• 根据“编码器-解码器”架构的设计, 我们可以使用两个循环神经网络来设计一个序列到序列学习的模型。

  • 在实现编码器和解码器时,我们可以使用多层循环神经网络。

  • 我们可以使用遮蔽来过滤不相关的计算,例如在计算损失时。

  • 在“编码器-解码器”训练中,强制教学方法将原始输出序列(而非预测结果)输入解码器。

  • BLEU是一种常用的评估方法,它通过测量预测序列和标签序列之间的n元语法的匹配度来评估预测。

机器翻译中的输入序列和输出序列都是长度可变的。 为了解决这类问题,我们在编码器-解码器架构_流萤数点的博客-CSDN博客 设计了一个通用的”编码器-解码器“架构。 本节,我们将使用两个循环神经网络的编码器和解码器, 并将其应用于序列到序列(sequence to sequence,seq2seq)类的学习任务 (Cho et al., 2014, Sutskever et al., 2014)。

遵循编码器-解码器架构的设计原则, 循环神经网络编码器使用长度可变的序列作为输入, 将其转换为固定形状的隐状态。 换言之,输入序列的信息被编码到循环神经网络编码器的隐状态中。 为了连续生成输出序列的词元, 独立的循环神经网络解码器是基于输入序列的编码信息 和输出序列已经看见的或者生成的词元来预测下一个词元。 图9.7.1演示了 如何在机器翻译中使用两个循环神经网络进行序列到序列学习。

在 图9.7.1中, 特定的“<eos>”表示序列结束词元。 一旦输出序列生成此词元,模型就会停止预测。 在循环神经网络解码器的初始化时间步,有两个特定的设计决定: 首先,特定的“<bos>”表示序列开始词元,它是解码器的输入序列的第一个词元。 其次,使用循环神经网络编码器最终的隐状态来初始化解码器的隐状态。 例如,在 (Sutskever et al., 2014)的设计中, 正是基于这种设计将输入序列的编码信息送入到解码器中来生成输出序列的。 在其他一些设计中 (Cho et al., 2014), 如 图9.7.1所示, 编码器最终的隐状态在每一个时间步都作为解码器的输入序列的一部分。 类似于 8.3节中语言模型的训练, 可以允许标签成为原始的输出序列, 从源序列词元“<bos>”“Ils”“regardent”“.” 到新序列词元 “Ils”“regardent”“.”“<eos>”来移动预测的位置。

下面,我们动手构建 图9.7.1的设计, 并将基于机器翻译与数据集_流萤数点的博客-CSDN博客中 介绍的“英-法”数据集来训练这个机器翻译模型。

pip install mxnet==1.7.0.post1
pip install d2l==0.15.0
import collections
import math
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn, rnn
from d2l import mxnet as d2lnpx.set_np()

1.编码器

从技术上讲,编码器将长度可变的输入序列转换成 形状固定的上下文变量c, 并且将输入序列的信息在该上下文变量中进行编码。 如 图9.7.1所示,可以使用循环神经网络来设计编码器。

到目前为止,我们使用的是一个单向循环神经网络来设计编码器, 其中隐状态只依赖于输入子序列, 这个子序列是由输入序列的开始位置到隐状态所在的时间步的位置 (包括隐状态所在的时间步)组成。 我们也可以使用双向循环神经网络构造编码器, 其中隐状态依赖于两个输入子序列, 两个子序列是由隐状态所在的时间步的位置之前的序列和之后的序列 (包括隐状态所在的时间步), 因此隐状态对整个序列的信息都进行了编码。

现在,让我们实现循环神经网络编码器。 注意,我们使用了嵌入层(embedding layer) 来获得输入序列中每个词元的特征向量。 嵌入层的权重是一个矩阵, 其行数等于输入词表的大小(vocab_size), 其列数等于特征向量的维度(embed_size)。 对于任意输入词元的索引i, 嵌入层获取权重矩阵的第i行(从0开始)以返回其特征向量。 另外,本文选择了一个多层门控循环单元来实现编码器。

特征向量和特征值的概念用于确定一组重要变量(以向量的形式)以及沿不同维度(基于方差的关键维度)的尺度,以便以更好的方式分析数据。

一个线性变换通常可以由其特征值和特征向量完全描述。非常概括地说,线性映射的特征值是由变换引起的失真的度量,特征向量告诉您失真的方向。 这对于降维PCA(主成分分析)非常有用。

一个简单的例子是特征向量在变换中不改变方向。
原文链接:https://blog.csdn.net/bashendixie5/article/details/124243609

词向量参考向量空间中单词表示的有效估计_流萤数点的博客-CSDN博客

#@save
class Seq2SeqEncoder(d2l.Encoder):"""用于序列到序列学习的循环神经网络编码器"""def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqEncoder, self).__init__(**kwargs)# 嵌入层self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = rnn.GRU(num_hiddens, num_layers, dropout=dropout)def forward(self, X, *args):# 输出'X'的形状:(batch_size,num_steps,embed_size)X = self.embedding(X)# 在循环神经网络模型中,第一个轴对应于时间步X = X.swapaxes(0, 1)state = self.rnn.begin_state(batch_size=X.shape[1], ctx=X.ctx)output, state = self.rnn(X, state)# output的形状:(num_steps,batch_size,num_hiddens)# state的形状:(num_layers,batch_size,num_hiddens)return output, state

下面,我们实例化上述编码器的实现: 我们使用一个两层门控循环单元编码器,其隐藏单元数为16。 给定一小批量的输入序列X(批量大小为4,时间步为7)。 在完成所有时间步后, 最后一层的隐状态的输出是一个张量output由编码器的循环层返回), 其形状为(时间步数,批量大小,隐藏单元数)。

encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,num_layers=2)
encoder.initialize()
X = np.zeros((4, 7))
output, state = encoder(X)
output.shape
(7, 4, 16)

由于这里使用的是门控循环单元, 所以在最后一个时间步的多层隐状态的形状是 (隐藏层的数量,批量大小,隐藏单元的数量)。 如果使用长短期记忆网络,state中还将包含记忆单元信息。

len(state), state[0].shape
(1, (2, 4, 16))

2. 解码器

根据 图9.7.1,当实现解码器时, 我们直接使用编码器最后一个时间步的隐状态来初始化解码器的隐状态。 这就要求使用循环神经网络实现的编码器和解码器具有相同数量的层和隐藏单元。 为了进一步包含经过编码的输入序列的信息, 上下文变量在所有的时间步与解码器的输入进行拼接(concatenate)。 为了预测输出词元的概率分布, 在循环神经网络解码器的最后一层使用全连接层来变换隐状态。

class Seq2SeqDecoder(d2l.Decoder):"""用于序列到序列学习的循环神经网络解码器"""def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,dropout=0, **kwargs):super(Seq2SeqDecoder, self).__init__(**kwargs)self.embedding = nn.Embedding(vocab_size, embed_size)self.rnn = rnn.GRU(num_hiddens, num_layers, dropout=dropout)self.dense = nn.Dense(vocab_size, flatten=False)def init_state(self, enc_outputs, *args):return enc_outputs[1]def forward(self, X, state):# 输出'X'的形状:(batch_size,num_steps,embed_size)X = self.embedding(X).swapaxes(0, 1)# context的形状:(batch_size,num_hiddens)context = state[0][-1]# 广播context,使其具有与X相同的num_stepscontext = np.broadcast_to(context, (X.shape[0], context.shape[0], context.shape[1]))X_and_context = np.concatenate((X, context), 2)output, state = self.rnn(X_and_context, state)output = self.dense(output).swapaxes(0, 1)# output的形状:(batch_size,num_steps,vocab_size)# state的形状:(num_layers,batch_size,num_hiddens)return output, state

下面,我们用与前面提到的编码器中相同的超参数来实例化解码器。 如我们所见,解码器的输出形状变为(批量大小,时间步数,词表大小), 其中张量的最后一个维度存储预测的词元分布。

decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8, num_hiddens=16,num_layers=2)
decoder.initialize()
state = decoder.init_state(encoder(X))
output, state = decoder(X, state)
output.shape, len(state), state[0].shape
((4, 7, 10), 1, (2, 4, 16))

总之,上述循环神经网络“编码器-解码器”模型中的各层如 图9.7.2所示。

3.损失函数

在每个时间步,解码器预测了输出词元的概率分布。 类似于语言模型,可以使用softmax来获得分布, 并通过计算交叉熵损失函数来进行优化。 回想一下 机器翻译与数据集_流萤数点的博客-CSDN博客中, 特定的填充词元被添加到序列的末尾, 因此不同长度的序列可以以相同形状的小批量加载。 但是,我们应该将填充词元的预测排除在损失函数的计算之外。

为此,我们可以使用下面的sequence_mask函数 通过零值化屏蔽不相关的项, 以便后面任何不相关预测的计算都是与零的乘积,结果都等于零。 例如,如果两个序列的有效长度(不包括填充词元)分别为1和2, 则第一个序列的第一项和第二个序列的前两项之后的剩余项将被清除为零。

X = np.array([[1, 2, 3], [4, 5, 6]])
npx.sequence_mask(X, np.array([1, 2]), True, axis=1)
array([[1., 0., 0.],[4., 5., 0.]])

我们还可以使用此函数屏蔽最后几个轴上的所有项。如果愿意,也可以使用指定的非零值来替换这些项。

X = np.ones((2, 3, 4))
npx.sequence_mask(X, np.array([1, 2]), True, value=-1, axis=1)
array([[[ 1.,  1.,  1.,  1.],[-1., -1., -1., -1.],[-1., -1., -1., -1.]],[[ 1.,  1.,  1.,  1.],[ 1.,  1.,  1.,  1.],[-1., -1., -1., -1.]]])

现在,我们可以通过扩展softmax交叉熵损失函数来遮蔽不相关的预测。 最初,所有预测词元的掩码都设置为1。 一旦给定了有效长度,与填充词元对应的掩码将被设置为0。 最后,将所有词元的损失乘以掩码,以过滤掉损失中填充词元产生的不相关预测。

#@save
class MaskedSoftmaxCELoss(gluon.loss.SoftmaxCELoss):"""带遮蔽的softmax交叉熵损失函数"""# pred的形状:(batch_size,num_steps,vocab_size)# label的形状:(batch_size,num_steps)# valid_len的形状:(batch_size,)def forward(self, pred, label, valid_len):# weights的形状:(batch_size,num_steps,1)weights = np.expand_dims(np.ones_like(label), axis=-1)weights = npx.sequence_mask(weights, valid_len, True, axis=1)return super(MaskedSoftmaxCELoss, self).forward(pred, label, weights)

我们可以创建三个相同的序列来进行代码健全性检查, 然后分别指定这些序列的有效长度为4、2和0。 结果就是,第一个序列的损失应为第二个序列的两倍,而第三个序列的损失应为零。

loss = MaskedSoftmaxCELoss()
loss(np.ones((3, 4, 10)), np.ones((3, 4)), np.array([4, 2, 0]))
array([2.3025851, 1.1512926, 0.       ])

4.训练

在下面的循环训练过程中,如 图9.7.1所示, 特定的序列开始词元(“<bos>”)和 原始的输出序列(不包括序列结束词元“<eos>”) 拼接在一起作为解码器的输入。 这被称为强制教学(teacher forcing), 因为原始的输出序列(词元的标签)被送入解码器。 或者,将来自上一个时间步的预测得到的词元作为解码器的当前输入。

#@save
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):"""训练序列到序列模型"""net.initialize(init.Xavier(), force_reinit=True, ctx=device)trainer = gluon.Trainer(net.collect_params(), 'adam',{'learning_rate': lr})loss = MaskedSoftmaxCELoss()animator = d2l.Animator(xlabel='epoch', ylabel='loss',xlim=[10, num_epochs])for epoch in range(num_epochs):timer = d2l.Timer()metric = d2l.Accumulator(2)  # 训练损失求和,词元数量for batch in data_iter:X, X_valid_len, Y, Y_valid_len = [x.as_in_ctx(device) for x in batch]bos = np.array([tgt_vocab['<bos>']] * Y.shape[0],ctx=device).reshape(-1, 1)dec_input = np.concatenate([bos, Y[:, :-1]], 1)  # 强制教学with autograd.record():Y_hat, _ = net(X, dec_input, X_valid_len)l = loss(Y_hat, Y, Y_valid_len)l.backward()d2l.grad_clipping(net, 1)num_tokens = Y_valid_len.sum()trainer.step(num_tokens)metric.add(l.sum(), num_tokens)if (epoch + 1) % 10 == 0:animator.add(epoch + 1, (metric[0] / metric[1],))print(f'loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} 'f'tokens/sec on {str(device)}')

现在,在机器翻译数据集上,我们可以 创建和训练一个循环神经网络“编码器-解码器”模型用于序列到序列的学习。

embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 300, d2l.try_gpu()train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers,dropout)
decoder = Seq2SeqDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers,dropout)
net = d2l.EncoderDecoder(encoder, decoder)
train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)

5.预测

为了采用一个接着一个词元的方式预测输出序列, 每个解码器当前时间步的输入都将来自于前一时间步的预测词元。 与训练类似,序列开始词元(“<bos>”) 在初始时间步被输入到解码器中。 该预测过程如 图9.7.3所示, 当输出序列的预测遇到序列结束词元(“<eos>”)时,预测就结束了。

将在 下一次介绍不同的序列生成策略。

#@save
def predict_seq2seq(net, src_sentence, src_vocab, tgt_vocab, num_steps,device, save_attention_weights=False):"""序列到序列模型的预测"""src_tokens = src_vocab[src_sentence.lower().split(' ')] + [src_vocab['<eos>']]enc_valid_len = np.array([len(src_tokens)], ctx=device)src_tokens = d2l.truncate_pad(src_tokens, num_steps, src_vocab['<pad>'])# 添加批量轴enc_X = np.expand_dims(np.array(src_tokens, ctx=device), axis=0)enc_outputs = net.encoder(enc_X, enc_valid_len)dec_state = net.decoder.init_state(enc_outputs, enc_valid_len)# 添加批量轴dec_X = np.expand_dims(np.array([tgt_vocab['<bos>']], ctx=device),axis=0)output_seq, attention_weight_seq = [], []for _ in range(num_steps):Y, dec_state = net.decoder(dec_X, dec_state)# 我们使用具有预测最高可能性的词元,作为解码器在下一时间步的输入dec_X = Y.argmax(axis=2)pred = dec_X.squeeze(axis=0).astype('int32').item()# 保存注意力权重(稍后讨论)if save_attention_weights:attention_weight_seq.append(net.decoder.attention_weights)# 一旦序列结束词元被预测,输出序列的生成就完成了if pred == tgt_vocab['<eos>']:breakoutput_seq.append(pred)return ' '.join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq

6.预测序列的评估

我们可以通过与真实的标签序列进行比较来评估预测序列。 虽然 (Papineni et al., 2002) 提出的BLEU(bilingual evaluation understudy) 最先是用于评估机器翻译的结果, 但现在它已经被广泛用于测量许多应用的输出序列的质量。 原则上说,对于预测序列中的任意n元语法(n-grams), BLEU的评估都是这个n元语法是否出现在标签序列中。

我们将BLEU定义为:

BLEU的代码实现如下。

def bleu(pred_seq, label_seq, k):  #@save"""计算BLEU"""pred_tokens, label_tokens = pred_seq.split(' '), label_seq.split(' ')len_pred, len_label = len(pred_tokens), len(label_tokens)score = math.exp(min(0, 1 - len_label / len_pred))for n in range(1, k + 1):num_matches, label_subs = 0, collections.defaultdict(int)for i in range(len_label - n + 1):label_subs[' '.join(label_tokens[i: i + n])] += 1for i in range(len_pred - n + 1):if label_subs[' '.join(pred_tokens[i: i + n])] > 0:num_matches += 1label_subs[' '.join(pred_tokens[i: i + n])] -= 1score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))return score

最后,利用训练好的循环神经网络“编码器-解码器”模型, 将几个英语句子翻译成法语,并计算BLEU的最终结果。

engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):translation, attention_weight_seq = predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device)print(f'{eng} => {translation}, bleu {bleu(translation, fra, k=2):.3f}')
go . => va !, bleu 1.000
i lost . => j'ai perdu ., bleu 1.000
he's calm . => il est riche ., bleu 0.658
i'm home . => je suis malade ., bleu 0.512

序列到序列学习(seq2seq,BLEU)相关推荐

  1. 09.7. 序列到序列学习(seq2seq)

    文章目录 9.7. 序列到序列学习(seq2seq) 9.7.1. 编码器 9.7.2. 解码器 9.7.3. 损失函数 9.7.4. 训练 9.7.5. 预测 9.7.6. 预测序列的评估 9.7. ...

  2. 吴恩达深度学习之五《序列模型》学习笔记

    一.循环序列模型 1.1 为什么选择序列模型 如图所示是一些序列数据的例子 1.2 数学符号 如图所示,我们用  表示一个序列的第 t 个元素,t 从 1 开始 NLP中一个单词就是一个元素(又称时间 ...

  3. 现代循环神经网络 - 序列到序列学习

    文章目录 序列到序列学习(seq2seq) 1 - 编码器 2 - 解码器 3 - 损失函数 4 - 训练 5 - 预测 6 - 预测序列的评估 7 - 小结 序列到序列学习(seq2seq) 在本节 ...

  4. 序列到序列网络seq2seq与注意力机制attention浅析

    序列到序列网络 序列到序列网络(Sequence to Sequence network),也叫做seq2seq网络, 又或者是编码器解码器网络(Encoder Decoder network), 是 ...

  5. 机器学习原来这么有趣!第五章:Google 翻译背后的黑科技:神经网络和序列到序列学习

    第一章:全世界最简单的机器学习入门指南 https://blog.csdn.net/wskzgz/article/details/89917343 第二章:用机器学习制作超级马里奥的关卡 https: ...

  6. PyTorch seq2seq translation 使用序列到序列的网络和注意机制进行翻译

    如果要查看图文版教程,请到 http://studyai.com/pytorch-1.4/intermediate/seq2seq_translation_tutorial.html 在这个项目中,我 ...

  7. PyTorch-16 seq2seq translation 使用序列到序列的网络和注意机制进行翻译

    如果要查看图文版教程,请到 http://studyai.com/pytorch-1.4/intermediate/seq2seq_translation_tutorial.html 在这个项目中,我 ...

  8. 序列到序列的网络seq2seq

    1.seq2seq 使用两个循环神经网络,将一个语言序列直接转换到另一个语言序列. 2.序列到序列的模型 是循环神经网络的升级版,其联合了两个循环神经网络.一个神经网络负责接收源句子:另一个循环神经网 ...

  9. python序列类型-python学习—序列类型、列表、元组

    序列类型 序列类型的数据:数据内部的元素是有顺序的(有下标) 序列类型的数据:字符串类型.列表类型.元组类型 1.可以通过下标取值 s = "python" li = [" ...

最新文章

  1. MySQL双主(master-master)+半同步(Semisync Replication)
  2. zabbix 3.4 ubuntu 16 用腾讯企业邮箱作为告警邮箱
  3. Flying to the Mars
  4. Python3 练习笔记五
  5. java class 关键字_java关键字及其作用
  6. R6饮料AK赛(NOIP模拟赛)/省选专练HDU 5713 K个联通块
  7. Java知多少(50)Java throws子句
  8. 服务器搭建mutt邮件发送环境
  9. jquery粘贴按钮_实现前端点击按钮自动复制剪贴板功能
  10. Spark Mllib里相似度度量(基于余弦相似度计算不同用户之间相似性)(图文详解)...
  11. XRD数据分析--如何使用Origin作图?
  12. android 设内网固定ip,如何给手机设置一个固定的内网ip
  13. mysql杀死锁死的进程_如何杀死MySQL进程
  14. explain mysql_mysql explain详解
  15. 滑窗优化、边缘化、舒尔补、FEJ及fill-in问题
  16. 如何在阿里云中注册域名
  17. 数据科学和机器学习中的优化理论与算法(下)
  18. 训练记录番外篇(2):2022 ICPC Gran Premio de Mexico 2da Fecha
  19. QT 黑色风格+白色风格+淡蓝色风格样式表。
  20. 超详细修改C盘下的用户名(适合win10和win11)

热门文章

  1. 小米所有android o机型,小米部分手机安卓O/P适配进度公布
  2. NavigationView简单简介和简单使用
  3. 手机连接电脑win10热点,手机显示无IP分配
  4. 无向简单图怎么判断_如何判断车身正不正?其实很简单,3张图就看懂
  5. 什么是同步?什么是异步?
  6. pr2_moveit_config 安装
  7. reactnative热更新 react-native-pushy
  8. 欠揍滴小盆友,保证不打死你
  9. 活动回顾丨欧米区块链——数字资产服务商沙龙
  10. Linux配置SSH连接方式