1. Linear and Non-linear Derivatives

Linear derivatives has a linear relationship between underlying risk factors(底层风险因子) and derivative instruments. The transmission parameter(δ\deltaδ) needs to be constant(e.g. forward, futures).

ΔPLinear Derivative=δ×ΔSRisk Factor\Delta P_{\text{Linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}}ΔPLinear Derivative​=δ×ΔSRisk Factor​

VaRLinear Derivative=δ×VaRRisk Factor\text{VaR}_{\text{Linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}}VaRLinear Derivative​=δ×VaRRisk Factor​

Example: Eric has a long forward position on an underlying stock maturing in 3 months. The daily 95%VaR95\%\;\text{VaR}95%VaR of the stock is 2 million. What is the daily 95%VaR95\%\;\text{VaR}95%VaR of the forward position?

远期的 δ\deltaδ 为111

VaRForward=1×VaRUnderlying Stock=2million\text{VaR}_{\text{Forward}}=1\times \text{VaR}_{\text{Underlying Stock}}=2\;\text{million}VaRForward​=1×VaRUnderlying Stock​=2million

Nonlinear derivatives has a changing relationship between underlying risk factors and derivative instruments depending on the state of underlying asset. The transmission parameter(δ\deltaδ) is inconstant(e.g. option, bond).

ΔPNon-linear Derivative=δ×ΔSRisk Factor\Delta P_{\text{Non-linear Derivative}}=\delta\times\Delta S_{\text{Risk Factor}}ΔPNon-linear Derivative​=δ×ΔSRisk Factor​

VaRNon-linear Derivative=δ×VaRRisk Factor\text{VaR}_{\text{Non-linear Derivative}}=\delta \times \text{VaR}_{\text{Risk Factor}}VaRNon-linear Derivative​=δ×VaRRisk Factor​


2. Historical Simulation

Historical simulation is a non-parametric method, where the future behavior of the underlying market variable is determined in a very direct way from their past behavior.
These scenarios can be evaluated using full revaluation(全局定价法).

Steps of Historical Simulation

  • Identify risk factors (equity price, interest rate etc.) on which the value of the portfolio under consideration depends.
  • Collect daily data on the behavior of the risk factors over a period in the past.
  • Create scenario by assuming that the change in each risk factor over the next day corresponds to a change observed during one of the previous days.
  • Sort the loss based on the scenarios and calculate VaR or ES for any given confidence level.
  1. Identify risk factors (Two categories)
    Percentage change(equity price, foreign exchange)
    Actual change(interest rate, credit spread)

  2. Collect date

Day Stock Price(USD) Int. Rate Port.Val.(USD million)
0 50 2.52% 72.1
1 52 2.54% 72.5
2 46 2.55% 70.4
498 60 2.30%
498 60 2.32% 75.3
500 63 2.36% 76.3
  1. Create Scenario
Scenario Stock Price(USD) Int. Rate Port.Val.(USD million) Loss(USD millions)
1 65.52 2.38% 76.8 -0.5
2 55.73 2.37% 71.7 4.6
499 63.00 2.38% 75.3 1
500 66.15 2.40% 76.7 -0.4
  1. Sort the scenarios and calculate VaR and ES
Scenario 210 195 2 23 48 367 235
Loss(USD millions) 7.8 6.5 4.6 4.3 3.9 3.7 3.5

ESdaily(1%)=(7.8+6.5+4.6+4.3)/4=5.8million\text{ES}_{\text{daily}}(1\%)=(7.8+6.5+4.6+4.3)/4=5.8\;\text{million}ESdaily​(1%)=(7.8+6.5+4.6+4.3)/4=5.8million

VaRdaily(1%)=3.9million\text{VaR}_{\text{daily}}(1\%)=3.9 \;\text{million}VaRdaily​(1%)=3.9million

Advantages:

  • Free of model risk
  • Actual market prices are accumulated for full revaluation
  • All correlations risk factors are included in the prices.

Disadvantages:

  • It gives equal weight(等权重) to all the observations.
  • Historical data may not be a good forecast for future.
  • It cannot reflect the new volatility and correlation changing in the market condition instantly.

Question: Jackson, FRM, a junior risk analyst of Fürstentum Bank (a bank with operations in Germany, Switzerland and Austria), is using historical simulation approach to calculating VaR of DAX 30 index, He has accumulated 501 days data and created 500 scenarios. The points of the DAX 30 on Days 0, 1, 2, 498, 499, and 500 is 13300, 13510, 13230, 15400, 15750 and 15925, respectively. What is the point of the stock index in the corresponding Day 501 under scenarios 500P

Scenario500=(15925−15750)/15750=11.11%\text{Scenario}\;500=(15925-15750)/15750=11.11\%Scenario500=(15925−15750)/15750=11.11%

The point of the DAX 30 under scenario 500 would be: 15925×(1+11.11%)=1610215925\times(1+11.11\%)=1610215925×(1+11.11%)=16102


3. Delta Normal Approach

Delta normal approach(Delta approximation) is based on the risk factor’s deltas of a portfolio and assumes normal distributions for the risk factors.

For standalone non-linear derivatives:
VaRoption=∣Δ∣×VaRstock\text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}VaRoption​=∣Δ∣×VaRstock​

VaRbond=∣−D×P∣×VaRyield\text{VaR}_{\text{bond}}=|-D \times P|\times \text{VaR}_{\text{yield}}VaRbond​=∣−D×P∣×VaRyield​

  • Step 1: Calculate the VaR\text{VaR}VaR of the underlying risk factor.
  • Step 2: Use delta with respect to the underlying to transmit the risk factor VaR\text{VaR}VaR to the nonlinear derivatives VaR\text{VaR}VaR.

Example: Louise wants to use delta normal approach to estimate the VaR\text{VaR}VaR of a call position. The call option is at-the-money and the underlying stock is trading at USD 232323 with daily volatility 2.5%2.5\%2.5%. Please calculate the daily dollar VaR\text{VaR}VaR of this call option at 99%99\%99% confidence level.

VaRstock=∣0−2.33×2.5%∣×23=1.3398\text{VaR}_{\text{stock}}=|0-2.33\times2.5\%|\times 23= 1.3398VaRstock​=∣0−2.33×2.5%∣×23=1.3398

When a call call option is at the money , Δ\DeltaΔ is 0.5

VaRoption=∣Δ∣×VaRstock=0.5×1.3398=0.6699\text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=0.5 \times 1.3398=0.6699VaRoption​=∣Δ∣×VaRstock​=0.5×1.3398=0.6699

For a portfolio:

  • Calculate individual risk factors’ mean and standard deviation and their correlation between each other.
  • Calculate the means and volatility of the portfolio
  • Calculate the portfolio’s VaR assuming normality of value change of the portfolio.

VaR(X%)=∣μportfolio−ZX%×σportfolio∣\text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}|VaR(X%)=∣μportfolio​−ZX%​×σportfolio​∣

Example: Many pension fund are using VaR\text{VaR}VaR to measure their portfolio risk. Tao, FRM, is a risk analyst of Pluto Pension Fund. In his routine work, he will send risk report of large portfolios to his manager on daily basis. Consider a portfolio consisting of $20 million invested in Stock A and $40 million invested in Stock B. Assuming that returns are normally distributed. Daily volatilities of A and B are 0.5%0.5\%0.5% and 2%2\%2% and daily returns are 0%0\%0%. The correlation between two stocks is 0.250.250.25. What is the daily dollar VaR\text{VaR}VaR with 95%95\%95% confidence level of the portfolio?

σp2=w12σ12+w22σ22+2w1w2σ1σ2ρ1,2\sigma_p^2=w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\sigma_1\sigma_2 \rho_{1,2}σp2​=w12​σ12​+w22​σ22​+2w1​w2​σ1​σ2​ρ1,2​

用资产价值作为替代w1w_1w1​,w2w_2w2​作为权重

σp2=202×0.5%2+402×2%2+2×20×40×0.5%×2%×0.25→σp=0.83million\sigma_p^2=20^2\times0.5\%^2+40^2\times2\%^2+2\times20\times40\times0.5\%\times2\%\times0.25\to\sigma_p=0.83\;\text{million}σp2​=202×0.5%2+402×2%2+2×20×40×0.5%×2%×0.25→σp​=0.83million

VaR(X%)=∣μportfolio−ZX%×σportfolio∣=1.65×0.83=1.37million\text{VaR}(X\%)=|\mu_{\text{portfolio}}-Z_{X\%}\times\sigma_{\text{portfolio}}|=1.65\times0.83=1.37\;\text{million}VaR(X%)=∣μportfolio​−ZX%​×σportfolio​∣=1.65×0.83=1.37million

Taylor Series approximation(Delta-gamma approximation): the change in the derivative value is approximated by slope and curvature. The first derivative is delta linear approximation and second derivative is the gamma correction.

VaRbond=∣−D×P∣×VaRyield−12×C×P×VaRyield2\text{VaR}_{\text{bond}}=|-D\times P|\times \text{VaR}_{\text{yield}}-\frac{1}{2}\times C\times P\times \text{VaR}_{\text{yield}}^2VaRbond​=∣−D×P∣×VaRyield​−21​×C×P×VaRyield2​

VaRoption=∣Δ∣×VaRstock−12×Γ×VaRstock2\text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}-\frac{1}{2}\times\Gamma\times \text{VaR}_{\text{stock}}^2VaRoption​=∣Δ∣×VaRstock​−21​×Γ×VaRstock2​

注意是减去 gamma correction

Limitations
Cannot provide accurate approximation for portfolio with non-linear derivatives such as MBS, barrier options, as the normal distribution assumption for the change of risk factors does not translate into the normal distribution assumption for the change of portfolio value.

Adding gamma can work much better and the result is a quadratic model(二阶项模型). But there are no easy-to-use analytic results for quadratic model.

Question 1 Stephen Ross, a trader of Neptune Security, has a call option position on CAC-40 index. The index is 534553455345 currently. Stephen uses BSM model to analyze the option, which has N(d1)=0.67N(d1)=0.67N(d1)=0.67, N(d2)=0.576N(d2)=0.576N(d2)=0.576. In this call option contract, every point of index values €5€5€5. The daily volatility of the underlying index is 0.45%0.45\%0.45%. What should be the 95%95\%95% daily dollar VaR\text{VaR}VaR of this call option under delta-normal approach?

VaRstock=1.65×0.45%×5345×5=198.433\text{VaR}_{\text{stock}}=1.65\times0.45\%\times5345\times5=198.433VaRstock​=1.65×0.45%×5345×5=198.433

Δ=N(d1)=0.67\Delta=N(d1)=0.67Δ=N(d1)=0.67

VaRoption=∣Δ∣×VaRstock=0.67×198.433=132.95\text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=0.67\times198.433=132.95VaRoption​=∣Δ∣×VaRstock​=0.67×198.433=132.95

Question 2 Jean-Paul, FRM, is using delta-gamma approach to supplement the VaR\text{VaR}VaR result of delta-approximation. The 99%99\%99% daily VaR\text{VaR}VaR of the underlying stock is 6.77%6.77\%6.77%. He has an at-the- money put option on stock of Air Solid Inc. The value of the underlying stock is €350,000€350,000€350,000. What could be the 99%99\%99% VaR\text{VaR}VaR of the put option under delta-gamma framework?

A:€11847.5A: €11847.5A:€11847.5
B:€10084B: €10084B:€10084
C:€55209C: €55209C:€55209
D:€27605D: €27605D:€27605

VaRstock=6.77%×350000=23695\text{VaR}_{\text{stock}}=6.77\%\times350000=23695VaRstock​=6.77%×350000=23695
VaRoption=∣Δ∣×VaRstock=∣=0.5∣×23695=11847.5\text{VaR}_{\text{option}}=|\Delta|\times \text{VaR}_{\text{stock}}=|=0.5|\times23695=11847.5VaRoption​=∣Δ∣×VaRstock​=∣=0.5∣×23695=11847.5

The result under delta-gamma approach should be less than the delta-approximation. The only answer is B.


4. Monte Carlo Simulation

Monte Carlo simulations generate scenarios by taking random samples from the distributions assumed for the risk factors (rather than using historical data). Monte Carlo simulation is a full revaluation method.

Steps in Monte Carlo:

  • Value the portfolio today using the current values of the risk factors.
  • Sample once from the multivariate normal probability distribution for the change of risk factors. (e. G. Stock price interest rate change)
  • Use the sampled values of the change of risk factor to determine the values of the risk factors at the end of the period under consideration (usually one day).
  • Revalue the portfolio using these risk factor values. Subtract this portfolio value from the current value to determine the loss.
  • Repeat steps 2 to 5 many times to determine a probability distribution for the loss.

Advantages:

  • Can generate correlated scenarios and model the correlations among different risk factors based on a statistical distribution.
  • Work for both linear and non-linear portfolio.

Disadvantages:

  • There is model risk for the generation of statistical distribution on the risk factor.
  • Computationally intensive and thus quite slow
  • The correlation and standard deviation for the risk factor in the past may not be a good indicator of the future.

Summary

Category Historical Simulation Delta Normal Approach Monte Carlo Simulation
Full Revaluation Yes No Yes
Model Risk
Distribution assumption
No Yes Yes
Computationally intensive Yes No Yes

Correlation Breakdown
Definition: Correlations and volatility can be quite different in stressed market conditions from those in normal market conditions.

Correlations usually increase in stressed market conditions: During the 2007-2008 crisis, default rates on mortgages in all parts of the United States increased together.

Worst case analysis
Worst case analysis: an analyst will calculate statistics for worst-case results.

  • E.g., Monte Carlo simulation can be used to calculate the expected worst-case result over 52 weeks, the 95th percentile of the worst-case result.
  • Should not be regarded as an alternative to VaR and ES.

4.3.2 Calculating and Applying VaR相关推荐

  1. 多元时间序列回归模型_多元时间序列分析和预测:将向量自回归(VAR)模型应用于实际的多元数据集...

    多元时间序列回归模型 Multivariate Time Series Analysis 多元时间序列分析 A univariate time series data contains only on ...

  2. 2.2tensorflow2官方demo

    文章目录 1与2的不同 安装 tensorflow的tensor排列 model 用的类似pytorch的搭建风格 train 1与2的不同 动态图机制:定义的每一个变量,都可以实时获取其状态 装饰器 ...

  3. 【YOLO v4 相关理论】Normalization: BN、CBN、CmBN

    一.Batch Normalization 论文:https://arxiv.org/pdf/1502.03167.pdf 源码: link. Batch Normalization是google团队 ...

  4. GEE:指数计算(NDVI、NBR、EVI、NDMI、NDSI、TC、NDFI、EBBI、VCI、BSI、NDBI)

    本文记录了,使用 Landsat 光学波段计算指数的方法和代码,包括NDVI.NBR.EVI.NDMI.NDSI.TC变化(绿度.亮度.湿度).NDFI.EBBI.VCI等指数. 文章目录 一.代码框 ...

  5. 学习Tensorflow2官方Demo——Lenet,以及遇到的问题

    目录 前言 1.官方Demo的项目目录 2.模型 3.训练 4.遇到的问题 前言   TensorFlow是一个面向所有开发人员的开源机器学习框架. 它用于实现机器学习和深度学习应用程序.为了开发和研 ...

  6. Ubuntu报错记录(Could not get lock /var/lib/dpkg/lock-frontend问题的解决方法)

    今天遇上这个报错,简单记录一下 $ sudo apt-get upgrade E: Could not get lock /var/lib/dpkg/lock-frontend - open (11: ...

  7. Gentoo Linux: /var/db/pkg 这个文件夹很重要![转]推荐阅读

    来自 http://www.aiview.com/2008/03/gentoo_linux_deleted_var_db_pkg.html 前段时间折腾tmpfs 文件系统,不小心弄丢了/var/db ...

  8. Applying 11G R2 GI PSU 11.2.0.2.3

    GI PSU 11.2.0.2.3在最近的一次CPU July中被释出,该Patch Set Update包含了最新的CPU,且GI和Database PSU的都包含在其中,可以直接从<Patc ...

  9. 使用蒙特卡洛模拟进行var计算

    财务和投资组合风险管理中的VaR? (VaR in Financial and Portfolio Risk Management?) VaR is an acronym of 'Value at R ...

  10. Jittor 的Op, Var算子

    Jittor 的Op, Var算子 要使用jittor训练模型,需要了解两个主要概念: • Var:Jittor的基本数据类型 • Operations:Jittor的算子与numpy类似 首先,开始 ...

最新文章

  1. 需要将git分支重置为原始版本
  2. 【Scratch】青少年蓝桥杯_每日一题_4.13_猫捉老鼠
  3. 防范数据中心火灾的7个方式
  4. 系统架构面临的三大挑战,看 Kubernetes 监控如何解决?
  5. 帆软报表(finereport) 复选框多值查询
  6. 想要使用 for循环,就要添加 索引器
  7. 关于position的四个标签
  8. Sass:一种CSS预处理器语言
  9. linux dns中文域名,Linux 搭建中文域名的DNS服务器
  10. 2019腾讯广告算法初赛第一名的模型
  11. HackPorts – Mac OS X 渗透测试框架与工具
  12. 翻译:AI数据科学认证-2021年的最佳选择
  13. 局域网共享文件夹加密(100%成功版本)
  14. 内测成员爱范儿CTO何世友讲述微信小程序的台前幕后
  15. 如何将ppt压缩到最小?
  16. kali下安装VMware
  17. 周超臣:支付宝的套路是我走过最长的路
  18. Google与百度、搜狗合作,共同推进移动网络发展
  19. 那些可多人协作编辑的在线文档工具
  20. html中meta的写法规范,HTML代码meta标签的charset 属性写法及用法

热门文章

  1. 任正非带领华为三分天下的7大杀招
  2. 毕业即失业,转行软件测试的辛酸泪只有自己知道
  3. 腾讯微云 for Mac v
  4. 支教笔记 我在泸定的那十天
  5. Gartner预测云迁移规模大幅增长;云迁移的优势是什么?
  6. 视频编码c语言,MPEG4codec(c) MPEG4视频格式的编解码源码 C语言实现 - 下载 - 搜珍网...
  7. PMSM矢量控制之RAMP_GEN
  8. 【分享】如何写出好的品牌故事?
  9. 创建一个名为MyFileReader的类,设计一个方法 String read(String fileName, int n),该读取名为fileName的文件,返回文件中第n行的内容
  10. ccmall商城:“龙飞曦舞,日月鎏金”群星演唱会完美收官