吴恩达deeplearning.ai课程作业,自己写的答案。
补充说明:
1. 评论中总有人问为什么直接复制这些notebook运行不了?请不要直接复制粘贴,不可能运行通过的,这个只是notebook中我们要自己写的那部分,要正确运行还需要其他py文件,请自己到GitHub上下载完整的。这里的部分仅仅是参考用的,建议还是自己按照提示一点一点写,如果实在卡住了再看答案。个人觉得这样才是正确的学习方法,况且作业也不算难。
2. 关于评论中有人说我是抄袭,注释还没别人详细,复制下来还运行不过。答复是:做伸手党之前,请先搞清这个作业是干什么的。大家都是从GitHub上下载原始的作业,然后根据代码前面的提示(通常会指定函数和公式)来编写代码,而且后面还有expected output供你比对,如果程序正确,结果一般来说是一样的。请不要无脑喷,说什么跟别人的答案一样的。说到底,我们要做的就是,看他的文字部分,根据提示在代码中加入部分自己的代码。我们自己要写的部分只有那么一小部分代码。
3. 由于实在很反感无脑喷子,故禁止了下面的评论功能,请见谅。如果有问题,请私信我,在力所能及的范围内会尽量帮忙。

Building your Deep Neural Network: Step by Step

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.

After this assignment you will be able to:
- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- Implement an easy-to-use neural network class

Notation:
- Superscript [l][l][l] denotes a quantity associated with the lthlthl^{th} layer.
- Example: a[L]a[L]a^{[L]} is the LthLthL^{th} layer activation. W[L]W[L]W^{[L]} and b[L]b[L]b^{[L]} are the LthLthL^{th} layer parameters.
- Superscript (i)(i)(i) denotes a quantity associated with the ithithi^{th} example.
- Example: x(i)x(i)x^{(i)} is the ithithi^{th} training example.
- Lowerscript iii denotes the ith" role="presentation">ithithi^{th} entry of a vector.
- Example: a[l]iai[l]a^{[l]}_i denotes the ithithi^{th} entry of the lthlthl^{th} layer’s activations).

Let’s get started!

1 - Packages

Let’s first import all the packages that you will need during this assignment.
- numpy is the main package for scientific computing with Python.
- matplotlib is a library to plot graphs in Python.
- dnn_utils provides some necessary functions for this notebook.
- testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don’t change the seed.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'%load_ext autoreload
%autoreload 2np.random.seed(1)

2 - Outline of the Assignment

To build your neural network, you will be implementing several “helper functions”. These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an LLL-layer neural network.
  • Implement the forward propagation module (shown in purple in the figure below).
    • Complete the LINEAR part of a layer’s forward propagation step (resulting in Z[l]" role="presentation" style="position: relative;">Z[l]Z[l]Z^{[l]}).
    • We give you the ACTIVATION function (relu/sigmoid).
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
    • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer LLL). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
    • Complete the LINEAR part of a layer’s backward propagation step.
    • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
    • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.

Figure 1

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to L" role="presentation">LLL layers.

3.1 - 2-layer Neural Network

Exercise: Create and initialize the parameters of the 2-layer neural network.

Instructions:
- The model’s structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
- Use zero initialization for the biases. Use np.zeros(shape).

# GRADED FUNCTION: initialize_parametersdef initialize_parameters(n_x, n_h, n_y):"""Argument:n_x -- size of the input layern_h -- size of the hidden layern_y -- size of the output layerReturns:parameters -- python dictionary containing your parameters:W1 -- weight matrix of shape (n_h, n_x)b1 -- bias vector of shape (n_h, 1)W2 -- weight matrix of shape (n_y, n_h)b2 -- bias vector of shape (n_y, 1)"""np.random.seed(1)### START CODE HERE ### (≈ 4 lines of code)W1 = np.random.randn(n_h, n_x) * 0.01b1 = np.zeros((n_h, 1))W2 = np.random.randn(n_y, n_h) * 0.01b2 = np.zeros((n_y, 1))### END CODE HERE ###assert(W1.shape == (n_h, n_x))assert(b1.shape == (n_h, 1))assert(W2.shape == (n_y, n_h))assert(b2.shape == (n_y, 1))parameters = {"W1": W1,"b1": b1,"W2": W2,"b2": b2}return parameters    
parameters = initialize_parameters(2,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01624345 -0.00611756][-0.00528172 -0.01072969]]
b1 = [[ 0.][ 0.]]
W2 = [[ 0.00865408 -0.02301539]]
b2 = [[ 0.]]

Expected output:

W1 [[ 0.01624345 -0.00611756] [-0.00528172 -0.01072969]]
b1 [[ 0.] [ 0.]]
W2 [[ 0.00865408 -0.02301539]]
b2 [[ 0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that n[l]n[l]n^{[l]} is the number of units in layer lll. Thus for example if the size of our input X" role="presentation">XXX is (12288,209)(12288,209)(12288, 209) (with m=209m=209m=209 examples) then:

Shape of W Shape of b Activation Shape of Activation
Layer 1 (n[1],12288)(n[1],12288)(n^{[1]},12288) (n[1],1)(n[1],1)(n^{[1]},1) Z[1]=W[1]X+b[1]Z[1]=W[1]X+b[1]Z^{[1]} = W^{[1]} X + b^{[1]} (n[1],209)(n[1],209)(n^{[1]},209)
Layer 2 (n[2],n[1])(n[2],n[1])(n^{[2]}, n^{[1]}) (n[2],1)(n[2],1)(n^{[2]},1) Z[2]=W[2]A[1]+b[2]Z[2]=W[2]A[1]+b[2]Z^{[2]} = W^{[2]} A^{[1]} + b^{[2]} (n[2],209)(n[2],209)(n^{[2]}, 209)
⋮⋮\vdots ⋮⋮\vdots ⋮⋮\vdots ⋮⋮\vdots ⋮⋮\vdots
Layer L-1 (n[L−1],n[L−2])(n[L−1],n[L−2])(n^{[L-1]}, n^{[L-2]}) (n[L−1],1)(n[L−1],1)(n^{[L-1]}, 1) Z[L−1]=W[L−1]A[L−2]+b[L−1]Z[L−1]=W[L−1]A[L−2]+b[L−1]Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]} (n[L−1],209)(n[L−1],209)(n^{[L-1]}, 209)
Layer L (n[L],n[L−1])(n[L],n[L−1])(n^{[L]}, n^{[L-1]}) (n[L],1)(n[L],1)(n^{[L]}, 1) Z[L]=W[L]A[L−1]+b[L]Z[L]=W[L]A[L−1]+b[L]Z^{[L]} = W^{[L]} A^{[L-1]} + b^{[L]} (n[L],209)(n[L],209)(n^{[L]}, 209)

Remember that when we compute WX+bWX+bW X + b in python, it carries out broadcasting. For example, if:

W=[jklmnopqr]X=[abcdefghi]b=[stu]

W = \begin{bmatrix}j & k & l\\m & n & o \\p & q & r \end{bmatrix}\;\;\; X = \begin{bmatrix}a & b & c\\d & e & f \\g & h & i \end{bmatrix} \;\;\; b =\begin{bmatrix}s \\t \\u \end{bmatrix}\tag{2}

Then WX+bWX + b will be:

WX+b=[(ja+kd+lg)+s(jb+ke+lh)+s(jc+kf+li)+s(ma+nd+og)+t(mb+ne+oh)+t(mc+nf+oi)+t(pa+qd+rg)+u(pb+qe+rh)+u(pc+qf+ri)+u]

WX + b = \begin{bmatrix}(ja + kd + lg) + s & (jb + ke + lh) + s & (jc + kf + li)+ s\\(ma + nd + og) + t & (mb + ne + oh) + t & (mc + nf + oi) + t\\(pa + qd + rg) + u & (pb + qe + rh) + u & (pc + qf + ri)+ u \end{bmatrix}\tag{3}

Exercise: Implement initialization for an L-layer Neural Network.

Instructions:
- The model’s structure is [LINEAR -> RELU] × \times (L-1) -> LINEAR -> SIGMOID. I.e., it has L−1L-1 layers using a ReLU activation function followed by an output layer with a sigmoid activation function.
- Use random initialization for the weight matrices. Use np.random.rand(shape) * 0.01.
- Use zeros initialization for the biases. Use np.zeros(shape).
- We will store n[l]n^{[l]}, the number of units in different layers, in a variable layer_dims. For example, the layer_dims for the “Planar Data classification model” from last week would have been [2,4,1]: There were two inputs, one hidden layer with 4 hidden units, and an output layer with 1 output unit. Thus means W1’s shape was (4,2), b1 was (4,1), W2 was (1,4) and b2 was (1,1). Now you will generalize this to LL layers!
- Here is the implementation for L=1L=1 (one layer neural network). It should inspire you to implement the general case (L-layer neural network).

    if L == 1:parameters["W" + str(L)] = np.random.randn(layer_dims[1], layer_dims[0]) * 0.01parameters["b" + str(L)] = np.zeros((layer_dims[1], 1))
# GRADED FUNCTION: initialize_parameters_deepdef initialize_parameters_deep(layer_dims):"""Arguments:layer_dims -- python array (list) containing the dimensions of each layer in our networkReturns:parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])bl -- bias vector of shape (layer_dims[l], 1)"""np.random.seed(3)parameters = {}L = len(layer_dims)            # number of layers in the networkfor l in range(1, L):### START CODE HERE ### (≈ 2 lines of code)parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) * 0.01parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))### END CODE HERE ###assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1]))assert(parameters['b' + str(l)].shape == (layer_dims[l], 1))return parameters
parameters = initialize_parameters_deep([5,4,3])
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388][-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218][-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034][-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[ 0.][ 0.][ 0.][ 0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716][-0.01023785 -0.00712993  0.00625245 -0.00160513][-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[ 0.][ 0.][ 0.]]

Expected output:

W1 [[ 0.01788628 0.0043651 0.00096497 -0.01863493 -0.00277388] [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218] [-0.01313865 0.00884622 0.00881318 0.01709573 0.00050034] [-0.00404677 -0.0054536 -0.01546477 0.00982367 -0.01101068]]
b1 [[ 0.] [ 0.] [ 0.] [ 0.]]
W2 [[-0.01185047 -0.0020565 0.01486148 0.00236716] [-0.01023785 -0.00712993 0.00625245 -0.00160513] [-0.00768836 -0.00230031 0.00745056 0.01976111]]
b2 [[ 0.] [ 0.] [ 0.]]

4 - Forward propagation module

4.1 - Linear Forward

Now that you have initialized your parameters, you will do the forward propagation module. You will start by implementing some basic functions that you will use later when implementing the model. You will complete three functions in this order:

  • LINEAR
  • LINEAR -> ACTIVATION where ACTIVATION will be either ReLU or Sigmoid.
  • [LINEAR -> RELU] ×\times (L-1) -> LINEAR -> SIGMOID (whole model)

The linear forward module (vectorized over all the examples) computes the following equations:

Z[l]=W[l]A[l−1]+b[l]

Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}\tag{4}

where A[0]=XA^{[0]} = X.

Exercise: Build the linear part of forward propagation.

Reminder:
The mathematical representation of this unit is Z[l]=W[l]A[l−1]+b[l]Z^{[l]} = W^{[l]}A^{[l-1]} +b^{[l]}. You may also find np.dot() useful. If your dimensions don’t match, printing W.shape may help.

# GRADED FUNCTION: linear_forwarddef linear_forward(A, W, b):"""Implement the linear part of a layer's forward propagation.Arguments:A -- activations from previous layer (or input data): (size of previous layer, number of examples)W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)b -- bias vector, numpy array of shape (size of the current layer, 1)Returns:Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently"""### START CODE HERE ### (≈ 1 line of code)Z = np.dot(W, A) + b### END CODE HERE ###assert(Z.shape == (W.shape[0], A.shape[1]))cache = (A, W, b)return Z, cache
A, W, b = linear_forward_test_case()Z, linear_cache = linear_forward(A, W, b)
print("Z = " + str(Z))
Z = [[ 3.26295337 -1.23429987]]

Expected output:

Z [[ 3.26295337 -1.23429987]]

4.2 - Linear-Activation Forward

In this notebook, you will use two activation functions:

  • Sigmoid: σ(Z)=σ(WA+b)=11+e−(WA+b)\sigma(Z) = \sigma(W A + b) = \frac{1}{ 1 + e^{-(W A + b)}}. We have provided you with the sigmoid function. This function returns two items: the activation value “a” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function). To use it you could just call:
A, activation_cache = sigmoid(Z)
  • ReLU: The mathematical formula for ReLu is A=RELU(Z)=max(0,Z)A = RELU(Z) = max(0, Z). We have provided you with the relu function. This function returns two items: the activation value “A” and a “cache” that contains “Z” (it’s what we will feed in to the corresponding backward function). To use it you could just call:
A, activation_cache = relu(Z)

For more convenience, you are going to group two functions (Linear and Activation) into one function (LINEAR->ACTIVATION). Hence, you will implement a function that does the LINEAR forward step followed by an ACTIVATION forward step.

Exercise: Implement the forward propagation of the LINEAR->ACTIVATION layer. Mathematical relation is: A[l]=g(Z[l])=g(W[l]A[l−1]+b[l])A^{[l]} = g(Z^{[l]}) = g(W^{[l]}A^{[l-1]} +b^{[l]}) where the activation “g” can be sigmoid() or relu(). Use linear_forward() and the correct activation function.

# GRADED FUNCTION: linear_activation_forwarddef linear_activation_forward(A_prev, W, b, activation):"""Implement the forward propagation for the LINEAR->ACTIVATION layerArguments:A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)b -- bias vector, numpy array of shape (size of the current layer, 1)activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"Returns:A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache";stored for computing the backward pass efficiently"""if activation == "sigmoid":# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".### START CODE HERE ### (≈ 2 lines of code)Z, linear_cache = linear_forward(A_prev, W, b)A, activation_cache = sigmoid(Z)### END CODE HERE ###elif activation == "relu":# Inputs: "A_prev, W, b". Outputs: "A, activation_cache".### START CODE HERE ### (≈ 2 lines of code)Z, linear_cache = linear_forward(A_prev, W, b)A, activation_cache = relu(Z)### END CODE HERE ###assert (A.shape == (W.shape[0], A_prev.shape[1]))cache = (linear_cache, activation_cache)return A, cache
A_prev, W, b = linear_activation_forward_test_case()A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("With sigmoid: A = " + str(A))A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("With ReLU: A = " + str(A))
With sigmoid: A = [[ 0.96890023  0.11013289]]
With ReLU: A = [[ 3.43896131  0.        ]]

Expected output:

With sigmoid: A [[ 0.96890023 0.11013289]]
With ReLU: A [[ 3.43896131 0. ]]

Note: In deep learning, the “[LINEAR->ACTIVATION]” computation is counted as a single layer in the neural network, not two layers.

d) L-Layer Model

For even more convenience when implementing the LL-layer Neural Net, you will need a function that replicates the previous one (linear_activation_forward with RELU) L−1L-1 times, then follows that with one linear_activation_forward with SIGMOID.

Figure 2 : [LINEAR -> RELU] ×\times (L-1) -> LINEAR -> SIGMOID model

Exercise: Implement the forward propagation of the above model.

Instruction: In the code below, the variable AL will denote A[L]=σ(Z[L])=σ(W[L]A[L−1]+b[L])A^{[L]} = \sigma(Z^{[L]}) = \sigma(W^{[L]} A^{[L-1]} + b^{[L]}). (This is sometimes also called Yhat, i.e., this is ˆY\hat{Y}.)

Tips:
- Use the functions you had previously written
- Use a for loop to replicate [LINEAR->RELU] (L-1) times
- Don’t forget to keep track of the caches in the “caches” list. To add a new value c to a list, you can use list.append(c).

# GRADED FUNCTION: L_model_forwarddef L_model_forward(X, parameters):"""Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computationArguments:X -- data, numpy array of shape (input size, number of examples)parameters -- output of initialize_parameters_deep()Returns:AL -- last post-activation valuecaches -- list of caches containing:every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2)the cache of linear_sigmoid_forward() (there is one, indexed L-1)"""caches = []A = XL = len(parameters) // 2                  # number of layers in the neural network# Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.for l in range(1, L):A_prev = A ### START CODE HERE ### (≈ 2 lines of code)A, cache = linear_activation_forward(A_prev, parameters["W" + str(l)], parameters["b"+str(l)], "relu")caches.append(cache)### END CODE HERE #### Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.### START CODE HERE ### (≈ 2 lines of code)AL, cache = linear_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)], "sigmoid")caches.append(cache)### END CODE HERE ###assert(AL.shape == (1,X.shape[1]))return AL, caches
X, parameters = L_model_forward_test_case()
AL, caches = L_model_forward(X, parameters)
print("AL = " + str(AL))
print("Length of caches list = " + str(len(caches)))
AL = [[ 0.17007265  0.2524272 ]]
Length of caches list = 2
AL [[ 0.17007265 0.2524272 ]]
Length of caches list 2

Great! Now you have a full forward propagation that takes the input X and outputs a row vector A[L]A^{[L]} containing your predictions. It also records all intermediate values in “caches”. Using A[L]A^{[L]}, you can compute the cost of your predictions.

5 - Cost function

Now you will implement forward and backward propagation. You need to compute the cost, because you want to check if your model is actually learning.

Exercise: Compute the cross-entropy cost JJ, using the following formula: −1mm∑i=1(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))

-\frac{1}{m} \sum\limits_{i = 1}^{m} (y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right)) \tag{7}

# GRADED FUNCTION: compute_costdef compute_cost(AL, Y):"""Implement the cost function defined by equation (7).Arguments:AL -- probability vector corresponding to your label predictions, shape (1, number of examples)Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)Returns:cost -- cross-entropy cost"""m = Y.shape[1]# Compute loss from aL and y.### START CODE HERE ### (≈ 1 lines of code)cost = -1 / m * np.sum(Y *  np.log(AL) + (1-Y) *  np.log(1 - AL))
#     cost = -1 / m * (np.dot(Y, np.log(AL).T) + np.dot((1-Y), np.log(1-AL).T))### END CODE HERE ###cost = np.squeeze(cost)      # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17).assert(cost.shape == ())return cost
Y, AL = compute_cost_test_case()print("cost = " + str(compute_cost(AL, Y)))
cost = 0.414931599615

Expected Output:

cost 0.41493159961539694

6 - Backward propagation module

Just like with forward propagation, you will implement helper functions for backpropagation. Remember that back propagation is used to calculate the gradient of the loss function with respect to the parameters.

Reminder:

Figure 3 : Forward and Backward propagation for LINEAR->RELU->LINEAR->SIGMOID
The purple blocks represent the forward propagation, and the red blocks represent the backward propagation. dL(a[2],y)dz[1]=dL(a[2],y)da[2]da[2]dz[2]dz[2]da[1]da[1]dz[1]\frac{d \mathcal{L}(a^{[2]},y)}{{dz^{[1]}}} = \frac{d\mathcal{L}(a^{[2]},y)}{{da^{[2]}}}\frac{{da^{[2]}}}{{dz^{[2]}}}\frac{{dz^{[2]}}}{{da^{[1]}}}\frac{{da^{[1]}}}{{dz^{[1]}}} \tag{8} In order to calculate the gradient dW[1]=∂L∂W[1]dW^{[1]} = \frac{\partial L}{\partial W^{[1]}}, you use the previous chain rule and you do dW[1]=dz[1]×∂z[1]∂W[1]dW^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial W^{[1]}}. During the backpropagation, at each step you multiply your current gradient by the gradient corresponding to the specific layer to get the gradient you wanted. Equivalently, in order to calculate the gradient db[1]=∂L∂b[1]db^{[1]} = \frac{\partial L}{\partial b^{[1]}}, you use the previous chain rule and you do db[1]=dz[1]×∂z[1]∂b[1]db^{[1]} = dz^{[1]} \times \frac{\partial z^{[1]} }{\partial b^{[1]}}. This is why we talk about **backpropagation**. !-->

Now, similar to forward propagation, you are going to build the backward propagation in three steps:
- LINEAR backward
- LINEAR -> ACTIVATION backward where ACTIVATION computes the derivative of either the ReLU or sigmoid activation
- [LINEAR -> RELU] ×\times (L-1) -> LINEAR -> SIGMOID backward (whole model)

6.1 - Linear backward

For layer ll, the linear part is: Z[l]=W[l]A[l−1]+b[l]Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]} (followed by an activation).

Suppose you have already calculated the derivative dZ[l]=∂L∂Z[l]dZ^{[l]} = \frac{\partial \mathcal{L} }{\partial Z^{[l]}}. You want to get (dW[l],db[l]dA[l−1])(dW^{[l]}, db^{[l]} dA^{[l-1]}).

Figure 4

The three outputs (dW[l],db[l],dA[l])(dW^{[l]}, db^{[l]}, dA^{[l]}) are computed using the input dZ[l]dZ^{[l]}.Here are the formulas you need:
dW[l]=∂L∂W[l]=1mdZ[l]A[l−1]T

dW^{[l]} = \frac{\partial \mathcal{L} }{\partial W^{[l]}} = \frac{1}{m} dZ^{[l]} A^{[l-1] T} \tag{8}
db[l]=∂L∂b[l]=1mm∑i=1dZ[l](i)db^{[l]} = \frac{\partial \mathcal{L} }{\partial b^{[l]}} = \frac{1}{m} \sum_{i = 1}^{m} dZ^{[l](i)}\tag{9}
dA[l−1]=∂L∂A[l−1]=W[l]TdZ[l]dA^{[l-1]} = \frac{\partial \mathcal{L} }{\partial A^{[l-1]}} = W^{[l] T} dZ^{[l]} \tag{10}

Exercise: Use the 3 formulas above to implement linear_backward().

# GRADED FUNCTION: linear_backwarddef linear_backward(dZ, cache):"""Implement the linear portion of backward propagation for a single layer (layer l)Arguments:dZ -- Gradient of the cost with respect to the linear output (of current layer l)cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layerReturns:dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prevdW -- Gradient of the cost with respect to W (current layer l), same shape as Wdb -- Gradient of the cost with respect to b (current layer l), same shape as b"""A_prev, W, b = cachem = A_prev.shape[1]### START CODE HERE ### (≈ 3 lines of code)dW = 1 / m * np.dot(dZ, A_prev.T)db = 1 / m * np.sum(dZ, axis=1, keepdims=True)dA_prev = np.dot(W.T, dZ)### END CODE HERE ###assert (dA_prev.shape == A_prev.shape)assert (dW.shape == W.shape)assert (db.shape == b.shape)return dA_prev, dW, db
# Set up some test inputs
dZ, linear_cache = linear_backward_test_case()dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
dA_prev = [[ 0.51822968 -0.19517421][-0.40506361  0.15255393][ 2.37496825 -0.89445391]]
dW = [[-0.10076895  1.40685096  1.64992505]]
db = [[ 0.50629448]]

Expected Output:

dA_prev [[ 0.51822968 -0.19517421] [-0.40506361 0.15255393] [ 2.37496825 -0.89445391]]
dW [[-0.10076895 1.40685096 1.64992505]]
db [[ 0.50629448]]

6.2 - Linear-Activation backward

Next, you will create a function that merges the two helper functions: linear_backward and the backward step for the activation linear_activation_backward.

To help you implement linear_activation_backward, we provided two backward functions:
- sigmoid_backward: Implements the backward propagation for SIGMOID unit. You can call it as follows:

dZ = sigmoid_backward(dA, activation_cache)
  • relu_backward: Implements the backward propagation for RELU unit. You can call it as follows:
dZ = relu_backward(dA, activation_cache)

If g(.)g(.) is the activation function,
sigmoid_backward and relu_backward compute dZ[l]=dA[l]∗g′(Z[l])

dZ^{[l]} = dA^{[l]} * g'(Z^{[l]}) \tag{11}.

Exercise: Implement the backpropagation for the LINEAR->ACTIVATION layer.

# GRADED FUNCTION: linear_activation_backwarddef linear_activation_backward(dA, cache, activation):"""Implement the backward propagation for the LINEAR->ACTIVATION layer.Arguments:dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficientlyactivation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu"Returns:dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prevdW -- Gradient of the cost with respect to W (current layer l), same shape as Wdb -- Gradient of the cost with respect to b (current layer l), same shape as b"""linear_cache, activation_cache = cacheif activation == "relu":### START CODE HERE ### (≈ 2 lines of code)dZ = relu_backward(dA, activation_cache)dA_prev, dW, db = linear_backward(dZ, linear_cache)### END CODE HERE ###elif activation == "sigmoid":### START CODE HERE ### (≈ 2 lines of code)dZ = sigmoid_backward(dA, activation_cache)dA_prev, dW, db = linear_backward(dZ, linear_cache)### END CODE HERE ###return dA_prev, dW, db
AL, linear_activation_cache = linear_activation_backward_test_case()dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))
sigmoid:
dA_prev = [[ 0.11017994  0.01105339][ 0.09466817  0.00949723][-0.05743092 -0.00576154]]
dW = [[ 0.10266786  0.09778551 -0.01968084]]
db = [[-0.05729622]]relu:
dA_prev = [[ 0.44090989  0.        ][ 0.37883606  0.        ][-0.2298228   0.        ]]
dW = [[ 0.44513824  0.37371418 -0.10478989]]
db = [[-0.20837892]]

Expected output with sigmoid:

dA_prev [[ 0.11017994 0.01105339] [ 0.09466817 0.00949723] [-0.05743092 -0.00576154]]
dW [[ 0.10266786 0.09778551 -0.01968084]]
db [[-0.05729622]]

Expected output with relu

dA_prev [[ 0.44090989 0. ] [ 0.37883606 0. ] [-0.2298228 0. ]]
dW [[ 0.44513824 0.37371418 -0.10478989]]
db [[-0.20837892]]

6.3 - L-Model Backward

Now you will implement the backward function for the whole network. Recall that when you implemented the L_model_forward function, at each iteration, you stored a cache which contains (X,W,b, and z). In the back propagation module, you will use those variables to compute the gradients. Therefore, in the L_model_backward function, you will iterate through all the hidden layers backward, starting from layer LL. On each step, you will use the cached values for layer ll to backpropagate through layer ll. Figure 5 below shows the backward pass.

Figure 5 : Backward pass

* Initializing backpropagation*:
To backpropagate through this network, we know that the output is,
A[L]=σ(Z[L])A^{[L]} = \sigma(Z^{[L]}). Your code thus needs to compute dAL =∂L∂A[L]= \frac{\partial \mathcal{L}}{\partial A^{[L]}}.
To do so, use this formula (derived using calculus which you don’t need in-depth knowledge of):

dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # derivative of cost with respect to AL

You can then use this post-activation gradient dAL to keep going backward. As seen in Figure 5, you can now feed in dAL into the LINEAR->SIGMOID backward function you implemented (which will use the cached values stored by the L_model_forward function). After that, you will have to use a for loop to iterate through all the other layers using the LINEAR->RELU backward function. You should store each dA, dW, and db in the grads dictionary. To do so, use this formula :

grads["dW"+str(l)]=dW[l]

grads["dW" + str(l)] = dW^{[l]}\tag{15}

For example, for l=3l=3 this would store dW[l]dW^{[l]} in grads["dW3"].

Exercise: Implement backpropagation for the [LINEAR->RELU] ×\times (L-1) -> LINEAR -> SIGMOID model.

# GRADED FUNCTION: L_model_backwarddef L_model_backward(AL, Y, caches):"""Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID groupArguments:AL -- probability vector, output of the forward propagation (L_model_forward())Y -- true "label" vector (containing 0 if non-cat, 1 if cat)caches -- list of caches containing:every cache of linear_activation_forward() with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2)the cache of linear_activation_forward() with "sigmoid" (it's caches[L-1])Returns:grads -- A dictionary with the gradientsgrads["dA" + str(l)] = ...grads["dW" + str(l)] = ...grads["db" + str(l)] = ..."""grads = {}L = len(caches) # the number of layersm = AL.shape[1]Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL# Initializing the backpropagation### START CODE HERE ### (1 line of code)dAL = -(np.divide(Y, AL) - np.divide((1-Y), (1-AL)))### END CODE HERE #### Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]### START CODE HERE ### (approx. 2 lines)current_cache = caches[L-1]grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")### END CODE HERE ###for l in reversed(range(L - 1)):# lth layer: (RELU -> LINEAR) gradients.# Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] ### START CODE HERE ### (approx. 5 lines)current_cache = caches[l]dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, "relu")grads["dA" + str(l + 1)] = dA_prev_tempgrads["dW" + str(l + 1)] = dW_tempgrads["db" + str(l + 1)] = db_temp### END CODE HERE ###return grads
AL, Y_assess, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))
dW1 = [[ 0.41010002  0.07807203  0.13798444  0.10502167][ 0.          0.          0.          0.        ][ 0.05283652  0.01005865  0.01777766  0.0135308 ]]
db1 = [[-0.22007063][ 0.        ][-0.02835349]]
dA1 = [[ 0.          0.52257901][ 0.         -0.3269206 ][ 0.         -0.32070404][ 0.         -0.74079187]]

Expected Output

dW1 [[ 0.41010002 0.07807203 0.13798444 0.10502167] [ 0. 0. 0. 0. ] [ 0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 [[-0.22007063] [ 0. ] [-0.02835349]]
dA1 [[ 0. 0.52257901] [ 0. -0.3269206 ] [ 0. -0.32070404] [ 0. -0.74079187]]

6.4 - Update Parameters

In this section you will update the parameters of the model, using gradient descent:

W[l]=W[l]−α dW[l]

W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{16}
b[l]=b[l]−α db[l]b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{17}

where α\alpha is the learning rate. After computing the updated parameters, store them in the parameters dictionary.

Exercise: Implement update_parameters() to update your parameters using gradient descent.

Instructions:
Update parameters using gradient descent on every W[l]W^{[l]} and b[l]b^{[l]} for l=1,2,...,Ll = 1, 2, ..., L.

# GRADED FUNCTION: update_parametersdef update_parameters(parameters, grads, learning_rate):"""Update parameters using gradient descentArguments:parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backwardReturns:parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ..."""L = len(parameters) // 2 # number of layers in the neural network# Update rule for each parameter. Use a for loop.### START CODE HERE ### (≈ 3 lines of code)for l in range(L):parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)]parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)]### END CODE HERE ###return parameters
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008][-1.76569676 -0.80627147  0.51115557 -1.18258802][-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241][-1.28888275][ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

Expected Output:

W1 [[-0.59562069 -0.09991781 -2.14584584 1.82662008] [-1.76569676 -0.80627147 0.51115557 -1.18258802] [-1.0535704 -0.86128581 0.68284052 2.20374577]]
b1 [[-0.04659241] [-1.28888275] [ 0.53405496]]
W2 [[-0.55569196 0.0354055 1.32964895]]
b2 [[-0.84610769]]

7 - Conclusion

Congrats on implementing all the functions required for building a deep neural network!

We know it was a long assignment but going forward it will only get better. The next part of the assignment is easier.

In the next assignment you will put all these together to build two models:
- A two-layer neural network
- An L-layer neural network

You will in fact use these models to classify cat vs non-cat images!

吴恩达深度学习课程deeplearning.ai课程作业:Class 1 Week 4 assignment4_1相关推荐

  1. 吴恩达深度学习第二周--logistic回归作业1

    吴恩达深度学习第二周–logistic回归作业1 本系列为吴恩达老师深度学习作业的总结,其中参考了很多优秀的文章,本文为了方便日后的复习与巩固,更为详细的作业讲解参考 目录 吴恩达深度学习第二周--l ...

  2. 吴恩达深度学习之tensorflow2.0 课程

    课链接 吴恩达深度学习之tensorflow2.0入门到实战 2019年最新课程 最佳配合吴恩达实战的教程 代码资料 自己取 链接:https://pan.baidu.com/s/1QrTV3KvKv ...

  3. 吴恩达深度学习-Course4第三周作业 yolo.h5文件读取错误解决方法

    这个yolo.h5文件走了不少弯路呐,不过最后终于搞好了,现在把最详细的脱坑过程记录下来,希望小伙伴们少走些弯路. 最初的代码是从下面这个大佬博主的百度网盘下载的,但是h5文件无法读取.(22条消息) ...

  4. 吴恩达深度学习的实用层面编程作业:正则化Regularization

  5. 吴恩达深度学习的实用层面编程作业:初始化Initialization

  6. 360题带你走进深度学习!吴恩达深度学习课程测试题中英对照版发布

    吴恩达的深度学习课程(deepLearning.ai)是公认的入门深度学习的宝典,本站将课程的课后测试题进行了翻译,建议初学者学习.所有题目都翻译完毕,适合英文不好的同学学习. 主要翻译者:黄海广 内 ...

  7. github标星8331+:吴恩达深度学习课程资源(完整笔记、中英文字幕视频、python作业,提供百度云镜像!)...

    吴恩达老师的深度学习课程(deeplearning.ai),可以说是深度学习入门的最热门课程,我和志愿者编写了这门课的笔记,并在github开源,star数达到8331+,曾经有相关报道文章.为解决g ...

  8. 吴恩达深度学习课程之第四门课 卷积神经网络 第二周 深度卷积网络

    本文参考黄海广主编针对吴恩达深度学习课程DeepLearning.ai <深度学习课程 笔记 (V5.1 )> 第二周 深度卷积网络 2.1 为什么要进行实例探究?(Why look at ...

  9. 吴恩达深度学习课程笔记之卷积神经网络(2nd week)

    0 参考资料 [1]  大大鹏/Bilibili资料 - Gitee.com [2] [中英字幕]吴恩达深度学习课程第四课 - 卷积神经网络_哔哩哔哩_bilibili [3]  深度学习笔记-目录 ...

  10. 吴恩达 深度学习1 2022, 浙大AI第一课

    强推![浙大公开课]2022B站最好最全的机器学习课程,从入门到实战!人工智能/AI/机器学习/数学基础_哔哩哔哩_bilibili 我们规定了行为和收益函数后,就不管了,构造一个算法,让计算机自己去 ...

最新文章

  1. Python环境出现模块找不到
  2. jQuery $.post $.ajax用法
  3. ActiveMQ 学习(VM Transport)
  4. Docker的官网在线--中文教程
  5. 在博客里轻松使用LaTeX 数学公式[转]
  6. 计算机网络 --- 传输层UDP协议
  7. linux下面的挂载点讲解
  8. 百度地图检索以及路径规划
  9. 【Java】优雅停机时的一点思考
  10. Mom and Dad
  11. databinding include 控件空指针_Android Jetpack系列——细说DataBinding
  12. crontab mysql命令_crontab命令使用介绍
  13. python生成一组符合正态分布的数据_使用Numpy生成正态分布数据
  14. 如何删除.sys的流氓文件
  15. IDEA的常用快捷键(超详细)
  16. 微信推送封面尺寸_一篇公众号推文如何设置两张封面图?
  17. DCMP2.0项目总结_页面
  18. Ubuntu系统(Linux)如何从大硬盘迁移到小硬盘
  19. 15s是什么意思c语言,15s是什么意思
  20. 微信小程序 + 腾讯位置服务获取全国城市列表

热门文章

  1. Gdiplus byte *数据转换为Bitmap类型图片
  2. 学习鸟哥的Linux私房菜笔记(2)——基础指令
  3. Java SE 6 新特性 Instrumentation 新功能
  4. 从表到里学习JVM实现
  5. mysql dba系统学习(10)innodb引擎的redo log日志的原理 mysql dba系统学习(11)管理innodb引擎的redo log日志的一个问题
  6. 简单超级组计划 打造强悍手臂
  7. Java并发编程(2):线程中断(含代码)
  8. 读了几篇boosting文献的收获
  9. 第六章 深度学习(上)
  10. 4.从单应矩阵中分离得到内参和外参(需要拍摄n=3张标定图片)