【新智元导读】英伟达一举创造了2个壮举!训练出了世界上最大的语言模型——MegatronLM,包含83亿参数,比BERT大24倍,比GPT-2大5.6倍;还打破了实时对话AI的记录,仅耗时53分钟即可训练出行业标准BERT模型、2毫秒就能对答案做出推断!

世界上最大的语言模型来了,顺便还破了个记录!

英伟达宣布,目前已经训练出了世界上最大的语言模型——MegatronLM

这个模型有多大?83亿个参数!比谷歌的 BERT 大24倍,比 OpenAI 的 GPT-2 大5.6倍

不仅如此,英伟达还宣布打破了实时对话 AI 的记录——耗时53分钟就可以训练出行业标准的BERT模型、2毫秒左右就能对答案做出推断。

为了实现这一壮举,英伟达利用模型的并行性,将一个神经网络分割成多个部分,创建了因数据太大无法容纳在单个GPU的训练模型。

最重要的是,代码已开源!

GitHub项目地址:

https://github.com/NVIDIA/Megatron-LM

MegatronLM,堪称 NLP 界的“威震天”

有钱任性:训练史上最大语言模型需要多少GPU?

更大的语言模型对于诸如文章完成、问题回答和对话系统等NLP任务非常有用。最近,训练最大的神经语言模型已经成为提高NLP应用水平的最佳方法.

最近的两篇论文,BERT和GPT-2,展示了大规模语言建模的好处。这两篇论文都利用了计算机和可用文本语料库的进步,在自然语言理解、建模和生成方面显著超越了当前的最优水平。

训练这些模型需要数以百计exaflops级的计算力和巧妙的内存管理,以换取减少内存占用的重新计算。然而,对于超过10亿参数的超大型的模型,单个GPU上的内存不足以匹配模型以及训练所需的参数,需要利用模型并行性来将参数分割到多个GPU上。有几种建模并行性的方法,但是它们很难使用,因为它们依赖于自定义编译器,或者扩展性很差,或者需要对优化器进行更改。

在这项工作中,我们通过对现有PyTorch transformer实现进行少量有针对性的修改,实现了一种简单而有效的模型并行方法。我们的代码是用原生Python编写的,利用混合精度训练,并利用NCCL库在GPU之间进行通信。

我们通过在512个GPU上训练一个transformer语言模型证明了这种方法的有效性,该模型具有8路模型并行性和64路数据并行性,83亿参数,使其成为有史以来规模最大的基于transformer的语言模型,其大小为BERT的24倍,GPT-2的5.6倍。我们已经在GitHub存储库中发布了实现此方法的代码。

我们的实验是在英伟达的DGX SuperPOD上进行的。在没有模型并行性的情况下,我们可以在单个V100 32GB GPU上训练一个12亿参数的基线模型,并在整个训练过程中保持39 TeraFLOPS,这是DGX2-H服务器上单个GPU理论峰值的30%。

我们将模型参数扩展到83亿,使用512个GPU,通过8路模型并行化,在整个应用程序中我们实现了高达15.1 PetaFLOPS的持续性能,与单GPU相比,扩展效率达到76%。图1显示了扩展的结果。

图1:模型并行(蓝色):多达8路模型并行弱扩展,每个GPU大约有10亿个参数(例如2个GPU有20亿参数,4个GPU有40亿参数)。模型+数据并行(绿色):类似于模型并行的64路数据并行的配置。

多GPU并行性

训练模型的典型范例是利用 weak scaling 方法和分布式数据并行性,根据GPU的数量来扩展训练批大小。这种方法允许模型在更大的数据集上进行训练,但有一个约束,即所有参数必须适合一个GPU。

模型并行训练可以通过跨多个GPU划分模型来克服这一限制。近年来出现了几个通用模型并行框架,如GPipe和Mesh-TensorFlow。gPipe在不同的处理器上划分层组,而Mesh-TensorFlow使用层内模型并行性。我们的方法在概念上类似于Mesh-TensorFlow,我们关注层内并行性并融合GEMM以减少同步。然而,我们只对现有PyTorch transformer实现进行了一些有针对性的修改,以便使用模型并行性来训练大型transformers。我们的方法很简单,不需要任何新的编译器或代码重新连接来实现模型并行性,并且可以通过插入一些简单的primitives(图2中的f和g 算子)完全实现。

我们利用 transformer网络的结构,通过添加一些同步primitives来创建一个简单的模型并行实现。

transformer层由一个self attention block和一个2层的多层感知器(MLP)组成。我们分别在这两个模块中引入模型并行性。

如图2a所示,这是MLP的结构,由两个GEMM组成,中间有一个GeLU非线性,后面有一个dropout层。我们以列并行方式划分第一个GEMM。这使得GeLU 非线性可以独立地应用于每个分块GEMM的输出。模块中的第二个GEMM沿着行并行化,直接获取GeLU层的输出,不需要任何通信。然后,在将输出传递到dropout层之前,跨GPU减少第二个GEMM的输出。这种方法将MLP block中的GEMM跨GPU分割了,只需要在正向传递(g算子)中执行一个all-reduce操作,在反向传递(f算子)中执行一个all-reduce操作。

图2:(a): MLP, (b):transformer的self attention block。

如图2(b)所示,在self attention block上,我们利用multihead attention操作中的固有并行性,以列并行方式划分与键(K),查询(Q)和值(V)相关联的 GEMM。

这使得我们可以在GPU之间分割每个attention head参数和工作负载,并且不需要任何即时通信来完成self attention。

这种方法对于MLP和self-attention层都融合了两个GEMM的组,消除了中间的同步点,并获得了更好的scaling性能。这使我们能够在一个简单的transformer层中执行所有GEMM,只使用前向路径的2个all reduce和后向路径的2个all reduce,如图3所示。

图3:GPT-2 transformer层的模型并行性。

这种方法实现起来很简单,因为它只需要在向前和向后传递中添加一些额外的all-reduce操作。它不需要编译器,并且与gPipe等方法提倡的那种pipeline模型并行性是正交的。

性能

为了测试我们的实现的计算性能,我们考虑了表1中四组参数的GPT-2模型。

表1:用于scaling 研究的参数。

所有的实验都是在NVIDIA的DGX SuperPOD上进行的,我们使用了多达32台DGX- 2h服务器(总共512个Tesla V100 SXM3 32GB GPU)。该系统针对多节点深度学习应用程序进行了优化,服务器内部GPU之间的带宽为300 GB/s,服务器之间的互连带宽为100 GB/s。

图4显示了模型模型+数据并行性的扩展值。我们在这两种设置中都观察到了出色的扩展数字。例如,8路(8 GPU)模型并行的83亿参数模型实现了77%的线性扩展。模型+数据并行性要求在反向传播步骤之后进一步通信梯度,因此扩展数略有下降。然而,即使是运行在512个GPU上的最大配置(83亿参数),相对于强大的基准单GPU配置(12亿个参数),我们仍然可以实现74%的扩展性。

图4:模型(左)和模型+数据(右)随着GPU的数量并行地进行weak scaling。

最后,我们研究了attention heads对模型并行扩展的影响。为此,我们考虑了83亿参数、具有8路模型并行性的参数配置,并将attention heads的数目从16个改为32个。结果如表2所示。随着attention heads数量的增加,self attention层中的一些GEMM变小,同时softmax中的元素数量增加。这导致了轻微的scaling decrease。未来的研究在设计大型transformer模型时应该警惕这种超参数,平衡模型性能和模型效率。

表2:attention heads 数量对scaling的影响。

GPT-2训练

为了训练GPT-2模型,我们创建了一个从_Reddit_下载的37 GB _WebText_ dataset,它类似于原始GPT-2论文中描述的webtext数据集。数据集最终有810万个url。我们将WebText数据集随机分割为95:5的比例,分别得到训练集和验证集。我们考虑了4种参数规模的模型:3.45亿、7.75亿、25亿和83亿

图5:训练子集的验证困惑度。在对37GB数据集过拟合之后,8.3B模型提前停止了。

图5显示了验证的困惑度(perplexity)。我们发现。最大的83亿参数的语言模型在~6epoch之后开始overfit,一种1 epoch被定义为15200次迭代。我们认为这可以通过使用更大规模的数据集来缓解,类似于XLNet和RoBERTa等最近论文中使用的数据集。

GPT-2评估

为了分析大型语言模型的训练性能,我们在wikitext-103数据集上计算了perplexity,在Lambada数据集上计算了closize风格的预测精度。

正如预期的一样,wikitext perplexity随着模型尺寸的增大而减小,lambada准确率随着模型尺寸的增大而增加(表3)。

表3:wikitext perplexity(越低越好)和Lambada完形精度(越高越好)的评估结果。

结论

在这项工作中,我们在现有的深度学习硬件、软件和模型的基础上,构建了世界上最大的基于transformer的语言模型。

在此过程中,我们成功地突破了传统的单GPU训练的限制,实现了一种简单而高效的模型并行方法,只需对现有PyTorch transformer实现进行少量有针对性的修改。

我们在512台NVIDIA V100 GPU上高效地训练了83亿参数的语言模型(分别比BERT和GPT-2大24倍和5.6倍),具有8路模型并行性,并在整个应用程序中实现了高达15.1千万亿次浮点运算(PetaFLOPS)。

我们发现,与较小的transformer模型相比,更大的transformer模型可以在相同的时间内进行训练,并且可以显著提高性能。

然而,正如我们在工作中所展示的,NLP仍然需要合适的数据集、问题和技术来正确地训练这些大型语言模型,否则会出现过拟合。

我们将我们的工作开源,以便社区就可以复制并扩展它们。

英伟达官方GitHub项目已开源!

英伟达在官方GitHub上对MegatronLM开源了代码,也提供了相应的教程。

项目地址:https://github.com/NVIDIA/Megatron-LM

安装

官方只支持 Python 3.6。请安装支持GPU的最新版本PyTorch。

此外,代码库的一部分利用tensorflow-cpu(可选)执行TFRecords的数据加载以进行BERT训练。

建议要么使用./docker/中提供的Dockerfile,要么创建一个虚拟环境(以避免破坏现有的tf安装)并安装requirements.txt。

用法

提供了5个预训练BERT的脚本和3个预训练GPT2的脚本。使用 --save 和 --load 保存并加载模型检查点(checkpoint)。

此外,还提供 GPT2 脚本,用于在wiki文本和LAMBADA上生成GPT2的交互式文本生成和零样本(zero shot)评估。

此脚本运行单gpu gpt2预训练,主要用于调试目的。优化参数设置为64路分布式训练。

它与前一个脚本格式大致相同,但有一些值得注意的差异:

  • --tokenizer-type已切换为GPT2BPETokenizer;
  • --lr-decay-style已切换为cosine decay等等。

另外,GPT2使用来自BERT的不同参数初始化,用于训练深度残差网络。要使用此初始化来训练BERT,请使用--deep-init。

更多细节内容,读者可前往官方GitHub浏览:

https://github.com/NVIDIA/Megatron-LM

参考链接:

VB:https://venturebeat.com/2019/08/13/nvidia-trains-worlds-largest-transformer-based-language-model/

TechCrunch:https://techcrunch.com/2019/08/13/nvidia-breaks-records-in-training-and-inference-for-real-time-conversational-ai/

GitHub:https://github.com/NVIDIA/Megatron-LM

powerbuilder TriggerEvent 参数_NLP界“威震天”袭来!英伟达1小时83亿参数打造史上最大语言模型...相关推荐

  1. 【NLP】10000亿参数!英伟达用3072块A100训出史上最大最贵GPT!

    卷友们好,我是rumor. 我直接好家伙. 午休摸鱼时打开Arxiv看每日更新,一下就被闪瞎了. 英伟达.斯坦福联合MSR,共同训出了10000亿参数的GPT,比1750亿的GPT3还高出了一个量级. ...

  2. 【最全】英伟达驱动下载、GPU参数表等等

    发现一个不错的网站!!! https://www.techpowerup.com/gpu-specs/?mfgr=NVIDIA&mobile=No&sort=name 除此之外,还包含 ...

  3. 5300亿参数的「威震天-图灵」,微软、英伟达合力造出超大语言模型

    在微软和英伟达的共同努力下, Turing NLG 17B 和 Megatron-LM 模型的继承者诞生了:5300 亿参数,天生强大,它的名字叫做「Megatron-Turing」. 机器之心报道, ...

  4. 5300亿NLP模型“威震天-图灵”发布,由4480块A100训练,微软英伟达联合出品

    点击上方"视学算法",选择加"星标"或"置顶" 重磅干货,第一时间送达 丰色 发自 凹非寺 量子位 报道 | 公众号 QbitAI 5300 ...

  5. 5300亿参数,SOTA屠榜!最大NLP预训练模型新王登基,微软英伟达联手称霸

    来自:新智元 [导读]微软和英伟达联合发布了迄今为止最大.最强的人工智能语言模型:Megatron-Turing自然语言生成模型(MT-NLG).其包含5300亿个参数,在一系列自然语言任务包括阅读理 ...

  6. 英伟达PyTorch优化神器TensorRT重磅更新!10亿参数大模型实时运行,GPT推理加速21倍...

      视学算法报道   编辑:好困 小咸鱼 [新智元导读]12月2日,英伟达发布了最新的TensorRT 8.2版本,对10亿级参数模型进行了优化,让实时运行NLP应用成为可能.与原始PyTorch模型 ...

  7. 47分钟,BERT训练又破全新纪录!英伟达512个GPU训练83亿参数GPT-2 8B

    关注上方"深度学习技术前沿",选择"星标公众号", 资源干货,第一时间送达! 具有92个DGX-2H节点的NVIDIA DGX SuperPOD通过在短短47分 ...

  8. 2天训练出15亿参数大模型,国产开源项目力克英伟达Megatron-LM,来自LAMB作者团队...

    鱼羊 明敏 发自 凹非寺 量子位 | 公众号 QbitAI 当今AI之势,影响纵深发展的矛盾是什么? 一方面,大模型风头正劲,效果惊艳,人人都想试试.但另一方面,硬件基础上动不动就是上万张GPU的大规 ...

  9. 路透社:美国打算限制英伟达等与中国人工智能界合作

    李林 编译整理 量子位 出品 | 公众号 QbitAI 人工智能界的企业,很擅长其乐融融的合作.但在美国政府看来,这些合作关系一旦涉及中国企业,就可能变成了一种"威胁". 据路透社 ...

最新文章

  1. js 上传头像img
  2. [Story]狗尾草花园
  3. cc2530定时器和捕获比较_STM32学习日志——输入捕获实验(20.06.26)
  4. Spring MVC 解读——@Autowired、@Controller、@Service从原理层面来分析
  5. python3 从尾部读取_Python3基础:列表详解
  6. Hades:移动端静态分析框架
  7. 图像处理之图像特征匹配
  8. 【51NOD-0】1011 最大公约数GCD
  9. OpenCV-Python实战(12)——一文详解AR增强现实
  10. win32 disk imager使用后u盘容量恢复
  11. python3语法学习第四天--序列
  12. Search Engine Hacking – Manual and Automation
  13. 基于Qt的海康威视SDK二次开发-摄像头登陆、预览和抓图
  14. 市场热门身份证识别性能测评对比
  15. vsCode 快速生成vue 模板
  16. shell脚本的错误检测总结
  17. 计算机安全的重要意义,浅谈计算机安全的重要性
  18. bufferedreader.readline()解析
  19. 锐捷无线ap服务器怎么绑定mac,锐捷无线ap配置命令教程
  20. iOS 微信三方登陆

热门文章

  1. java生成word目录_java代码生成word目录
  2. 计算机硬盘不识别u盘启动,u盘启动读不了硬盘,小编教你U盘装系统找不到硬盘解决方法...
  3. Python——类与对象(为啥要用类和对象?有什么好处?)
  4. quicker + Golden Dict 实现比欧陆词典更好用的免费查词翻译神器
  5. 游戏中的数据可视化设计分析
  6. 004 - Linux Qt 使用搜狗输入法
  7. 深度学习之检测苹果、橙子和香蕉并语音输出结果(Python+PaddleDetection)
  8. java错误 找不到或无法加载主类_java错误:找不到或无法加载主类解决方法
  9. 啥是计算机语言设置,如何在win10计算机上更改系统的语言偏好设置
  10. 2020 版上海《米其林指南》“米其林餐盘“ + “必比登推介”