一、使用和不使用opencv将彩色图像转化为灰度图像

具体步骤
1.灰度转换:将彩色图片转换为灰度图像,常见的R=G=B=像素平均值。
2.高斯平滑和中值滤波:去除噪声。
3.Sobel算子:提取图像边缘轮廓,X方向和Y方向平方和开跟。
4.二值化处理:图像转换为黑白两色,通常像素大于127设置为255,小于设置为0。
5.膨胀和细化:放大图像轮廓,转换为一个个区域,这些区域内包含车牌。
6.通过算法选择合适的车牌位置,通常将较小的区域过滤掉或寻找蓝色底的区域。
7.标注车牌位置
8.图像切割和识别
将提前准备好的车牌图片按顺序命名好

二、代码

import cv2
import numpy as np
import os
def stackImages(scale, imgArray):"""将多张图像压入同一个窗口显示:param scale:float类型,输出图像显示百分比,控制缩放比例,0.5=图像分辨率缩小一半:param imgArray:元组嵌套列表,需要排列的图像矩阵:return:输出图像"""rows = len(imgArray)cols = len(imgArray[0])rowsAvailable = isinstance(imgArray[0], list)# 用空图片补齐for i in range(rows):tmp = cols - len(imgArray[i])for j in range(tmp):img = np.zeros((imgArray[0][0].shape[0], imgArray[0][0].shape[1]), dtype='uint8')imgArray[i].append(img)# 判断维数if rows>=2:width = imgArray[0][0].shape[1]height = imgArray[0][0].shape[0]else:width = imgArray[0].shape[1]height = imgArray[0].shape[0]if rowsAvailable:for x in range(0, rows):for y in range(0, cols):if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)else:imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]),None, scale, scale)if len(imgArray[x][y].shape) == 2:imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)imageBlank = np.zeros((height, width, 3), np.uint8)hor = [imageBlank] * rowshor_con = [imageBlank] * rowsfor x in range(0, rows):hor[x] = np.hstack(imgArray[x])ver = np.vstack(hor)else:for x in range(0, rows):if imgArray[x].shape[:2] == imgArray[0].shape[:2]:imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)else:imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None, scale, scale)if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)hor = np.hstack(imgArray)ver = horreturn ver
# 分割结果输出路径
output_dir = "D:\\card\\card\\"
# 车牌路径
file_path="D:\\card\\card\\"
# 读取所有车牌
cars = os.listdir(file_path)
cars.sort()# 循环操作每一张车牌
for car in cars:# 读取图片print("正在处理"+file_path+car)src = cv2.imread(file_path+car)img = src.copy()# 预处理去除螺丝点cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1)cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1)# 转灰度gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 二值化adaptive_thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 333, 1)# 闭运算kernel = np.ones((5, 5), int)morphologyEx = cv2.morphologyEx(adaptive_thresh, cv2.MORPH_CLOSE, kernel)# 找边界contours, hierarchy = cv2.findContours(morphologyEx, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 画边界img_1 = img.copy()cv2.drawContours(img_1, contours, -1, (0, 0, 0), -1)imgStack = stackImages(0.7, ([src, img, gray], [adaptive_thresh, morphologyEx, img_1]))cv2.imshow("imgStack", imgStack)cv2.waitKey(0)# 转灰度为了方便切割gray_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2GRAY)# 每一列的白色数量white = []# 每一列的黑色数量black = []# 区域高度取决于图片高height = gray_1.shape[0]# 区域宽度取决于图片宽width = gray_1.shape[1]# 最大白色数量white_max = 0# 最大黑色数量black_max = 0# 计算每一列的黑白色像素总和for i in range(width):s = 0  # 这一列白色总数t = 0  # 这一列黑色总数for j in range(height):if gray_1[j][i] == 255:s += 1if gray_1[j][i] == 0:t += 1white_max = max(white_max, s)black_max = max(black_max, t)white.append(s)black.append(t)# 找到右边界def find_end(start):end = start + 1for m in range(start + 1, width - 1):# 基本全黑的列视为边界if black[m] >= black_max * 0.95:  # 0.95这个参数请多调整,对应下面的0.05end = mbreakreturn end# 临时变量n = 1# 起始位置start = 1# 结束位置end = 2# 分割结果数量num=0# 分割结果res = []# 保存分割结果路径,以图片名命名output_path= output_dir + car.split('.')[0]if not os.path.exists(output_path):os.makedirs(output_path)# 从左边网右边遍历while n < width - 2:n += 1# 找到白色即为确定起始地址# 不可以直接 white[n] > white_maxif white[n] > 0.05 * white_max:start = n# 找到结束坐标end = find_end(start)# 下一个的起始地址n = end# 确保找到的是符合要求的,过小不是车牌号if end - start > 10:# 分割char = gray_1[1:height, start - 5:end + 5]# 保存分割结果到文件cv2.imwrite(output_path+'/' + str(num) + '.jpg',char)num+=1# 重新绘制大小char = cv2.resize(char, (300, 300), interpolation=cv2.INTER_CUBIC)# 添加到结果集合res.append(char)# cv2.imshow("imgStack", char)# cv2.waitKey(0)# 构造结果元祖方便结果展示res2 = (res[:2], res[2:4], res[4:6], res[6:])# 显示结果imgStack = stackImages(0.5, res2)cv2.imshow("imgStack", imgStack)cv2.waitKey(0)

其中一个结果


数字图像与机器视觉基础2相关推荐

  1. 数字图像与机器视觉基础补充(2)--颜色转换+分割车牌

    录 一.彩色图像文件转灰度文件 1.1 使用opencv 1.1.1 通过cvtColor库将其转为灰度 1.1.2 通过分离RGB三个通道得到三个通道的灰度图 1.2 不使用opencv 二.将彩色 ...

  2. 【计算机视觉】数字图像与机器视觉基础

    一.位图文件分析 1. 什么是位图 位图图像(bitmap),亦称为点阵图像或栅格图像,是由称作像素(图片元素)的单个点组成的.这些点可以进行不同的排列和染色以构成图样.当放大位图时,可以看见赖以构成 ...

  3. 数字图像与机器视觉基础补充(1)——区分位图和图像处理

    目录 一.图片转化 (1)原图 (2)转换为位图 (3)压缩率 二.区分位图 (1)16/32位位图对照 (2)256/16/单色位图对照 三.图片处理编程 (一)奇异函数分解(SDV) (二)用图像 ...

  4. 数字图像与机器视觉基础补充(2)

    一.彩色图像文件转换为灰度文件 (一)使用opencv 1.通过cvtColor库将其转为灰度 (1)代码 import cv2 as cv img = cv.imread('C:/Users/861 ...

  5. 数字图像与机器视觉基础(2)

    一.OpenCV+Python车牌字符分割 车牌号检测大致分为以下四个部分: 1.车辆图像获取 2.车牌定位 3.车牌字符分割 4.车牌字符识别 处理原理: 车牌定位需要用到的是图片二值化为黑白后进c ...

  6. 数字图像与机器视觉基础补充(1)

    一.比较不同位深度BMP文件 从网页上下载一张彩色图片,查看该图片信息,显示位深度24 通过电脑画图程序和PS软件,分别将该图片保存为 32位.16位彩色和256色.16色.单色的位图(BMP)文件. ...

  7. 【机器视觉】整合:机器视觉基础知识汇总

    本文系鼎酷IOT部落今日头条号原创,转载请注明出处. 到如今,中国已经成为世界机器视觉发展最为活跃地区,应用范围涵盖了工业.农业.医药.军事.航天.气象等国民经济各个行业.虽然机器视觉的成长速度非常快 ...

  8. 机器视觉基础笔记01

    机器视觉基础笔记01 1. 什么是图像?怎么定义图像? 图像定义为二维函数 *f(x,y)*,其中*x,y*是空间坐标,*f(x,y)*是点 *(x,y)*的幅值.灰度图像是一个二维灰度(或亮度)函数 ...

  9. 【机器视觉基础知识整理】

    机器视觉基础知识整理 本文记录一些比较有用的机器视觉硬件知识的文章链接,留以备用.会不定时更新补充,也欢迎大家下方评论补充,一起将有用的好文收集整理起来,用的时候也方便一些.(注:本文只附录文章链接, ...

最新文章

  1. JQuery弹出窗口小插件ColorBox
  2. 再议.Net中null的使用规范
  3. svn版本信息自动更新到源代码
  4. [Issue Fixed]-Ubuntu开发环境下遇到的环境问题梳理
  5. android lable标签,android:label说明
  6. 干货:产品经理怎么做才能在需求评审中少挨打?
  7. 一文说透架构设计的本质
  8. 【算法分析与设计】汉诺塔问题
  9. html代码格式化nodejs,使用Node编写的Sublime代码格式化工具插件(HTML/CSS/JS)
  10. C语言之结构体 共用体 枚举 typedef
  11. 企业网络拓扑图简述20200805
  12. 《指数基金投资指南》银行螺丝钉 ---读书
  13. 纵向表格转为横向表格
  14. java基础 day14数据安全,银行账户取款例子,synchronized()使用、面试题,死锁,线程安全
  15. HTML讲解(HTML结构及标签)
  16. 解决网上有重名的问题
  17. 【熬夜猛肝万字博文】学妹问我怎么入门 Javascript,百般盘问下我终于决定贡献出自己的 JavaScript入门笔记(三)
  18. Spring源码分析(十)依赖注入源码解析3:DefaultListableBeanFactory#doResolveDependency 真正开始解析依赖项
  19. IE 8下的pdf打不开
  20. Unity的声音 —— AudioSource 和 AudioListener

热门文章

  1. 如何得到最新、权威的全国县级以上行政区划代码
  2. 计算机视觉-语义分割任务常用指标
  3. 华为操作系统openEuler(欧拉)安装教程
  4. 导弹防御系统[导弹拦截系统]
  5. C#逻辑式编程语言极简实现:运行原理
  6. char 数组java_Java 将char数组复制到另一个char数组
  7. 【linux】主机名被改为bogon原理分析|修改主机名hostname的方法
  8. 51单片机中断相关寄存器
  9. 河南数权数字信息科技研究院成功完成首轮融资
  10. 安装Windows系统