hence “Garbage First”. You can find more details about it at Garbage-First Collector Oracle Documentation.

Java Garbage Collection Monitoring

We can use Java command line as well as UI tools for monitoring garbage collection activities of an application. For my example, I am using one of the demo application provided by Java SE downloads.

If you want to use the same application, go to Java SE Downloads page and download JDK 7 and JavaFX Demos and Samples. The sample application I am using is Java2Demo.jar and it’s present in jdk1.7.0_55/demo/jfc/Java2D directory. However this is an optional step and you can run the GC monitoring commands for any java application.

Command used by me to start the demo application is:

1
pankaj@Pankaj:~ /Downloads/jdk1 .7.0_55 /demo/jfc/Java2D $ java -Xmx120m -Xms30m -Xmn10m -XX:PermSize=20m -XX:MaxPermSize=20m -XX:+UseSerialGC -jar Java2Demo.jar

jsat

We can use jstat command line tool to monitor the JVM memory and garbage collection activities. It ships with standard JDK, so you don’t need to do anything else to get it.

For executing jstat you need to know the process id of the application, you can get it easily using ps -eaf | grep java command.

1
2
3
pankaj@Pankaj:~$ ps -eaf | grep Java2Demo.jar
   501 9582  11579   0  9:48PM ttys000    0:21.66 /usr/bin/java -Xmx120m -Xms30m -Xmn10m -XX:PermSize=20m -XX:MaxPermSize=20m -XX:+UseG1GC -jar Java2Demo.jar
   501 14073 14045   0  9:48PM ttys002    0:00.00 grep Java2Demo.jar

So the process id for my java application is 9582. Now we can run jstat command as shown below.

1
2
3
4
5
6
7
8
9
pankaj@Pankaj:~$ jstat -gc 9582 1000
  S0C    S1C    S0U    S1U      EC       EU        OC         OU       PC     PU    YGC     YGCT    FGC    FGCT     GCT
1024.0 1024.0  0.0    0.0    8192.0   7933.3   42108.0    23401.3   20480.0 19990.9    157    0.274  40      1.381    1.654
1024.0 1024.0  0.0    0.0    8192.0   8026.5   42108.0    23401.3   20480.0 19990.9    157    0.274  40      1.381    1.654
1024.0 1024.0  0.0    0.0    8192.0   8030.0   42108.0    23401.3   20480.0 19990.9    157    0.274  40      1.381    1.654
1024.0 1024.0  0.0    0.0    8192.0   8122.2   42108.0    23401.3   20480.0 19990.9    157    0.274  40      1.381    1.654
1024.0 1024.0  0.0    0.0    8192.0   8171.2   42108.0    23401.3   20480.0 19990.9    157    0.274  40      1.381    1.654
1024.0 1024.0  48.7   0.0    8192.0   106.7    42108.0    23401.3   20480.0 19990.9    158    0.275  40      1.381    1.656
1024.0 1024.0  48.7   0.0    8192.0   145.8    42108.0    23401.3   20480.0 19990.9    158    0.275  40      1.381    1.656

The last argument for jstat is the time interval between each output, so it will print memory and garbage collection data every 1 second.

Let’s go through each of the columns one by one.

  • S0C and S1C: This column shows the current size of the Survivor0 and Survivor1 areas in KB.
  • S0U and S1U: This column shows the current usage of the Survivor0 and Survivor1 areas in KB. Notice that one of the survivor areas are empty all the time.
  • EC and EU: These columns show the current size and usage of Eden space in KB. Note that EU size is increasing and as soon as it crosses the EC, Minor GC is called and EU size is decreased.
  • OC and OU: These columns show the current size and current usage of Old generation in KB.
  • PC and PU: These columns show the current size and current usage of Perm Gen in KB.
  • YGC and YGCT: YGC column displays the number of GC event occurred in young generation. YGCT column displays the accumulated time for GC operations for Young generation. Notice that both of them are increased in the same row where EU value is dropped because of minor GC.
  • FGC and FGCT: FGC column displays the number of Full GC event occurred. FGCT column displays the accumulated time for Full GC operations. Notice that Full GC time is too high when compared to young generation GC timings.
  • GCT: This column displays the total accumulated time for GC operations. Notice that it’s sum of YGCT and FGCT column values.

The advantage of jstat is that it can be executed in remote servers too where we don’t have GUI. Notice that sum of S0C, S1C and EC is 10m as specified through -Xmn10m JVM option.

Java VisualVM with Visual GC

If you want to see memory and GC operations in GUI, then you can use jvisualvm tool. Java VisualVM is also part of JDK, so you don’t need to download it separately.

Just run jvisualvm command in the terminal to launch the Java VisualVM application. Once launched, you need to install Visual GC plugin from Tools -< Plugins option, as shown in below image.

After installing Visual GC, just open the application from the left side column and head over to Visual GC section. You will get an image of JVM memory and garbage collection details as shown in below image.

Java Garbage Collection Tuning

Java Garbage Collection Tuning should be the last option you should use for increasing the throughput of your application and only when you see drop in performance because of longer GC timings causing application timeout.

If you see java.lang.OutOfMemoryError: PermGen space errors in logs, then try to monitor and increase the Perm Gen memory space using -XX:PermGen and -XX:MaxPermGen JVM options. You might also try using -XX:+CMSClassUnloadingEnabled and check how it’s performing with CMS Garbage collector.

If you are see a lot of Full GC operations, then you should try increasing Old generation memory space.

Overall garbage collection tuning takes a lot of effort and time and there is no hard and fast rule for that. You would need to try different options and compare them to find out the best one suitable for your application.

That’s all for Java Memory Model and Garbage Collection, I hope it helps you in understanding JVM memory and garbage collection process.

FYI(for your information)

jvm参数blog :http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html

jvm -sun官方文档:http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html

Java (JVM) Memory Model and Garbage Collection Monitoring Tuning相关推荐

  1. Java (JVM) Memory Model – Memory Management in Java

    原文地址:http://www.journaldev.com/2856/java-jvm-memory-model-memory-management-in-java Understanding JV ...

  2. 细述 Java垃圾回收机制→Java Garbage Collection Monitoring and Analysis

    本文非原创,翻译自Java Garbage Collection Monitoring and Analysis 在Java中为对象分配和释放内存空间都是由垃圾回收线程自动执行完成的.和C语言不一样的 ...

  3. JVM 垃圾收集器(Garbage Collection)

    判断对象是否存活 在堆里边存放着java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,首先需要确定这些对象之中哪些还"存活"着,哪些已经"死去"(即不可 ...

  4. java jvm内存模型_Java(JVM)内存模型– Java中的内存管理

    java jvm内存模型 Understanding JVM Memory Model, Java Memory Management are very important if you want t ...

  5. Java Garbage Collection Basics--转载

    原文地址:http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html Overview Purpose ...

  6. Memory Management in AIR / AS3 / Flash Garbage Collection.

    Memory management and garbage collection in Flash Player is a well debated topic. Some think that th ...

  7. java JVM剖析

    1. 什么是JVM? JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来 ...

  8. Java当中jvm运行时区域新生代、老年代、永久代和Garbage Collection垃圾回收机制【杭州多测师】【杭州多测师_王sir】...

    1.本地方法栈和程序计数器 ==>偏底层一般不会接触到 2.方法区 ==>对应为永久代 3.虚拟机栈(stack) ==>对应为栈 4.堆(heap) ==>对应里面有新生代+ ...

  9. Garbage Collection Optimization for High-Throughput and Low-Latency Java Applications--转载

    原文地址:https://engineering.linkedin.com/garbage-collection/garbage-collection-optimization-high-throug ...

最新文章

  1. php$SQL时间函数,PHP模拟SQL Server的两个日期处理函数-PHP教程,PHP应用
  2. 半导体理论(第2部分)半导体掺杂
  3. Android之提示订阅配置订阅需要传新的包 添加结算权限。
  4. lua# lua5.1.4 源码文件作用一览
  5. Oracle 19c: RAC 集群技术的坚持与放弃(含PPT下载)
  6. vue.js能美化界面吗_美牙真的能变美吗?刘涛花百万美化牙齿,容貌大变样,网友:太神奇了吧...
  7. ie 访问 java接口_2019年面试总结,100道Java程序员面试题(含答案)分享
  8. oracle游标作为out参数,oracle 存储过程 带游标作为OUT参数输出
  9. PCIE5.0英文版协议
  10. 产生式系统实验(AI实验一)
  11. 全国青少年机器人技术等级考试标准 (三四级/arduino/mixly)
  12. 将8位的tif图片改为png图片
  13. 计算机win7如何连接wifi网络,细说win7怎么共享wifi
  14. python 解压rar加密压缩包 提示缺少密码
  15. 浏览器 代理服务器无法响应
  16. matlab下调用python,numpy库函数的方法
  17. 企业固定资产盘点系统哪个更好用
  18. C语言线程lock与unlock,谈谈线程同步Lock和unLock
  19. GAN学习指南:从原理入门到制作生成Demo
  20. 共享单车的分配与调度

热门文章

  1. 【三】Java 设计模式学习记录:观察者模式
  2. 远程登陆服务器----ssh远程传输文件
  3. C语言:多进程的详细介绍
  4. c++截屏,并保存。
  5. 【学习设计模式11】树形处理——组合模式
  6. python 用turtle模块画一个中国结!附代码、注释
  7. Office的格式刷是什么
  8. Set集合和Map集合
  9. 【Html】清空Input file数据
  10. 今日头条的排名算法_今日头条的算法有多强?