SHA家族的五个算法,分别是SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512,由美国国家安全局(NSA)所设计,并由美国国家标准与技术研究院(NIST)发布,是美国的政府标准。
哈希算法使用比较广泛,具体算法原理就不再赘述,这里只是记录一下C语言的源码和使用。

以下先是SHA1的算法

/**  FIPS-180-1 compliant SHA-1 implementation**  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved*  SPDX-License-Identifier: Apache-2.0**  Licensed under the Apache License, Version 2.0 (the "License"); you may*  not use this file except in compliance with the License.*  Unless required by applicable law or agreed to in writing, software*  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT*  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.*  See the License for the specific language governing permissions and*  limitations under the License.*/#include "stdafx.h"#include "sha1.h"#include <string.h>#include <stdio.h>/* Implementation that should never be optimized out by the compiler */
static void zeroize( void *v, size_t n ) {volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
}/** 32-bit integer manipulation macros (big endian)*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
{                                                       \(n) = ( (uint32_t) (b)[(i)    ] << 24 )             \| ( (uint32_t) (b)[(i) + 1] << 16 )             \| ( (uint32_t) (b)[(i) + 2] <<  8 )             \| ( (uint32_t) (b)[(i) + 3]       );            \
}
#endif#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
{                                                       \(b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \(b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \(b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \(b)[(i) + 3] = (unsigned char) ( (n)       );       \
}
#endifvoid sha1_init( sha1_context *ctx )
{memset( ctx, 0, sizeof( sha1_context ) );
}void sha1_free( sha1_context *ctx )
{if( ctx == NULL )return;zeroize( ctx, sizeof( sha1_context ) );
}void sha1_clone( sha1_context *dst,const sha1_context *src )
{*dst = *src;
}/** SHA-1 context setup*/
void sha1_starts( sha1_context *ctx )
{ctx->total[0] = 0;ctx->total[1] = 0;ctx->state[0] = 0x67452301;ctx->state[1] = 0xEFCDAB89;ctx->state[2] = 0x98BADCFE;ctx->state[3] = 0x10325476;ctx->state[4] = 0xC3D2E1F0;
}#if !defined(MBEDTLS_SHA1_PROCESS_ALT)
void sha1_process( sha1_context *ctx, const unsigned char data[64] )
{uint32_t temp, W[16], A, B, C, D, E;GET_UINT32_BE( W[ 0], data,  0 );GET_UINT32_BE( W[ 1], data,  4 );GET_UINT32_BE( W[ 2], data,  8 );GET_UINT32_BE( W[ 3], data, 12 );GET_UINT32_BE( W[ 4], data, 16 );GET_UINT32_BE( W[ 5], data, 20 );GET_UINT32_BE( W[ 6], data, 24 );GET_UINT32_BE( W[ 7], data, 28 );GET_UINT32_BE( W[ 8], data, 32 );GET_UINT32_BE( W[ 9], data, 36 );GET_UINT32_BE( W[10], data, 40 );GET_UINT32_BE( W[11], data, 44 );GET_UINT32_BE( W[12], data, 48 );GET_UINT32_BE( W[13], data, 52 );GET_UINT32_BE( W[14], data, 56 );GET_UINT32_BE( W[15], data, 60 );#define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))#define R(t)                                            \
(                                                       \temp = W[( t -  3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \W[( t - 14 ) & 0x0F] ^ W[  t       & 0x0F],  \( W[t & 0x0F] = S(temp,1) )                         \
)#define P(a,b,c,d,e,x)                                  \
{                                                       \e += S(a,5) + F(b,c,d) + K + x; b = S(b,30);        \
}A = ctx->state[0];B = ctx->state[1];C = ctx->state[2];D = ctx->state[3];E = ctx->state[4];#define F(x,y,z) (z ^ (x & (y ^ z)))
#define K 0x5A827999P( A, B, C, D, E, W[0]  );P( E, A, B, C, D, W[1]  );P( D, E, A, B, C, W[2]  );P( C, D, E, A, B, W[3]  );P( B, C, D, E, A, W[4]  );P( A, B, C, D, E, W[5]  );P( E, A, B, C, D, W[6]  );P( D, E, A, B, C, W[7]  );P( C, D, E, A, B, W[8]  );P( B, C, D, E, A, W[9]  );P( A, B, C, D, E, W[10] );P( E, A, B, C, D, W[11] );P( D, E, A, B, C, W[12] );P( C, D, E, A, B, W[13] );P( B, C, D, E, A, W[14] );P( A, B, C, D, E, W[15] );P( E, A, B, C, D, R(16) );P( D, E, A, B, C, R(17) );P( C, D, E, A, B, R(18) );P( B, C, D, E, A, R(19) );#undef K
#undef F#define F(x,y,z) (x ^ y ^ z)
#define K 0x6ED9EBA1P( A, B, C, D, E, R(20) );P( E, A, B, C, D, R(21) );P( D, E, A, B, C, R(22) );P( C, D, E, A, B, R(23) );P( B, C, D, E, A, R(24) );P( A, B, C, D, E, R(25) );P( E, A, B, C, D, R(26) );P( D, E, A, B, C, R(27) );P( C, D, E, A, B, R(28) );P( B, C, D, E, A, R(29) );P( A, B, C, D, E, R(30) );P( E, A, B, C, D, R(31) );P( D, E, A, B, C, R(32) );P( C, D, E, A, B, R(33) );P( B, C, D, E, A, R(34) );P( A, B, C, D, E, R(35) );P( E, A, B, C, D, R(36) );P( D, E, A, B, C, R(37) );P( C, D, E, A, B, R(38) );P( B, C, D, E, A, R(39) );#undef K
#undef F#define F(x,y,z) ((x & y) | (z & (x | y)))
#define K 0x8F1BBCDCP( A, B, C, D, E, R(40) );P( E, A, B, C, D, R(41) );P( D, E, A, B, C, R(42) );P( C, D, E, A, B, R(43) );P( B, C, D, E, A, R(44) );P( A, B, C, D, E, R(45) );P( E, A, B, C, D, R(46) );P( D, E, A, B, C, R(47) );P( C, D, E, A, B, R(48) );P( B, C, D, E, A, R(49) );P( A, B, C, D, E, R(50) );P( E, A, B, C, D, R(51) );P( D, E, A, B, C, R(52) );P( C, D, E, A, B, R(53) );P( B, C, D, E, A, R(54) );P( A, B, C, D, E, R(55) );P( E, A, B, C, D, R(56) );P( D, E, A, B, C, R(57) );P( C, D, E, A, B, R(58) );P( B, C, D, E, A, R(59) );#undef K
#undef F#define F(x,y,z) (x ^ y ^ z)
#define K 0xCA62C1D6P( A, B, C, D, E, R(60) );P( E, A, B, C, D, R(61) );P( D, E, A, B, C, R(62) );P( C, D, E, A, B, R(63) );P( B, C, D, E, A, R(64) );P( A, B, C, D, E, R(65) );P( E, A, B, C, D, R(66) );P( D, E, A, B, C, R(67) );P( C, D, E, A, B, R(68) );P( B, C, D, E, A, R(69) );P( A, B, C, D, E, R(70) );P( E, A, B, C, D, R(71) );P( D, E, A, B, C, R(72) );P( C, D, E, A, B, R(73) );P( B, C, D, E, A, R(74) );P( A, B, C, D, E, R(75) );P( E, A, B, C, D, R(76) );P( D, E, A, B, C, R(77) );P( C, D, E, A, B, R(78) );P( B, C, D, E, A, R(79) );#undef K
#undef Fctx->state[0] += A;ctx->state[1] += B;ctx->state[2] += C;ctx->state[3] += D;ctx->state[4] += E;
}/** SHA-1 process buffer*/
void sha1_update( sha1_context *ctx, const unsigned char *input, size_t ilen )
{size_t fill;uint32_t left;if( ilen == 0 )return;left = ctx->total[0] & 0x3F;fill = 64 - left;ctx->total[0] += (uint32_t) ilen;ctx->total[0] &= 0xFFFFFFFF;if( ctx->total[0] < (uint32_t) ilen )ctx->total[1]++;if( left && ilen >= fill ){memcpy( (void *) (ctx->buffer + left), input, fill );sha1_process( ctx, ctx->buffer );input += fill;ilen  -= fill;left = 0;}while( ilen >= 64 ){sha1_process( ctx, input );input += 64;ilen  -= 64;}if( ilen > 0 )memcpy( (void *) (ctx->buffer + left), input, ilen );
}static const unsigned char sha1_padding[64] =
{0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};/** SHA-1 final digest*/
void sha1_finish( sha1_context *ctx, unsigned char output[20] )
{uint32_t last, padn;uint32_t high, low;unsigned char msglen[8];high = ( ctx->total[0] >> 29 )| ( ctx->total[1] <<  3 );low  = ( ctx->total[0] <<  3 );PUT_UINT32_BE( high, msglen, 0 );PUT_UINT32_BE( low,  msglen, 4 );last = ctx->total[0] & 0x3F;padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );sha1_update( ctx, sha1_padding, padn );sha1_update( ctx, msglen, 8 );PUT_UINT32_BE( ctx->state[0], output,  0 );PUT_UINT32_BE( ctx->state[1], output,  4 );PUT_UINT32_BE( ctx->state[2], output,  8 );PUT_UINT32_BE( ctx->state[3], output, 12 );PUT_UINT32_BE( ctx->state[4], output, 16 );
}/** output = SHA-1( input buffer )*/
int sha1( const unsigned char *input, size_t ilen, unsigned char output[20] )
{sha1_context ctx;sha1_init( &ctx );sha1_starts( &ctx );sha1_update( &ctx, input, ilen );sha1_finish( &ctx, output );sha1_free( &ctx );return 0;
}

数据通过SHA1计算得到20字节长度的哈希值,sha1() 封装用来一次性计算一段字符串的哈希值,如果要采用多步计算的方式,就直接使用该函数内部的这几个接口,如下的一个函数示例:

//test
int sha1_test(unsigned char *hash)
{int result;
int fd;
unsigned char hashBuf[32];
unsigned char vDecompCache[512]={0};sha1_context sha1ctx;sha1_init( &sha1ctx);
sha1_starts( &sha1ctx);fd = open("/data/test.data",O_RDONLY);
if(fd < 0)
{
perror("open error");
return -1;
}do
{result = read(fd, vDecompCache, sizeof(vDecompCache));sha1_update( &sha1ctx, vDecompCache, result);}while(result > 0);sha1_finish(&sha1ctx, hashBuf);memcpy(hash, hashBuf, 20);sha1_free( &sha1ctx );DebugmyAsciiToHex("SHA1:",hashBuf,20);return 0;}

下边的是SHA256和SHA224的源码:

/**  FIPS-180-2 compliant SHA-256 implementation**  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 *  SPDX-License-Identifier: GPL-2.0**  This program is free software; you can redistribute it and/or modify*  it under the terms of the GNU General Public License as published by*  the Free Software Foundation; either version 2 of the License, or*  (at your option) any later version.**  This program is distributed in the hope that it will be useful,*  but WITHOUT ANY WARRANTY; without even the implied warranty of*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the*  GNU General Public License for more details.**/#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "stdafx.h"
#include "sha256.h"/* Implementation that should never be optimized out by the compiler */
static void zeroize( void *v, size_t n ) {volatile unsigned char *p = (unsigned char *)v; while( n-- ) *p++ = 0;
}/** 32-bit integer manipulation macros (big endian)*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
do {                                                    \(n) = ( (uint32_t) (b)[(i)    ] << 24 )             \| ( (uint32_t) (b)[(i) + 1] << 16 )             \| ( (uint32_t) (b)[(i) + 2] <<  8 )             \| ( (uint32_t) (b)[(i) + 3]       );            \
} while( 0 )
#endif#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
do {                                                    \(b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \(b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \(b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \(b)[(i) + 3] = (unsigned char) ( (n)       );       \
} while( 0 )
#endifvoid sha256_init( sha256_context *ctx )
{memset( ctx, 0, sizeof( sha256_context ) );
}void sha256_free( sha256_context *ctx )
{if( ctx == NULL )return;zeroize( ctx, sizeof( sha256_context ) );
}void sha256_clone( sha256_context *dst,const sha256_context *src )
{*dst = *src;
}/** SHA-256 context setup*/
void sha256_starts( sha256_context *ctx, int is224 )
{ctx->total[0] = 0;ctx->total[1] = 0;if( is224 == 0 ){/* SHA-256 */ctx->state[0] = 0x6A09E667;ctx->state[1] = 0xBB67AE85;ctx->state[2] = 0x3C6EF372;ctx->state[3] = 0xA54FF53A;ctx->state[4] = 0x510E527F;ctx->state[5] = 0x9B05688C;ctx->state[6] = 0x1F83D9AB;ctx->state[7] = 0x5BE0CD19;}else{/* SHA-224 */ctx->state[0] = 0xC1059ED8;ctx->state[1] = 0x367CD507;ctx->state[2] = 0x3070DD17;ctx->state[3] = 0xF70E5939;ctx->state[4] = 0xFFC00B31;ctx->state[5] = 0x68581511;ctx->state[6] = 0x64F98FA7;ctx->state[7] = 0xBEFA4FA4;}ctx->is224 = is224;
}#if !defined(SHA256_PROCESS_ALT)
static const uint32_t K[] =
{0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};#define  SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^  SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^  SHR(x,10))#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))#define R(t)                                    \
(                                               \W[t] = S1(W[t -  2]) + W[t -  7] +          \S0(W[t - 15]) + W[t - 16]            \
)#define P(a,b,c,d,e,f,g,h,x,K)                  \
{                                               \temp1 = h + S3(e) + F1(e,f,g) + K + x;      \temp2 = S2(a) + F0(a,b,c);                  \d += temp1; h = temp1 + temp2;              \
}void sha256_process( sha256_context *ctx, const unsigned char data[64] )
{uint32_t temp1, temp2, W[64];uint32_t A[8];unsigned int i;for( i = 0; i < 8; i++ )A[i] = ctx->state[i];#if defined(SHA256_SMALLER)for( i = 0; i < 64; i++ ){if( i < 16 )GET_UINT32_BE( W[i], data, 4 * i );elseR( i );P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i] );temp1 = A[7]; A[7] = A[6]; A[6] = A[5]; A[5] = A[4]; A[4] = A[3];A[3] = A[2]; A[2] = A[1]; A[1] = A[0]; A[0] = temp1;}
#else /* SHA256_SMALLER */for( i = 0; i < 16; i++ )GET_UINT32_BE( W[i], data, 4 * i );for( i = 0; i < 16; i += 8 ){P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i+0], K[i+0] );P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i+1], K[i+1] );P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i+2], K[i+2] );P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i+3], K[i+3] );P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i+4], K[i+4] );P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i+5], K[i+5] );P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i+6], K[i+6] );P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i+7], K[i+7] );}for( i = 16; i < 64; i += 8 ){P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], R(i+0), K[i+0] );P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], R(i+1), K[i+1] );P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], R(i+2), K[i+2] );P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], R(i+3), K[i+3] );P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], R(i+4), K[i+4] );P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], R(i+5), K[i+5] );P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], R(i+6), K[i+6] );P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], R(i+7), K[i+7] );}
#endif /* SHA256_SMALLER */for( i = 0; i < 8; i++ )ctx->state[i] += A[i];
}
#endif /* !SHA256_PROCESS_ALT *//** SHA-256 process buffer*/
void sha256_update( sha256_context *ctx, const unsigned char *input,size_t ilen )
{size_t fill;uint32_t left;if( ilen == 0 )return;left = ctx->total[0] & 0x3F;fill = 64 - left;ctx->total[0] += (uint32_t) ilen;ctx->total[0] &= 0xFFFFFFFF;if( ctx->total[0] < (uint32_t) ilen )ctx->total[1]++;if( left && ilen >= fill ){memcpy( (void *) (ctx->buffer + left), input, fill );sha256_process( ctx, ctx->buffer );input += fill;ilen  -= fill;left = 0;}while( ilen >= 64 ){sha256_process( ctx, input );input += 64;ilen  -= 64;}if( ilen > 0 )memcpy( (void *) (ctx->buffer + left), input, ilen );
}static const unsigned char sha256_padding[64] =
{0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};/** SHA-256 final digest*/
void sha256_finish( sha256_context *ctx, unsigned char output[32] )
{uint32_t last, padn;uint32_t high, low;unsigned char msglen[8];high = ( ctx->total[0] >> 29 )| ( ctx->total[1] <<  3 );low  = ( ctx->total[0] <<  3 );PUT_UINT32_BE( high, msglen, 0 );PUT_UINT32_BE( low,  msglen, 4 );last = ctx->total[0] & 0x3F;
    padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );sha256_update( ctx, sha256_padding, padn );sha256_update( ctx, msglen, 8 );PUT_UINT32_BE( ctx->state[0], output,  0 );PUT_UINT32_BE( ctx->state[1], output,  4 );PUT_UINT32_BE( ctx->state[2], output,  8 );PUT_UINT32_BE( ctx->state[3], output, 12 );PUT_UINT32_BE( ctx->state[4], output, 16 );PUT_UINT32_BE( ctx->state[5], output, 20 );PUT_UINT32_BE( ctx->state[6], output, 24 );if( ctx->is224 == 0 )PUT_UINT32_BE( ctx->state[7], output, 28 );
}/** output = SHA-256( input buffer )*/
void sha256( const unsigned char *input, size_t ilen,unsigned char output[32], int is224 )
{sha256_context ctx;sha256_init( &ctx );sha256_starts( &ctx, is224 );sha256_update( &ctx, input, ilen );sha256_finish( &ctx, output );sha256_free( &ctx );
}//test
void sha256_test_self()
{char *data = "a761350e210c0f30ad5b93e3584f543a";unsigned char buff[32] = {0};printf("%s\n",data);sha256((unsigned char *)data,strlen((char*)data),buff,0);for(int i = 0;i < 32;i++){printf("%02X",buff[i]);}printf("\r\n");
}

这个接口同SHA1,SHA256生成32字节,也可以使用多步生成一个文件的哈希256值,如下测试示例:

//test
int sha256_test(unsigned char *hash)
{int result;
int fd;
unsigned char hashBuf[32];
unsigned char vDecompCache[512]={0};sha256_context sha256ctx;sha256_init( &sha256ctx);
sha256_starts( &sha256ctx, 0);fd = open("/data/test.data",O_RDONLY);
if(fd < 0)
{
perror("open error");
return -1;
}do
{result = read(fd, vDecompCache, sizeof(vDecompCache));sha256_update( &sha1ctx, vDecompCache, result);}while(result > 0);sha256_finish(&sha1ctx, hashBuf);memcpy(hash, hashBuf, 20);sha256_free( &sha256ctx );DebugmyAsciiToHex("SHA256:",hashBuf,32);return 0;}

SHA1和SHA256算法C语言实现相关推荐

  1. C语言实现一个区块链,区块链学习(1) sha256算法 c语言实现-Go语言中文社区

    sha256算法,网上有很多的介绍,摘抄一段如下: SHA-256 算法输入报文的最大长度不超过2^64 bit,输入按512-bit 分组进行处理,产生的输出是一个256-bit 的报文摘要.该算法 ...

  2. sha256算法_Go语言实现Pow共识算法

    作者: 张详,闫思 来源: IDCU PoW呢...Proof of Work ,工作量证明机制,可能这个名字大家不熟悉,说比特币的话,大家就熟悉了.没错,PoW就是比特币所使用的共识机制. 通过计算 ...

  3. 散列算法比较:MD5、SHA1、SHA256有哪些区别

    在信息安全领域,经常会用到MD5.SHA1.SHA256算法.这三种算法都属于散列算法,或者叫作哈希算法.它们具有输入任意长度,输出长度固定,以及单向性(无法根据散列值还原出消息)的特点.那么,MD5 ...

  4. 【安全算法之SHA1】SHA1摘要运算的C语言源码实现

    [安全算法之SHA1]SHA1摘要运算的C语言源码实现 概述 头文件定义 C语言版本的实现源码 测试用例 github仓库 更多参考链接 概述 大家都知道摘要算法在安全领域,也是一个特别重要的存在,而 ...

  5. c# 实现MD5,SHA1,SHA256,SHA512等常用加密算法

    using System; using System.IO; using System.Data; using System.Text; using System.Diagnostics; using ...

  6. java sha1加密ascii码_MD5,SHA1,SHA256,SHA512等常用加密算法

    using System; using System.IO; using System.Data; using System.Text; using System.Diagnostics; using ...

  7. 【openGauss】用plpgsql实现sha256算法(踩坑填坑实录)

    前言 在开发中,经常会使用类似MD5/ SHA-1/ SHA-2这样的hash算法来对数据进行处理,以防原始信息泄露,比如密码的存储. SHA-2中的SHA256,安全性比MD5更高,因此很多数据库增 ...

  8. MD5、SHA1、SHA256、SHA512

    一.单向散列算法 1. 单向散列函数 单向散列函数是一类满足密码学算法安全属性的特殊散列函数,可以根据消息的内容计算出散列值,又称为安全散列函数或者哈希函数,通常用于检验消息完整性. 输入数据称为消息 ...

  9. SHA-1和SHA-2算法有什么区别?

    SHA是一个密码散列函数家族,是FIPS所认证的安全散列算法.能计算出一个数字消息所对应到的,长度固定的字符串(又称消息摘要)的算法.且若输入的消息不同,它们对应到不同字符串的机率很高.SHA-1和S ...

最新文章

  1. fedora 12下查看pdf不显示乱码的方法
  2. Oracle 常见的33个等待事件
  3. ExtJs服务器端代理(Ajax)
  4. 无需SherlockActionbar的SlidingMenu使用详解(二)——向Fragment中添加ViewPager和Tab
  5. LINUX awk操作
  6. 先留住人,再发展人和吸引人
  7. UITextfield键盘相关设置
  8. 2019-CS224n-Assignment4
  9. 360手机助手pc版 v2.4.0.1265 官方版
  10. 关于使用keil5软件进行stm32的简单嵌入编程
  11. Java中使用Atomic*实现原子锁线程安全
  12. linux如何添加旅游,旅游散记
  13. 苹果任性,降低iPhone电池容量,用户需要多买个充电宝奶妈
  14. Alacritty主题配置
  15. 正则表达式中,如何在任意匹配字符后面加上原字符和特定内容
  16. BJ模拟:医院(支配树)
  17. autojs使用教程(适合初学者)
  18. 四川大学计算机学院研究生调剂,四川大学计算机学院2019年考研调剂信息(第二批)...
  19. JAVA uni-push
  20. java中截取后几位字符串_java截取字符串后几位

热门文章

  1. 深度学习在通信领域中的应用
  2. python的drop duplicates_pandas.DataFrame.drop_duplicates 用法介绍
  3. 饥荒专用服务器搭建(Linux)
  4. ip地址与网络上的其他系统有冲突怎么解决
  5. 锤子和学姐的故事——面对爱情,你的勇气有多大?
  6. SCOI 2017 酱油记
  7. ili9486 TFT 液晶显示屏
  8. Lcd ILI9340寄存器初始化配置
  9. 负反馈对放大电路性能的影响
  10. Linux 下的三款 Flash 独立播放器