大学物理:第10章 静电场 复习笔记

大学物理

  • 大学物理:第10章 静电场 复习笔记
  • 一级目录
    • 二级目录
      • 三级目录
    • 一、电荷与库仑定律
      • 1.电荷
      • 2.库仑定律
      • 3.静电力的叠加原理
    • 二、电场与电场强度
      • 1.电场
      • 2.电场强度
      • 3.叠加原理的典型应用
      • (1)均匀带电圆环
      • (2)均匀带电圆盘
      • (3)带电直线段
      • (4)带电平面
      • (5)总结
    • 三、电通量,高斯定理
      • 1.电场线(电力线,E线)
      • 2.电通量
      • 3.高斯定理
      • 4.小结求电场强度分布的方法
    • 四、静电场环流定理与电势能
      • 1.静电力做功
      • 2.静电场的环度定理
      • 3.电势能
    • 五、电势的叠加原理
      • 1.点电荷的电势
      • 2.任意带电体的电势
      • 3.常见带电体电势的求法
      • (1)均匀带电圆环
      • (2)均匀带电球面
      • (3)均匀带电球体电势分布
    • 六、等势面
    • 七、静电场中的导体
      • 1.导体的静电平衡
      • 2.静电平衡时导体的电荷分布
      • 3.导体表面电场强度和电荷密度的关系
      • 4.静电平衡应用实例
      • 5.静电场中的导体总结
    • 八、静电场中的电介质
      • 1.电介质对电场的影响
      • 2.电介质分子的电结构特征
    • 九、介质中的高斯定理
      • 1.电位移矢量
    • 十、孤立导体的电容
      • 1.电容的定义
      • 2.常见电容器
      • 3.电容器的串并联
    • 十一、静电场的能量
      • 1.带电系统的能量
      • 2.电场的能量
      • 2.电场的能量

一级目录

二级目录

三级目录

一、电荷与库仑定律

1.电荷

电荷是物质的一种属性。同种电荷相互排斥,异种电荷相互吸引。

  • 带电:吸引轻小物体

  • 电量:电荷的多少

    • 单位:库伦(C)

    • 符号约定:只要不说负号,就是带正电

    • 量子性:任何带电体所带的电量总是电子电量的正负整数倍,即:
      e=−1.602×10−19Cq=±Nee=-1.602\times 10^{-19}C\\ q=\pm Ne\\ e=−1.602×10−19Cq=±Ne

    • 电荷守恒定律:

      孤立系统中的总电荷量是不变的:任意时刻正负电荷的代数和保持不变。

2.库仑定律

(1)点电荷:距离比带电体本身的线度要大很多时,带电体的大小形状就可以忽略,这时可以看做点电荷。

(2)库伦定律的内容:

  • 条件:

    • 真空中
    • 静止
    • 点电荷(大小形状可以忽略)
  • 内容:

    • F⃗=14πε0q1q2r3r⃗=14πε0q1q2r2r0⃗r0⃗=r⃗∣r∣其中ε0为真空中的介电常数,记k=14πε0≈9.0×109\vec{F}=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^3}\vec{r}=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2}\vec{r^0}\\ \vec{r^0}=\frac{\vec{r}}{|r|}\\ 其中\varepsilon_0为真空中的介电常数,记k=\frac{1}{4\pi\varepsilon_0}≈9.0\times10^{9}\\ F=4πε0​1​r3q1​q2​​r=4πε0​1​r2q1​q2​​r0r0=∣r∣r​其中ε0​为真空中的介电常数,记k=4πε0​1​≈9.0×109

3.静电力的叠加原理

(1)内容:

作用于某电荷上的总静电力等于其他点电荷单独存在时作用于该电荷的静电力的矢量和
分散的电荷:F⃗=∑in14πε0q1qiri2ri0⃗均匀的带电体:F⃗=∫dF⃗=∫14πε0qr2dq分散的电荷:\vec{F}=\sum\limits_{i}^{n}\frac{1}{4\pi\varepsilon_0}\frac{q_1q_i}{r^2_i}\vec{r_i^0}\\ 均匀的带电体:\vec{F}=\int d\vec{F}=\int \frac{1}{4\pi\varepsilon_0}\frac{q}{r^2}dq\\ 分散的电荷:F=i∑n​4πε0​1​ri2​q1​qi​​ri0​​均匀的带电体:F=∫dF=∫4πε0​1​r2q​dq

二、电场与电场强度

1.电场

  • 电荷与电荷之间的作用力是通过电场实现的

  • 物质{实物场−−具有空间可叠加性都具有能量、质量、动量物质\begin{cases} 实物\\ 场--具有空间可叠加性\\ \end{cases}都具有能量、质量、动量 物质{实物场−−具有空间可叠加性​都具有能量、质量、动量

  • 静电场:相对于观察者静止,且电量不随时间变化的电荷产生的电场(后面有题目判断一个场是不是静电场)

2.电场强度

(1)试验电荷
{体积小:可以研究电场中各点的场强电量小:不影响原电场的分布\begin{cases} 体积小:可以研究电场中各点的场强\\ 电量小:不影响原电场的分布\\ \end{cases} {体积小:可以研究电场中各点的场强电量小:不影响原电场的分布​
(2)电场强度的定义式:
E⃗=F⃗q0可以理解为单位正电荷在电场中某处受到的电场力\vec{E}=\frac{\vec{F}}{q_0}\\ 可以理解为单位正电荷在电场中某处受到的电场力\\ E=q0​F​可以理解为单位正电荷在电场中某处受到的电场力
(3)单位:牛顿/库伦: N/CN/CN/C 福特/米: V/mV/mV/m

(4)电场强度的叠加原理:
F⃗=∑Fi⃗E⃗=F⃗q0=∑Fi⃗q0E⃗=∑Ei⃗\vec{F}=\sum\vec{F_i}\\ \vec{E}=\frac{\vec{F}}{q_0}=\frac{\sum\vec{F_i}}{q_0}\\ \vec{E}=\sum{\vec{E_i}}\\ F=∑Fi​​E=q0​F​=q0​∑Fi​​​E=∑Ei​​
又由电场强度的定义式:
E⃗=F⃗q0=14πε0qr2r0⃗{微分形式:dE⃗=14πε0dqr2r0⃗积分形式:E⃗=∫14πε0dqr2r0⃗\vec{E}=\frac{\vec F}{q_0}=\frac{1}{4\pi\varepsilon_0}\frac{q}{r^2}\vec{r^0}\\ \begin{cases} 微分形式:d\vec{E}=\frac{1}{4\pi\varepsilon_0}\frac{dq}{r^2}\vec{r^0}\\ 积分形式:\vec{E}=\int \frac{1}{4\pi\varepsilon_0}\frac{dq}{r^2}\vec{r^0}\\ \end{cases} E=q0​F​=4πε0​1​r2q​r0{微分形式:dE=4πε0​1​r2dq​r0积分形式:E=∫4πε0​1​r2dq​r0​
对于电荷连续分度的带电体,其dq有下面的三种形式:
dq={λdl,λ是线密度σdS,其中σ是面密度ρdV,ρ是体密度dq=\begin{cases} \lambda dl,\lambda是线密度\\ \sigma dS,其中\sigma是面密度\\ \rho dV,\rho是体密度 \end{cases} dq=⎩⎪⎨⎪⎧​λdl,λ是线密度σdS,其中σ是面密度ρdV,ρ是体密度​

3.叠加原理的典型应用

(1)均匀带电圆环

半径为R,带电量为q的均匀带电圆环,求轴线上任意一点的电场强度

① 确定微元dE⃗d\vec{E}dE
dE=14πε0dqr2dE=\frac{1}{4\pi\varepsilon_0}\frac{dq}{r^2} dE=4πε0​1​r2dq​
② 正交分解
dEx=dEcosθdEy=dEcosθdE_x=dEcos\theta\\ dE_y=dEcos\theta\\ dEx​=dEcosθdEy​=dEcosθ
注意:这里的θ\thetaθ始终取的是E⃗\vec{E}E和x⃗\vec{x}x正方向的夹角

由图中对称性可知,垂直于x轴方向的电场叠加结果为0,即
Ey=∫dEy=0E_y=\int dE_y=0\\ Ey​=∫dEy​=0
注意,如果不是均匀带点圆环则不一定

所以有:
dEx=14πε0cosθdqR2+x2∴E=Ex=∫02πRdEx=∫02πR14πε0cosθdqR2+x2=14πε0qR2+x2cosθ其中cosθ=xx2+R2∴E=14πε0qx(R2+x2)32−−−−−−记住!!!dE_x=\frac{1}{4\pi\varepsilon_0}\frac{cos\theta dq}{R^2+x^2}\\ ∴E=E_x=\int_0^{2\pi R}dE_x=\int_0^{2\pi R}\frac{1}{4\pi\varepsilon_0}\frac{cos\theta dq}{R^2+x^2}=\frac{1}{4\pi\varepsilon_0}\frac{q}{R^2+x^2}cos\theta\\ 其中cos\theta=\frac{x}{\sqrt{x^2+R^2}}\\ ∴E=\frac{1}{4\pi\varepsilon_0}\frac{qx}{(R^2+x^2)^{\frac{3}{2}}}------记住!!!\\ dEx​=4πε0​1​R2+x2cosθdq​∴E=Ex​=∫02πR​dEx​=∫02πR​4πε0​1​R2+x2cosθdq​=4πε0​1​R2+x2q​cosθ其中cosθ=x2+R2​x​∴E=4πε0​1​(R2+x2)23​qx​−−−−−−记住!!!

  • 扩展与延伸问题

    • 当x=0时,电场强度为?

      • E=0
    • 当x>>R时,电场强度为?

      • E=14πε0qx2E=\frac{1}{4\pi\varepsilon_0}\frac{q}{x^2}E=4πε0​1​x2q​

        即此时的圆环可以看做一个点电荷的场,从上述的可以看做点电荷条件也可以得出该结论

    • 当x=?,电场强度E达到最大值?

      • 对E的表达式求导得x=22x=\frac{\sqrt{2}}{2}x=22​​时取得最大值
      • Emax=q22R4πε0(32R2)32E_{max}=\frac{q\frac{\sqrt2}{2}R}{4\pi\varepsilon_0(\frac{3}{2}R^2)^{\frac{3}{2}}}Emax​=4πε0​(23​R2)23​q22​​R​

(2)均匀带电圆盘

带电量为q,求轴线上任意一点的电场强度

方法①:二维极坐标

缺点是为二重积分,需要降维,不方便计算

方法②:利用最基础的模型:圆环模型,将圆盘划分为无数个小圆环的叠加
dE=14πε0xdq(r2+x2)32首先要确定dq由均匀带电圆盘:dq=σdS=σdπr2=2πrσdr(其中σ=qπR2)dE=\frac{1}{4\pi\varepsilon_0}\frac{xdq}{(r^2+x^2)^{\frac{3}{2}}}\\ 首先要确定dq\\ 由均匀带电圆盘:dq=\sigma dS=\sigma d\pi r^2=2\pi r\sigma dr(其中\sigma=\frac{q}{\pi R^2})\\ dE=4πε0​1​(r2+x2)23​xdq​首先要确定dq由均匀带电圆盘:dq=σdS=σdπr2=2πrσdr(其中σ=πR2q​)
所以由一个圆环将半径由0到R积分即可得整个圆盘的轴线上任意一点的电场强度
E=∫0R14πε0xdq(r2+x2)32=xσ2ε0∫0Rrdr(r2+x2)32=q2πε0R2[1−x(R2+x2)12]E=\int_0^{R}\frac{1}{4\pi \varepsilon_0}\frac{xdq}{(r^2+x^2)^{\frac{3}{2}}}=\frac{x\sigma}{2\varepsilon_0}\int_0^{R}\frac{rdr}{(r^2+x^2)^{\frac{3}{2}}}=\frac{q}{2\pi\varepsilon_0R^2}[1-\frac{x}{{(R^2+x^2)}^{\frac{1}{2}}}]\\ E=∫0R​4πε0​1​(r2+x2)23​xdq​=2ε0​xσ​∫0R​(r2+x2)23​rdr​=2πε0​R2q​[1−(R2+x2)21​x​]

  • 延伸与扩展(改变积分上下限)

    • 内径为R1R_1R1​外径为R2R_2R2​圆环

      • E=∫R1R214πε0xdq(r2+x2)32=xσ2ε0∫R1R2rdr(r2+x2)32=xσ2ε0[1(R12+x2)12−1(R22+x2)12]E=\int_{R_1}^{R_2}\frac{1}{4\pi \varepsilon_0}\frac{xdq}{(r^2+x^2)^{\frac{3}{2}}}=\frac{x\sigma}{2\varepsilon_0}\int_{R_1}^{R_2}\frac{rdr}{(r^2+x^2)^{\frac{3}{2}}}=\frac{x\sigma}{2\varepsilon_0}[\frac{1}{{(R_1^2+x^2)}^{\frac{1}{2}}}-\frac{1}{{(R_2^2+x^2)}^{\frac{1}{2}}}] E=∫R1​R2​​4πε0​1​(r2+x2)23​xdq​=2ε0​xσ​∫R1​R2​​(r2+x2)23​rdr​=2ε0​xσ​[(R12​+x2)21​1​−(R22​+x2)21​1​]
    • 有圆孔无限大平板

      • E=xσ2ε0[1(R12+x2)12]E=\frac{x\sigma}{2\varepsilon_0}[\frac{1}{{(R_1^2+x^2)}^{\frac{1}{2}}}] E=2ε0​xσ​[(R12​+x2)21​1​]
    • 无孔无限大平板

      • E=σ2ε0E=\frac{\sigma}{2\varepsilon_0} E=2ε0​σ​

(3)带电直线段

【模型一:待求场强点在直线段的延长线上】

直线长为l,待电量为q

在坐标为x处取一长度为dx的直线段
dq=λdxdE=dq4πε0(l+a−x)2E=∫0ldE=∫0ldq4πε0(l+a−x)2=λ4πε0(1a−1a+l)dq=\lambda dx\\ dE=\frac{dq}{4\pi\varepsilon_0 (l+a-x)^2}\\ E=\int_{0}^{l}dE=\int_0^{l}\frac{dq}{4\pi\varepsilon_0 (l+a-x)^2}=\frac{\lambda}{4\pi\varepsilon_0}(\frac{1}{a}-\frac{1}{a+l})\\ dq=λdxdE=4πε0​(l+a−x)2dq​E=∫0l​dE=∫0l​4πε0​(l+a−x)2dq​=4πε0​λ​(a1​−a+l1​)

【模型二:点球场强点在直线段外(更为常见)】

dEx=dEcosθ这里尤其要注意θ是dE与x轴正方向的夹角为了方便计算,首先进行统一变量,最方便的是将变量统一为θx=atan(θ−π2)=−acotθdx=acsc2θr2=x2+a2=a2csc2θdq=λdx=λacsc2θdθdEx=dEcosθ=14πε0cosθdqa2csc2θ=λ4πε0acosθdθEx=∫dEx=∫θ1θ2dEx=λ4πε0a(sinθ2−sinθ1)dE_x=dEcos\theta\\ 这里尤其要注意\theta是dE与x轴正方向的夹角\\ 为了方便计算,首先进行统一变量,最方便的是将变量统一为\theta\\ x=atan(\theta-\frac{\pi}{2})=-acot\theta\\ dx=acsc^2\theta\\ r^2=x^2+a^2=a^2csc^2\theta\\ dq=\lambda dx=\lambda acsc^2\theta d\theta\\ dE_x=dEcos\theta=\frac{1}{4\pi\varepsilon_0}\frac{cos\theta dq} {a^2csc^2\theta}=\frac{\lambda}{4\pi\varepsilon_0a}cos\theta d\theta\\ E_x=\int dE_x=\int_{\theta_1}^{\theta_2}dE_x=\frac{\lambda}{4\pi\varepsilon_0a}(sin\theta_2-sin\theta_1) dEx​=dEcosθ这里尤其要注意θ是dE与x轴正方向的夹角为了方便计算,首先进行统一变量,最方便的是将变量统一为θx=atan(θ−2π​)=−acotθdx=acsc2θr2=x2+a2=a2csc2θdq=λdx=λacsc2θdθdEx​=dEcosθ=4πε0​1​a2csc2θcosθdq​=4πε0​aλ​cosθdθEx​=∫dEx​=∫θ1​θ2​​dEx​=4πε0​aλ​(sinθ2​−sinθ1​)

同理可得,
Ey=λ4πε0a(cosθ1−cosθ2)E_y=\frac{\lambda}{4\pi\varepsilon_0a}(cos\theta_1-cos\theta_2) Ey​=4πε0​aλ​(cosθ1​−cosθ2​)

  • 延伸与扩展

    • 无限长均匀带电直线(L>>a)

      • θ1=0,θ2=π⇒Ex=0,Ey=λ2πε0a\theta_1=0,\theta_2=\pi\Rightarrow E_x=0,E_y=\frac{\lambda}{2\pi\varepsilon_0a}θ1​=0,θ2​=π⇒Ex​=0,Ey​=2πε0​aλ​
    • 半无限长均匀带电直线
      • θ1=π2,θ2=π⇒Ex=−λ4πε0a,Ey=λ4πε0a\theta_1=\frac{\pi}{2},\theta_2=\pi\Rightarrow E_x=-\frac{\lambda}{4\pi\varepsilon_0 a},E_y=\frac{\lambda}{4\pi\varepsilon_0 a}θ1​=2π​,θ2​=π⇒Ex​=−4πε0​aλ​,Ey​=4πε0​aλ​

(4)带电平面

面密度为σ\sigmaσ,宽度为d,长度为无限长的带电平面在距离轴线正上方a处产生的场强

  • 解法:看做无数条无限长带电直线的集合

  • 要注意σ和λ\sigma和\lambdaσ和λ之间的关系转换
    利用无限长带电直线结论:E=∫dEy=λ2πε0a⇒dE=λ2πε0a=σdx2πε0(x2+a2)12利用无限长带电直线结论:E=\int dE_y=\frac{\lambda}{2\pi\varepsilon_0a}\\ \Rightarrow dE=\frac{\lambda}{2\pi\varepsilon_0a}=\frac{\sigma dx}{2\pi\varepsilon_0 (x^2+a^2)^{\frac{1}{2}}}\\ 利用无限长带电直线结论:E=∫dEy​=2πε0​aλ​⇒dE=2πε0​aλ​=2πε0​(x2+a2)21​σdx​
    由对称性可知Ex=0,E=Ey=∫dEyE_x=0,E=E_y=\int dE_yEx​=0,E=Ey​=∫dEy​

​ 所以有:
E=∫dEy=∫−d2d2dEcosθ=σ2πε0∫−d2d2dxx2+a2=σπε0tan(d2a)E=\int dE_y=\int_{\frac{-d}{2}}^{\frac{d}{2}} dEcos\theta=\frac{\sigma}{2\pi \varepsilon_0}\int_{\frac{-d}{2}}^{\frac{d}{2}}\frac{dx}{x^2+a^2}=\frac{\sigma}{\pi\varepsilon_0}tan(\frac{d}{2a})\\ E=∫dEy​=∫2−d​2d​​dEcosθ=2πε0​σ​∫2−d​2d​​x2+a2dx​=πε0​σ​tan(2ad​)

  • 扩展与延伸问题

    • 若平面为无限大平面

      • d→∞d\rightarrow\inftyd→∞
      • E=σπε0E=\frac{\sigma}{\pi\varepsilon_0}E=πε0​σ​
    • 两个无限大带电平面
      • 考虑受力情况时额外注意

(5)总结

三、电通量,高斯定理

1.电场线(电力线,E线)

E=dNdS⊥:垂直于电场方向单位横截面积的电场线条数E=\frac{dN}{dS⊥}:垂直于电场方向单位横截面积的电场线条数 E=dS⊥dN​:垂直于电场方向单位横截面积的电场线条数

  • 电力线的性质:

    • 不相交,不形成闭合曲线
    • 起始于正电荷,终止于负电荷

2.电通量

(1)定义:穿过任一曲面的电场线条数
dΦe=EndS=EcosθdSΦe=∫EcosθdSd\Phi_e=E_ndS=Ecos\theta dS\\ \Phi_e=\int Ecos\theta dS\\ dΦe​=En​dS=EcosθdSΦe​=∫EcosθdS
注意方向:穿入为负,穿出为正

3.高斯定理

(1)内容

真空穿过任意一闭合曲面的电通量,在数值上等于该闭合曲面内包围的电量代数和乘以1ε0\frac{1}{\varepsilon_0}ε0​1​
Φe=∮E⃗⋅dS⃗=1ε0∑inqi\Phi_e=\oint \vec{E}·d\vec{S}=\frac{1}{\varepsilon_0}\sum\limits_i^nq_i\\ Φe​=∮E⋅dS=ε0​1​i∑n​qi​
(2)应用:求解某些球对称,面对称,柱对称的场的电场

【根据电荷分布的对称性,选择合适的高斯面】

  • 均匀带电球面:

∮E⃗dS⃗=4πr2E=1ε0∑inqir<R,球面内:∑qi=0⇒E=0r>R,球面外:∑qi=Q⇒E=Q4πr2\oint \vec{E}d{\vec S}=4\pi r^2E=\frac{1}{\varepsilon_0}\sum_i^nq_i\\ r<R,球面内:\sum q_i=0\Rightarrow E=0\\ r>R,球面外:\sum q_i=Q\Rightarrow E=\frac{Q}{4\pi r^2} ∮EdS=4πr2E=ε0​1​i∑n​qi​r<R,球面内:∑qi​=0⇒E=0r>R,球面外:∑qi​=Q⇒E=4πr2Q​

  • 均匀带电球体,带电量为Q,体密度为ρ\rhoρ

    r<R,球内:∮E⃗dS⃗=E4πr2=1ε043πr3ρ⇒E=ρr3ε0r>R,球外:∮E⃗dS⃗=E4πr2=Q⇒E=Q4πε0r2r<R,球内:\oint \vec{E}d\vec{S}=E4\pi r^2=\frac{1}{\varepsilon_0}\frac{4}{3}\pi r^3\rho\\ \Rightarrow E=\frac{\rho r}{3\varepsilon_0}\\ r>R,球外:\oint \vec{E}d\vec{S}=E4\pi r^2=Q\\ \Rightarrow E=\frac{Q}{4\pi\varepsilon_0 r^2} r<R,球内:∮EdS=E4πr2=ε0​1​34​πr3ρ⇒E=3ε0​ρr​r>R,球外:∮EdS=E4πr2=Q⇒E=4πε0​r2Q​

  • 无限长带电直线,线密度为λ\lambdaλ

Φe=∮E⃗dS⃗=∫S(侧)E⃗dS⃗+∫S(上底)E⃗dS⃗+∫S(下底)E⃗dS⃗=∫S(侧)E⃗dS⃗=E2πrh=λhε0⇒E=λ2πε0r\Phi_e=\oint \vec{E}d{\vec{S}}=\int_{S(侧)}\vec{E}d{\vec{S}}+\int_{S(上底)}\vec{E}d{\vec{S}}+\int_{S(下底)}\vec{E}d{\vec{S}}=\int_{S(侧)}\vec{E}d{\vec{S}}=E2\pi rh=\frac{\lambda h}{\varepsilon_0}\\ \Rightarrow E=\frac{\lambda}{2\pi\varepsilon_0 r}\\ Φe​=∮EdS=∫S(侧)​EdS+∫S(上底)​EdS+∫S(下底)​EdS=∫S(侧)​EdS=E2πrh=ε0​λh​⇒E=2πε0​rλ​

  • 无限大均匀带电平面

    Φe=∫E⃗dS⃗=2ES=σSε0⇒E=σ2ε0\Phi_e=\int \vec{E}d{\vec{S}}=2ES=\frac{\sigma S}{\varepsilon_0}\\ \Rightarrow E=\frac{\sigma}{2\varepsilon_0}\\ Φe​=∫EdS=2ES=ε0​σS​⇒E=2ε0​σ​

  • 无限大均匀带电体



    板外:∮E⃗dS⃗=∫S(侧)E⃗dS⃗+∫S(上底)E⃗dS⃗+∫S(下底)E⃗dS⃗=∫S(上底)E⃗dS⃗+∫S(下底)E⃗dS⃗=2ES=ρSdε0⇒E=ρd2ε0板内:∮E⃗dS⃗=2ES=2ρSxε0⇒E=ρxε0板外:\oint\vec{E}d{\vec{S}}=\int_{S(侧)}\vec{E}d{\vec{S}}+\int_{S(上底)}\vec{E}d{\vec{S}}+\int_{S(下底)}\vec{E}d{\vec{S}}=\int_{S(上底)}\vec{E}d{\vec{S}}+\int_{S(下底)}\vec{E}d{\vec{S}}\\ =2ES=\frac{\rho Sd}{\varepsilon_0}\Rightarrow E=\frac{\rho d}{2\varepsilon_0}\\ 板内:\oint\vec{E}d{\vec{S}}=2ES=\frac{2\rho Sx}{\varepsilon_0}\Rightarrow E=\frac{\rho x}{\varepsilon_0}\\ 板外:∮EdS=∫S(侧)​EdS+∫S(上底)​EdS+∫S(下底)​EdS=∫S(上底)​EdS+∫S(下底)​EdS=2ES=ε0​ρSd​⇒E=2ε0​ρd​板内:∮EdS=2ES=ε0​2ρSx​⇒E=ε0​ρx​

4.小结求电场强度分布的方法

{一般方法:库伦定理+场的叠加原理对称场:高斯定理\begin{cases} 一般方法:库伦定理+场的叠加原理\\ 对称场:高斯定理\\ \end{cases} {一般方法:库伦定理+场的叠加原理对称场:高斯定理​

四、静电场环流定理与电势能

1.静电力做功

  • 做功特点:

    • 只与初末位置有关,与路径无关
    • 静电力是保守力,静电场是保守力场
  • 推导过程

    • 点电荷

    dA=F⃗dl⃗=q0E⃗dl⃗=q0q4πε0r3r⃗dl⃗=q0q4πε0r2dr⇒A=∫rarbq0q4πε0r2dr=q0q4πε0∫rarb1r2dr=q0q4πε0(1ra−1rb)dA=\vec{F}d\vec{l}=q_0\vec{E}d{\vec{l}}= \frac{q_0q}{4\pi\varepsilon_0 r^3}\vec{r}d\vec l=\frac{q_0q}{4\pi\varepsilon_0 r^2}dr\\ \Rightarrow A=\int_{r_a}^{r_b}\frac{q_0q}{4\pi\varepsilon_0 r^2}dr=\frac{q_0q}{4\pi\varepsilon_0}\int_{r_a}^{r_b}\frac{1}{r^2}dr=\frac{q_0q}{4\pi\varepsilon_0}(\frac{1}{r_a}-\frac{1}{r_b})\\ dA=Fdl=q0​Edl=4πε0​r3q0​q​rdl=4πε0​r2q0​q​dr⇒A=∫ra​rb​​4πε0​r2q0​q​dr=4πε0​q0​q​∫ra​rb​​r21​dr=4πε0​q0​q​(ra​1​−rb​1​)

    • 点电荷系
      A=∫a(L)bF⃗⋅dl⃗=∫a(L)bq0(E1⃗+E2⃗+E3⃗+……+En⃗)⋅dl⃗=∫a(L)bq0∑inEi⃗⋅dl⃗=∑in∫a(L)bq0Ei⃗⋅dl⃗=∑inq0q4πε0(1rai−1rbi)A=\int_{a(L)}^{b}\vec{F}·d\vec l=\int_{a(L)}^bq_0(\vec {E_1}+\vec {E_2}+\vec {E_3}+……+\vec {E_n})·d{\vec l}\\ =\int_{a(L)}^bq_0\sum_i^n \vec{E_i}·d\vec l=\sum_i^n\int_{a(L)}^bq_0\vec{E_i}·d\vec{l}=\sum_i^n\frac{q_0q}{4\pi\varepsilon_0}(\frac{1}{r_{ai}}-\frac{1}{r_{bi}})\\ A=∫a(L)b​F⋅dl=∫a(L)b​q0​(E1​​+E2​​+E3​​+……+En​​)⋅dl=∫a(L)b​q0​i∑n​Ei​​⋅dl=i∑n​∫a(L)b​q0​Ei​​⋅dl=i∑n​4πε0​q0​q​(rai​1​−rbi​1​)

2.静电场的环度定理

(1)内容:
∮LE⃗⋅dl⃗=0\oint_L \vec{E}·d\vec{l}=0 ∮L​E⋅dl=0
(2)静电场特点:

  • 无旋场

  • 有源场

    • 判断是否是静电场

3.电势能

(1)电势能
EpA−EpB=∫ABE⃗⋅dl⃗=−ΔEp=WA−WBA,B两点的电势能之差数值上等于q0从A移动到B点静电力所做的功E_{pA}-E_{pB}=\int_A^B\vec{E}·d\vec{l}=-\Delta E_p=W_{A}-W_B\\A,B两点的电势能之差数值上等于q_0从A移动到B点静电力所做的功 EpA​−EpB​=∫AB​E⋅dl=−ΔEp​=WA​−WB​A,B两点的电势能之差数值上等于q0​从A移动到B点静电力所做的功
电势能的定义:将该电荷从一点移动到零势能点时静电力所做的功——————电势能是相对的
WA=∫A"0"q0E⃗⋅dl⃗W_A=\int_A^{"0"}q_0\vec E·d\vec{l}\\ WA​=∫A"0"​q0​E⋅dl

  • 注意

    • 电势能属于电荷q0q_0q0​和产生电场的场源电荷q共同所有
    • “0”势能点的选取是相对的

(2)电势

a. 电势定义
ua=Waq0⇒ua=Aq0=∫a"0"E⃗⋅dl⃗单位正电荷从该点→无穷远处时静电力做的功u_a=\frac{W_a}{q_0}\Rightarrow u_a=\frac{A}{q_0}=\int_a^{"0"}\vec{E}·d\vec{l}\\ 单位正电荷从该点\rightarrow无穷远处时静电力做的功 ua​=q0​Wa​​⇒ua​=q0​A​=∫a"0"​E⋅dl单位正电荷从该点→无穷远处时静电力做的功
b.电势差
uab=ua−ub=Waq0−Wbq0=∫abE⃗⋅dl⃗u_{ab}=u_a-u_b=\frac{W_a}{q_0}-\frac{W_b}{q_0}=\int_a^b\vec{E}·d\vec{l}\\ uab​=ua​−ub​=q0​Wa​​−q0​Wb​​=∫ab​E⋅dl
电势差与参考点的选取无关

c.静电场下的功能关系
Aab=∫abq0E⃗⋅dl⃗=q0(ua−ub)电场力做正功:电势能降低电场力做负功:电势能升高A_{ab}=\int_a^bq_0\vec{E}·d\vec{l}=q_0(u_a-u_b)\\ 电场力做正功:电势能降低\\ 电场力做负功:电势能升高\\ Aab​=∫ab​q0​E⋅dl=q0​(ua​−ub​)电场力做正功:电势能降低电场力做负功:电势能升高

五、电势的叠加原理

1.点电荷的电势

(取无穷远处为零势能点)
up=∫p∞E⃗⋅dl⃗=∫r∞q4πε0r2dr=q4πε0r−−−−球对称u_p=\int_p^{\infty}\vec{E}·d\vec l=\int_r^{\infty}\frac{q}{4\pi\varepsilon_0 r^2}dr=\frac{q}{4\pi\varepsilon_0 r}----球对称 up​=∫p∞​E⋅dl=∫r∞​4πε0​r2q​dr=4πε0​rq​−−−−球对称

2.任意带电体的电势

up=∫p"0"E⃗⋅dl⃗=∑in∫p"0"Ei⃗⋅dl⃗=∑inuiu_p=\int_p^{"0"}\vec E·d\vec l=\sum_i^n\int_p^{"0"}\vec{E_i}·d\vec{l}=\sum_i^n u_i up​=∫p"0"​E⋅dl=i∑n​∫p"0"​Ei​​⋅dl=i∑n​ui​

对于点电荷系:
u=∑qi4πε0ri,u∞=0u=\sum\frac{q_i}{4\pi\varepsilon_0 r_i},u_{\infty}=0\\ u=∑4πε0​ri​qi​​,u∞​=0
对于连续电荷分布的带电体:
u=∫Qdq4πε0r,u∞=0u=\int_{Q}\frac{dq}{4\pi\varepsilon_0 r},u_{\infty}=0\\ u=∫Q​4πε0​rdq​,u∞​=0

3.常见带电体电势的求法

(1)均匀带电圆环

a.均匀带电圆环,半径为R,线密度为λ\lambdaλ,求圆环轴线上一点的电势

建立如图所示的坐标系:

dq=λdldu=dq4πε0r=λdl4πε0ru=∫02πRλdl4πε0r=2πRλ4πε0(R2+x2)dq=\lambda dl\\ du=\frac{dq}{4\pi\varepsilon_0r}=\frac{\lambda dl}{4\pi\varepsilon_0r}\\ u=\int_0^{2\pi R}\frac{\lambda dl}{4\pi\varepsilon_0r}=\frac{2\pi R\lambda}{4\pi\varepsilon_0\sqrt{(R^2+x^2)}}\\ dq=λdldu=4πε0​rdq​=4πε0​rλdl​u=∫02πR​4πε0​rλdl​=4πε0​(R2+x2)​2πRλ​

(2)均匀带电球面

b.带电量为Q的球面球心电势

du=dq4πε0Ru=∫Qdu=∫Qdq4πε0R=Q4πε0Rdu=\frac{dq}{4\pi\varepsilon_0R}\\ u=\int_{Q}du=\int_{Q}\frac{dq}{4\pi\varepsilon_0R}=\frac{Q}{4\pi\varepsilon_0R}\\ du=4πε0​Rdq​u=∫Q​du=∫Q​4πε0​Rdq​=4πε0​RQ​

(3)均匀带电球体电势分布

  • 先求出均匀带电球体的场强分布
    根据高斯定理可得:{r<R,E=qr4πε0R3r>R,E=q4πε0r2根据高斯定理可得:\begin{cases} r<R,E=\frac{qr}{4\pi\varepsilon_0R^3}\\ r>R,E=\frac{q}{4\pi\varepsilon_0r^2}\\ \end{cases} 根据高斯定理可得:{r<R,E=4πε0​R3qr​r>R,E=4πε0​r2q​​

  • 再求电势分布
    根据公式:up=∫p"0"E⃗⋅dl⃗{r>R:u=∫r∞E⃗⋅dl⃗=q4πε0rr<R:u=∫r∞E⃗⋅dl⃗=∫rRE1⃗⋅dl⃗+∫R∞E2⃗⋅dl⃗=q8πε0R3(3R2−r2)根据公式:u_p=\int_p^{"0"}\vec E·d\vec l\\ \begin{cases} r>R:u=\int_r^{\infty}\vec{E}·d{\vec l}=\frac{q}{4\pi\varepsilon_0r}\\ r<R:u=\int_r^{\infty}\vec{E}·d{\vec l}=\int_r^{R}\vec{E_1}·d{\vec l}+\int_R^{\infty}\vec{E_2}·d{\vec l}=\frac{q}{8\pi\varepsilon_0R^3}(3R^2-r^2)\\ \end{cases} 根据公式:up​=∫p"0"​E⋅dl{r>R:u=∫r∞​E⋅dl=4πε0​rq​r<R:u=∫r∞​E⋅dl=∫rR​E1​​⋅dl+∫R∞​E2​​⋅dl=8πε0​R3q​(3R2−r2)​

六、等势面

1.等势面的概念:

  • 规定:相邻等势面之间的电势差相等

  • 注意:

    • 沿等势面移动:静电力做功为零
    • 等势面与电场线相互垂直
    • 电场强度方向总是指向电势降低方向

2.电势与电场强度的微分关系
E=−dudnE=-\frac{du}{dn}\\ E=−dndu​
任意一场点P处场强的大小等于沿该点等势面法线方向上的电势变化率,负号表示电场强度的方向指向电势降低的方向

在直角坐标系中有:
Ex=∂u∂x;Ey=∂u∂y;Ez=∂u∂zE_x=\frac{\partial u}{\partial x};E_y=\frac{\partial u}{\partial y};E_z=\frac{\partial u}{\partial z}\\ Ex​=∂x∂u​;Ey​=∂y∂u​;Ez​=∂z∂u​

七、静电场中的导体

1.导体的静电平衡

(1)静电平衡的内容

导体内部和表面都没有电荷的宏观移动时,称导体处于静电平衡状态。

(2)静电平衡的特点

  • 导体内部任何一点处的电场强度为零

  • 导体表面处的电场强度的方向,都与导体表面垂直

推论{导体是等势体导体内部场强处处相等推论\begin{cases} 导体是等势体\\ 导体内部场强处处相等\\ \end{cases} 推论{导体是等势体导体内部场强处处相等​

2.静电平衡时导体的电荷分布

3.导体表面电场强度和电荷密度的关系

∮E⃗⋅dS⃗=EΔS=σΔSε0⇒E=σε0\oint \vec{E}·d\vec{S}=E\Delta S=\frac{\sigma \Delta S}{\varepsilon_0}\\ \Rightarrow E=\frac{\sigma}{\varepsilon_0}\\ ∮E⋅dS=EΔS=ε0​σΔS​⇒E=ε0​σ​

4.静电平衡应用实例


5.静电场中的导体总结

  • 导体接地:u地=u导体=0u_地=u_导体=0u地​=u导​体=0
  • 孤立带电导体接地:电荷全部入地
  • 非孤立导体接地:电荷部分入地【需根据静电平衡条件+电势为0列方程等方法判断电荷分布】

八、静电场中的电介质

1.电介质对电场的影响

E=E0εr——介质中电场减弱εr:电介质的相对介电常数E=\frac{E_0}{\varepsilon_r}——介质中电场减弱\\ \varepsilon_r:电介质的相对介电常数\\ E=εr​E0​​——介质中电场减弱εr​:电介质的相对介电常数

  • 真空中的介电常数ε0=8.85×10−12\varepsilon_0=8.85\times10^{-12}ε0​=8.85×10−12
  • 介质中的介电常数ε>ε0\varepsilon>\varepsilon_0ε>ε0​
  • 介质的相对介电常数εr=εε0\varepsilon_r=\frac{\varepsilon}{\varepsilon_0}εr​=ε0​ε​

2.电介质分子的电结构特征

(1)分类
{无极分子:整体对外不显电性有极分子:整体对外不显电性\begin{cases} 无极分子:整体对外不显电性\\ 有极分子:整体对外不显电性\\ \end{cases} {无极分子:整体对外不显电性有极分子:整体对外不显电性​
(2)电介质的极化

由原本的整体对外不显电性变为显电性

(3)介质中的电场:
E⃗=E0⃗+E′⃗即合场等于外场加上极化电荷产生的场\vec{E}=\vec{E_0}+\vec{E'}\\ 即合场等于外场加上极化电荷产生的场 E=E0​​+E′即合场等于外场加上极化电荷产生的场

九、介质中的高斯定理

1.电位移矢量

  • 定义:
    D⃗=ε0εrE⃗=εE⃗空间分布上的单值函数\vec{D}=\varepsilon_0\varepsilon_r\vec{E}=\varepsilon\vec{E}\\ 空间分布上的单值函数\\ D=ε0​εr​E=εE空间分布上的单值函数

  • 介质中的高斯定理
    ∮SD⃗⋅dS⃗=∑iq0i,内\oint_S \vec{D}·d\vec{S}=\sum_i q_{0i,内} ∮S​D⋅dS=i∑​q0i,内​
    D⃗\vec{D}D:由空间中的所有电荷:自由,束缚,S面内,S面外 共同决定

    ∮SD⃗⋅dS⃗\oint_S \vec{D}·d\vec{S}∮S​D⋅dS:仅仅由S面内的自由电荷决定

    (类比高斯定理,电场强度与电通量)

十、孤立导体的电容

1.电容的定义

C=QU单位:F,mF,uF,pFC=\frac{Q}{U}\\ 单位:F,mF,uF,pF\\ C=UQ​单位:F,mF,uF,pF

注意:电容描述的是导体的带电能力,与导体目前带多少电,是否带电无关

例:计算孤立导体球的电容:
C=QU=QQ4πε0R=4πε0RC=\frac{Q}{U}=\frac{Q}{\frac{Q}{4\pi\varepsilon_0R}}=4\pi\varepsilon_0R\\ C=UQ​=4πε0​RQ​Q​=4πε0​R

2.常见电容器

(1)平行板电容器

(2)电容器的电容计算

  • C=QΔuC=\frac{Q}{\Delta u}C=ΔuQ​


3.电容器的串并联

(1)电容器的并联
C=C1U+C2UUC=C1+C2电容器并联之后,耐压能力不变,电容增大C=\frac{C_1U+C_2U}{U}\\ C=C_1+C_2\\ 电容器并联之后,耐压能力不变,电容增大 C=UC1​U+C2​U​C=C1​+C2​电容器并联之后,耐压能力不变,电容增大

(2)电容器的串联
C=QU1+U2=QQC1+QC2电容器串联,电容变小,耐压能力增强⇒1C=1C1+1C2C=\frac{Q}{U_1+U_2}=\frac{Q}{\frac{Q}{C_1}+\frac{Q}{C_2}}\\ 电容器串联,电容变小,耐压能力增强\\ \Rightarrow\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}\\ C=U1​+U2​Q​=C1​Q​+C2​Q​Q​电容器串联,电容变小,耐压能力增强⇒C1​=C1​1​+C2​1​

十一、静电场的能量

1.带电系统的能量

以平行板电容器为例,计算带电系统的能量
Δu=q(t)C将dq从A板移动到B板需要做功为dA:dA=Δu×dq=q(t)Cdq板上电量0→Q时做的总功为:A=∫0Qq(t)Cdq=Q22C\Delta u=\frac{q(t)}{C}\\ 将dq从A板移动到B板需要做功为dA:dA=\Delta u\times dq=\frac{q(t)}{C}dq\\ 板上电量0\rightarrow Q时做的总功为:\\ A=\int_0^Q\frac{q(t)}{C}dq=\frac{Q^2}{2C}\\ Δu=Cq(t)​将dq从A板移动到B板需要做功为dA:dA=Δu×dq=Cq(t)​dq板上电量0→Q时做的总功为:A=∫0Q​Cq(t)​dq=2CQ2​
又由Q=CUQ=CUQ=CU,上述式子可转化为:
A=Q22C=12CU2=12QUA=\frac{Q^2}{2C}=\frac{1}{2}CU^2=\frac{1}{2}QU\\ A=2CQ2​=21​CU2=21​QU
上述结果具有普适性:

  • 将电源断开情况下:

    • Q不变
    • W=Q22CW=\frac{Q^2}{2C}W=2CQ2​
  • 电源不断开的情况下:

    • U不变
    • W=12CU2W=\frac{1}{2}CU^2W=21​CU2

2.电场的能量

忽略边缘效应,对于平行板电容器有:
U=Ed,C=εSd⇒W=12CU2=12εE2Sd=12εE2VU=Ed,C=\frac{\varepsilon S}{d}\Rightarrow W=\frac{1}{2}CU^2=\frac{1}{2}\varepsilon E^2Sd=\frac{1}{2}\varepsilon E^2V\\ U=Ed,C=dεS​⇒W=21​CU2=21​εE2Sd=21​εE2V
结论:带电系统的能量储存于电场中

能量密度:
ω=WV=12εE2\omega=\frac{W}{V}=\frac{1}{2}\varepsilon E^2\\ ω=VW​=21​εE2
不均匀电场中:
dW=ωdVW=∫VdW=∫VωdV=∫V12εE2dVdW=\omega dV\\ W=\int_VdW=\int_V\omega dV=\int_V \frac{1}{2}\varepsilon E^2dV\\ dW=ωdVW=∫V​dW=∫V​ωdV=∫V​21​εE2dV
1.带电系统的能量

以平行板电容器为例,计算带电系统的能量
Δu=q(t)C将dq从A板移动到B板需要做功为dA:dA=Δu×dq=q(t)Cdq板上电量0→Q时做的总功为:A=∫0Qq(t)Cdq=Q22C\Delta u=\frac{q(t)}{C}\\ 将dq从A板移动到B板需要做功为dA:dA=\Delta u\times dq=\frac{q(t)}{C}dq\\ 板上电量0\rightarrow Q时做的总功为:\\ A=\int_0^Q\frac{q(t)}{C}dq=\frac{Q^2}{2C}\\ Δu=Cq(t)​将dq从A板移动到B板需要做功为dA:dA=Δu×dq=Cq(t)​dq板上电量0→Q时做的总功为:A=∫0Q​Cq(t)​dq=2CQ2​
又由Q=CUQ=CUQ=CU,上述式子可转化为:
A=Q22C=12CU2=12QUA=\frac{Q^2}{2C}=\frac{1}{2}CU^2=\frac{1}{2}QU\\ A=2CQ2​=21​CU2=21​QU
上述结果具有普适性:

  • 将电源断开情况下:

    • Q不变
    • W=Q22CW=\frac{Q^2}{2C}W=2CQ2​
  • 电源不断开的情况下:

    • U不变
    • W=12CU2W=\frac{1}{2}CU^2W=21​CU2

2.电场的能量

忽略边缘效应,对于平行板电容器有:
U=Ed,C=εSd⇒W=12CU2=12εE2Sd=12εE2VU=Ed,C=\frac{\varepsilon S}{d}\Rightarrow W=\frac{1}{2}CU^2=\frac{1}{2}\varepsilon E^2Sd=\frac{1}{2}\varepsilon E^2V\\ U=Ed,C=dεS​⇒W=21​CU2=21​εE2Sd=21​εE2V
结论:带电系统的能量储存于电场中

能量密度:
ω=WV=12εE2\omega=\frac{W}{V}=\frac{1}{2}\varepsilon E^2\\ ω=VW​=21​εE2
不均匀电场中:
dW=ωdVW=∫VdW=∫VωdV=∫V12εE2dVdW=\omega dV\\ W=\int_VdW=\int_V\omega dV=\int_V \frac{1}{2}\varepsilon E^2dV\\ dW=ωdVW=∫V​dW=∫V​ωdV=∫V​21​εE2dV

大学物理:第10章 静电场 复习笔记相关推荐

  1. 大学物理第七章“机械波”复习笔记

    大学物理第七章"机械波"复习笔记 一.机械波的产生与传播 1.机械波的产生 (1)条件:介质+振源 (2)分类:横波(固态介质中传播)+纵波(固液气中传播) (3)易错点 波动过程 ...

  2. 大学物理第六章 静电场详解(全)

    电场 电场强度 一.电荷 电荷的概念是从物体带电的现象中产生的,电荷是物体状态的一种属性,宏观物体或微观粒子处于带电状态就说它们带有电荷 物体或微观粒子所带的电荷有两种,称为正电荷和负电荷,带同种电荷 ...

  3. 大学物理·第6章静电场中的导体与电介质

    静电平衡 导体内部处处没有净电荷分布(表明可以有净电荷分布.如果导体有净电荷,则只能分布在外表面上) 包括表面在内,导体是一个等势体 导体表面是一个等势面 静电平衡时导体上的电荷分布 无论实心还是有空 ...

  4. 大学物理第十三章复习笔记:波动光学基础

    大学物理第十三章:波动光学基础 一.光是电磁波 1.波源,波速,频率 波源:任何振动的电荷或者电荷系都是发射电磁波的源 波速:约等于3.0 × 1 0 8 m / s \times 10^8 m/s ...

  5. 大学物理东北大学网课版 预习笔记

    更新中 本专栏是博主在大学浪了近两年啥也没学后重学计算机专业时写的,方便个人学习和复习,本人菜鸟一枚,如有错误或能优化的地方欢迎指正,也特别欢迎交流学习. motto共勉:心之所向,素履以往:做喜欢的 ...

  6. 《ASP.NET Core 与 RESTful API 开发实战》-- (第10章)-- 读书笔记

    第 10 章 部署 10.1 部署到 IIS ASP.NET Core 应用程序支持部署到 IIS 中,之后它将作为应用程序的反向代理服务器和负载均衡器,向应用程序中转传入的 HTTP 请求 默认情况 ...

  7. 《数字集成电路物理设计——陈春章》学习笔记

    第1章 集成电路物理设计方法 1.技术发展三个方面:工艺节点(nm).逻辑门数(百万门).晶圆直径(mm.英寸) 2.1.展平式物理设计流程(自底向上): 2.2.层次化物理设计流程(自上向下): 每 ...

  8. 大学物理第三章笔记——高等农林院校基础课程教程系列

    第三章 热物理学 文章目录 第三章 热物理学 第一节 热力学第一定律 (一)热力学系统与外界 (二)状态参量与平衡态 (三)准静态过程与非准静态过程 (四)热力学第一定律 第二节 热力学第一定律的应用 ...

  9. 大学物理·第5章【静电场】

    电场强度 点电荷电场强度分布 多个点电荷在某点处形成的电场强度 电偶级子的电场强度 电偶极矩的方向--由负指向正 2022.11.06期中复习 例题 主要是E垂直是相互抵消的,所以不计 2022.11 ...

最新文章

  1. 点击lable标出现下拉搜索框及选择功能
  2. Android 中MVC实例之Activity,Window和View
  3. seata使用报错no available service found in cluster ‘default‘
  4. java枚举类型特点_必须了解的高阶JAVA枚举特性!
  5. is_callable_Python callable()和__call __()
  6. 【ACL 2021】基于一致性正则的跨语言微调方法
  7. android java笔试题_Android之Java基础知识笔试题
  8. 利用python打乱xlsx表格
  9. chrome 您的浏览器禁用了Javascript
  10. 手机浏览器下载IOS版APP
  11. 品牌对比 蜜雪冰城 VS 喜茶
  12. sql语句的增删改操作附加代码
  13. Ngork内网穿透简单实现
  14. maya 中arnold渲染vector置换贴图方法
  15. 【数字图像处理】秒懂傅里叶变换,仅需此文
  16. c语言 计算在10个学生的平均成绩,C语言:编写程序,输入10个学生的成绩数据,计算并输出平均分及低于平均分的学生的人数。...
  17. postman的使用-----号码归属地查询接口测试
  18. 基于Annoy的语义泛化-代码模块化
  19. python weekday()函数
  20. 【python】用folium画图浏览器显示空白

热门文章

  1. Agent and recipient nouns
  2. Android短信验证(手机号注册,绑定手机号获取验证码)实例
  3. 随机过程–Metropolis-Hastings算法
  4. pythonplt制作饼状图_4.5Python数据处理篇之Matplotlib系列(五)---plt.pie()饼状图
  5. 常见的几个凸函数与凹函数
  6. Java 开发最容易写的 10 个bug
  7. CSDN日报19035——流浪地球 春节十二响程序开源代码
  8. 浅谈加速度计旋转补偿
  9. 从零开始学Python【38】--朴素贝叶斯模型(实战部分)
  10. 梦幻古龙服务器 文档,梦幻古龙GM命令大全较完整