首先,提出工程中实际存在的问题:

如果用一个高精度万用表去测量一个电源输出的直流电平,已知该电源的直流电平符合高斯分布,而每次观测,都用万用表等时间间隔采集N个点的数据,即:

其中:

对采集到的N个点数据,我们希望估计直流电平A,此时可以有无数个无偏估计的方法,下面随意举三种方法:

第一种估计方法:

即每次只取采集到的N个数据的第一个数据,估计直流电平A。此类系统可能在数据采集能力、存储深度等方面存在限制的系统中使用,因此只能选用一个采样点进行估计;

第二种估计方法:

即每次只取采集到的N个数据的第一个和最后一个数据,加权后估计直流电平A;此类系统,估计算法可以采用两个采样点,此时也提出了一种无偏估计。

第三种估计方法:

即对每次采集到的N个数据,利用其算术平均的结果,估计估计直流电平A。此类系统,可以采集N个观测数据,且N个观测数据都可以用于估计参数A。此时用的是算术平均的方法,当然在此条件下,还有采用各种的加权系数的无偏估计方法。

由于上述估计,都满足:

因此,都是关于A的无偏估计,满足估计无偏性条件。但这三个估计量哪个更加有效,那需要比较三个估计量的方差。

观察三种无偏估计的方差,可以得到:

因此,当时,尽管三个都是无偏估计,但他们的方差满足:

因此,就这三种估计来说,显然是最好的。

接下来我们仍然需要回答如下两个问题:

  1. 对于高斯噪声特性已知的情况下,无偏估计的方差是否存在理论上的最小值?最小值是多少?也就是不管A采用哪种无偏估计,其方差都不可能低于这个极限;
  2. 是否存在一个最有效的估计量,使得该估计量的方差最小,也就是达到上个问题的方差最小值,此时我们就找到了该估计量的最小方差无偏估计。

针对问题1,由于的无偏估计方法无穷无尽,我们不可能去穷举;有些情况下,我们甚至还不知道能否得到参数A的无偏估计具体表达式,此时如果能够有方法直接获取待估计参数方差的下限,那非常有利于后续具体工程设计与优化。

针对问题2,如果能够找到MVU,那么后续针对这一类工程中的问题,就可以一直使用该估计方法进行估计即可。因为针对此参数的其他无偏估计,其方差肯定不会低于MVU估计方法的方差。

想要回答上述问题,需要使用CRLB定理,首先阐述一下标量形式的CRLB定理

针对上述关于直流电平估计的例子,我们可以采用统计信号处理中的CRLB极限进行回答,先说结论:

如果要从采集到的一组观测量:

并利用其概率密度函数(此时该函数被称为似然函数)去估计未知参数时,如果满足正则条件,即:

那么对参数的任意无偏估计的方差满足:

其中:

CRLB结论的作用一般有两个:

第一:在参数θ的无偏估计没有明确的情况下,就可以通过该公式确定此参数无偏估计方差的下限(被称为CRLB下限),也就是任意对参数的无偏估计,其方差都不会低于这个CRLB下限;

第二:在某些情况下,能够求出达到CRLB下限的最小方差无偏估计。

接下来,对标量形式的CRLB进行证明

在证明的过程中,会用到如下几个公式和定理:

首先是任意函数自然对数的导数满足:

因此,可以得到:

其次是Cauchy-Schwarz不等式,即:

该不等式成立的条件是:当存在某个与x无关的参数c,且满足:

上述不等式等号成立。


下面开始定理的证明:

首先我们讨论的是关于的无偏估计,因此可以从无偏估计的定义入手,即

其中用观测到的一组数据进行的某种无偏估计方法。然后我们对上式两边θ进行求导,即:

除了当概率密度函数的非零域与未知参数有关之外,上述求导和积分可以互换[1]。或者可以描述为上述数学期望的积分上下限与估计量有关,那么求导与积分就不能互换,因此就不能使用正则条件。

对求导与积分互换后,我们得到:

而其中中不包含参数,因此进一步可以得到:

使用上述自然对数导数的性质,可以得到:

因此:

利用正则条件,此时有:

两边都乘后可以得到:

然后将两个式子相减,可以得到:

为了使用Cauchy-Schwarz不等式,将上式中的拆成两个平方根相乘(概率密度非负,因此可以开根号),得到:

利用Cauchy-Schwarz不等式,可以得到:

而其中:

因此可以得到:

接下来证明:

还是从正则条件出发,存在:

两边对求导,并进行积分求导操作互换,可以得到:

再次用到自然对数导数的性质,可以得到:

也即是:

因此,最终无偏估计量方差的下限可以表示为:

CRLB下限证明完毕。


接下来讨论Cauchy-Schwarz不等式等式成立的条件:

在上面的计算过程中,用到了:

根据等式成立条件,那么假设存在一个与x无关的参数,注意该参数与x无关,但可能与待估计的参数有关,此时如果等式成立,那么存在:

把上式带入之后,即可得到:

为了求出此时的CRLB下限,将上式再对求偏导,可以计算得到:

上式的化简,利用到了数学期望是对x求取,因此对上述数学期望是常量。另外,由于是无偏估计,因此:

最终可以得到:

因此,在Cauchy-Schwarz不等式等式成立的条件下,无偏估计期望的方差的下限满足:

上述也被称为Fisher信息,显然越大,估计方差的下限越小,那么越有可能得到该参数的有效估计。


接下来讨论如何利用CRLB推导中的结论,求方差达到CRLB的无偏估计:

如果对数概率密度对估计量的导数如果满足:

那么就是方差达到CRLB的无偏估计,也称为有效估计量,此时估计量的方差达到CRLB下限:

注意:上述方法在实际工作中,只能用于一小部分有效估计方法求解,毕竟大部分场景下,无法表示成上述式子的形式。


最后,我们解决一开始提出的几个问题:

1. 如果仅用采集数据中的一个参数去估计A,那么:

对上述似然函数取对数,可以得到:

因此:

对比CRLB等号满足条件可以发现,此时:

因此,对观测数据,如果仅用一个数据去估计,那么不管从采集到的数据中去哪个元素作为估计量,该估计量都是有效估计,且此种情况下,方差的下限为


2. 如果用采集数据中的两个观测量去估计A,假设两个观测量属于独立同分布,那么联合概率密度:

其中i不等于j,因此似然函数的对数可以表示为:

可以进一步得到:

对比CRLB等号满足条件可以发现,此时:

因此,如果能取两个观测值进行估计,那么对两个观测值进行算数平均是参数A的有效估计,此时估计的CRLB方差的下限为

显然,前面工程问题中举例的尽管是无偏估计,但不是有效估计,因为的方差未能达到CRLB,而应该采用两个观测值的算数平均去估计参数A。


3. 如果用N个采集点都参与参数A的估计,且各个采集点都是独立同分布,那么似然函数可以表示为:

对上述取自然对数,可以得到:

对上述自然对数求偏导,可以得到:

通过对比,可以发现此时:

因此,对N个采集数据的算数平均是A的有效估计,其估计方差CRLB下限为


最终,根据一开始提出的工程问题,我们可以发现:

  1. 分别是采用一个观测数据和N个观测数据后对参数A的有效估计;
  2. 对于独立同分布模型,采用N个观测数据的CRLB是采用单个观测数据CRLB的
  3. 对于类似具有高斯噪声的直流信号估计,如果单次能够采集到N个观测值,那么对N个观测值进行算术平均,得到的就是该直流信号的有效估计;且增加观测值的采样点数N,可以有效降低CRLB下限。

[1] 统计信号处理基础-估计与检测理论,50页,罗鹏飞译,2014.6

以直流信号测量为例,进行标量CRLB推导及说明相关推荐

  1. 安科瑞BR系列罗氏线圈变送器,对电网中的交流大电流进行实时测量,采用真有效值和线性补偿技术,将其隔离变换为标准的直流信号输出

    1 .概述 BR系列产品应用电磁感应原理,对电网中的交流大电流进行实时测量,采用真有效值和线性补偿技术,将其隔离变换为标准的直流信号输出.DC24V安全电压供电,具有高精度.高隔离.高安全性.低功耗等 ...

  2. matlab 信号去直流,基于FIR滤波的ADC采样信号中直流信号的消除方法与流程

    本发明属于卫星导航领域,介绍了ADC采样信号中的直流偏置消除方法. 背景技术: 卫星导航系统在军事和民用领域应用越来越广泛.以GPS卫星导航系统为例,其到地面的信号功率仅为-130dBm,这么微弱的信 ...

  3. python画锯齿波_用Python控制硬件35-自制二三十元成本的信号测量采集控制系统

    如前篇所介绍,用Shell Lab测试台软件配合之前介绍的任意款实验板,都能方便地实现ADC电压测量,但遇到两个问题: 示例代码虽然众多,但大都默认ShellLab类型的控制器,需要手动改为Mcush ...

  4. 常用传感器信号测量汇总

    转自:http://www.meter18.com/meter18_Article_289862.html  http://wenku.baidu.com/link?url=b1PwOhUSBhwyJ ...

  5. 用python控制硬件_用Python控制硬件35-自制二三十元成本的信号测量采集控制系统...

    如前篇所介绍,用Shell Lab测试台软件配合之前介绍的任意款实验板,都能方便地实现ADC电压测量,但遇到两个问题:示例代码虽然众多,但大都默认ShellLab类型的控制器,需要手动改为Mcush. ...

  6. 【数字示波器使用及MIPI-DSI信号测量】

    文章目录 前言 一.示波器的主要指标 1.示波器带宽 2.示波器采样率 3.示波器采样深度 二.示波器探头介绍 1.无源高阻探头 2.有源差分探头 3.有源电流探头 三.示波器抓取信号 1.示波器触发 ...

  7. 根据声音信号测量距离

    很多动物依赖于声音来感知外部的环境,像夜间活动的蝙蝠.树鼩,海洋里的生物鲸鱼.海豚等.声呐定位不仅给它们追踪猎物.躲避天敌的方法,有时也可以给它们寻觅配偶提供方便. 依靠听觉定位的动物 工业革命之后, ...

  8. 纹身电极: 一种新型的可以进行脑信号测量的电极

    目录 简介 纹身电极(tattooelectrodes)历史 新一代纹身电极 首次脑磁图(MEG)兼容干电极 本分享为脑机学习者Rose整理发表于公众号:脑机接口社区 QQ交流群:941473018 ...

  9. 单片机检测信号通断通用电路(3.3V/5V直流信号,24V+直流信号,220V交流信号)

    在实际的电路设计中,往往需要用到单片机检测某些信号通断,检测电压有无. 在一定的范围内,比如3.3V的直流信号,单片机的IO是可以直接连接信号检测的, 但是往往实际信号各种各样,24V/48V直流,2 ...

最新文章

  1. python课件_讲座直播 | Python在线课堂第二周
  2. DevOps - Spring Boot自动部署到WebLogic
  3. Python中的join()函数的用法
  4. 使用java操作ranger,hdfs ranger授权操作,hive ranger授权操作
  5. hadoop学习6 运行map reduce出错
  6. VS2015无法打开包括文件corecrt.h 无法打开文件ucrtd.lib
  7. 【语言处理与Python】4.7算法设计
  8. JavaScript实现类与继承
  9. 颠覆传统-面向对象的设计思想(序章续)
  10. 【开篇】初等数论及其核心内容
  11. 鲁四海解读中国大数据发展10大趋势5大挑战
  12. Java.lang.Class类 isArray()方法有什么功能呢?
  13. 零基础想学习大数据?(同样适合有一定基础想进阶的)跟着这几个步骤走
  14. 你问我答:听说你做订阅号挣了 100W ?
  15. 螺旋传动设计系统lisp_螺旋传动设计.doc
  16. 面试连环炮:从HashSet开始,一路怼到CPU
  17. QMC5883L与msp430FG4618--IIC通信
  18. oracle 序列和表关联,Oracle 创建和管理表、集群和序列
  19. jam 掘金study_召唤队友 ing!机器学习 Study Jam 第二季课程现已开放
  20. 你不爱听,我偏要讲——创业融资的14个教训

热门文章

  1. 欢迎关注! 光影人像 公众号!
  2. 物联网中的边缘计算介绍(一)【产品篇03】
  3. 【智能制造】智能工厂规划的“十八般武艺”
  4. MOS管电路工作原理及详解
  5. 如何用php做每天日程安排,PHP开发制作一个简单的活动日程表Calendar,日程表calendar...
  6. 2022年武汉理工大学数据库系统综合实验5.1,5.2安全性语言及多用户事务管理
  7. 小白机器学习基础算法学习必经之路
  8. 云南大学软件学院java实验九_云南大学软件学院Java实验二
  9. 记 今日头条广告架构社招面试
  10. 广州职业技术学校一览表|广州技校大全