复习提纲

概念题

  • 麦克斯韦方程组(Maxwell’s Equations)

    ∇ × H = J + ∂ D ∂ t \nabla \times H=J+\dfrac{\partial D}{\partial t} ∇×H=J+∂t∂D​

    ∇ × E = − ∂ B ∂ t \nabla \times E=-\dfrac{\partial B}{\partial t} ∇×E=−∂t∂B​

    ∇ ⋅ B = 0 \nabla \cdot B=0 ∇⋅B=0

    ∇ ⋅ D = ρ \nabla \cdot D= \rho ∇⋅D=ρ

  • 波矢:wave vector

    波前:wave front

    光强:light intensity

    折射率:refractive index

  • 群速度(group velocity)

    v g = c N g v_g = \dfrac{c}{N_g} vg​=Ng​c​,其中 N g = 1 − λ d n d λ N_g=1-\lambda \dfrac{dn}{d\lambda} Ng​=1−λdλdn​

  • 消逝波(evanescent wave)

    α 2 = 2 π n 2 λ [ ( n 1 n 2 ) 2 sin ⁡ 2 θ i − 1 ] 1 / 2 \alpha _2=\dfrac{2\pi n_2}{\lambda}[(\dfrac{n_1}{n_2})^2\sin^2 \theta_i-1]^{1/2} α2​=λ2πn2​​[(n2​n1​​)2sin2θi​−1]1/2

    δ = 1 α 2 \delta = \dfrac{1}{\alpha _2} δ=α2​1​(penetration depth)

  • 全反射(total internal refraction)

    θ c = arcsin ⁡ n 2 n 1 \theta _c=\arcsin \dfrac{n_2}{n_1} θc​=arcsinn1​n2​​

  • 斯涅尔定律(snell’s law)

    n 1 sin ⁡ θ 1 = n 2 sin ⁡ θ 2 n_1 \sin \theta _1 = n_2 \sin \theta_2 n1​sinθ1​=n2​sinθ2​

  • 菲涅尔方程(Fresnel’s Equations)

    r s = cos ⁡ θ i − [ n 2 − sin ⁡ 2 θ i ] 1 / 2 cos ⁡ θ i + [ n 2 − sin ⁡ 2 θ i ] 1 / 2 r_s=\dfrac{\cos \theta_i-[n^2-\sin^2\theta_i]^{1/2}}{\cos \theta_i+[n^2-\sin^2\theta_i]^{1/2}} rs​=cosθi​+[n2−sin2θi​]1/2cosθi​−[n2−sin2θi​]1/2​

    t s = 2 cos ⁡ θ i cos ⁡ θ i + [ n 2 − sin ⁡ 2 θ i ] 1 / 2 t_s=\dfrac{2\cos \theta_i}{\cos \theta_i+[n^2-\sin^2\theta_i]^{1/2}} ts​=cosθi​+[n2−sin2θi​]1/22cosθi​​

    r p = [ n 2 − sin ⁡ 2 θ i ] 1 / 2 − n 2 cos ⁡ θ i [ n 2 − sin ⁡ 2 θ i ] 1 / 2 + n 2 cos ⁡ θ i r_p=\dfrac{[n^2-\sin^2\theta_i]^{1/2}-n^2\cos \theta_i}{[n^2-\sin^2\theta_i]^{1/2}+n^2\cos \theta_i} rp​=[n2−sin2θi​]1/2+n2cosθi​[n2−sin2θi​]1/2−n2cosθi​​

    t p = 2 n cos ⁡ θ i [ n 2 − sin ⁡ 2 θ i ] 1 / 2 + n 2 cos ⁡ θ i t_p=\dfrac{2n\cos \theta_i}{[n^2-\sin^2\theta_i]^{1/2}+n^2\cos \theta_i} tp​=[n2−sin2θi​]1/2+n2cosθi​2ncosθi​​

    当 θ i = 0 \theta_i = 0 θi​=0时:

    r s = r p = n 1 − n 2 n 1 + n 2 r_s=r_p=\dfrac{n_1-n_2}{n_1+n_2} rs​=rp​=n1​+n2​n1​−n2​​

    t s = t p = 2 n 1 n 1 + n 2 t_s=t_p=\dfrac{2n_1}{n_1+n_2} ts​=tp​=n1​+n2​2n1​​

    R = R s = R p = ( n 1 − n 2 n 1 + n 2 ) 2 R=R_s=R_p=(\dfrac{n_1-n_2}{n_1+n_2})^2 R=Rs​=Rp​=(n1​+n2​n1​−n2​​)2

    T = T s = T p = 4 n 1 n 2 ( n 1 + n 2 ) 2 T=T_s=T_p=\dfrac{4n_1n_2}{(n_1+n_2)^2} T=Ts​=Tp​=(n1​+n2​)24n1​n2​​

  • Brewster’s angle

    θ p = arctan ⁡ n 2 n 1 \theta _p = \arctan \dfrac{n_2}{n_1} θp​=arctann1​n2​​

  • 减反膜原理

    2 π n 2 λ ⋅ 2 d = m π \dfrac{2\pi n_2}{\lambda}\cdot2d=m\pi λ2πn2​​⋅2d=mπ,所以 d = m ⋅ λ 4 n 2 d=m\cdot \dfrac{\lambda}{4n_2} d=m⋅4n2​λ​

    R m i n = ( n 2 2 − n 1 n 3 n 2 2 + n 1 n 3 ) 2 R_{min}=(\dfrac{n_2^2-n_1n_3}{n_2^2+n_1n_3})^2 Rmin​=(n22​+n1​n3​n22​−n1​n3​​)2,当 n 2 = n 1 n 3 n_2=\sqrt{n_1n_3} n2​=n1​n3​ ​时, R m i n = 0 R_{min}=0 Rmin​=0

  • 杨氏双缝

    极大值位置: x = m ⋅ D λ d x=m\cdot D\dfrac{\lambda}{d} x=m⋅Ddλ​

    极小值位置: x = ( m + 1 2 ) ⋅ D λ d x=(m+\dfrac{1}{2})\cdot D\dfrac{\lambda}{d} x=(m+21​)⋅Ddλ​

    Δ x = D ⋅ λ d \Delta x=D\cdot\dfrac{\lambda}{d} Δx=D⋅dλ​

  • 耗尽区:depletion region

    载流子:carrier

    内建电场:built-in electric field

    同质结:homojunction

    异质结:heterojunction

  • 质量作用定律(mass action law)

    n p = n i 2 = N c N v exp ⁡ ( − E g k B T ) np=n_i^2=N_cN_v\exp(-\dfrac{E_g}{k_BT}) np=ni2​=Nc​Nv​exp(−kB​TEg​​)

    N c = 2 ( 2 π m e ∗ k B T ) 3 / 2 h 3 N_c=\dfrac{2(2\pi m_e^*k_BT)^{3/2}}{h^3} Nc​=h32(2πme∗​kB​T)3/2​

    N v = 2 ( 2 π m h ∗ k B T ) 3 / 2 h 3 N_v=\dfrac{2(2\pi m_h^*k_BT)^{3/2}}{h^3} Nv​=h32(2πmh∗​kB​T)3/2​

  • 费米能(Fermi Energy)

    E F i = E v + 1 2 E g − 1 2 k B T ln ⁡ ( N c N v ) = E v + 1 2 E g − 3 4 k B T ln ⁡ ( m e ∗ m h ∗ ) E_{F_i}=E_v+\dfrac{1}{2}E_g-\dfrac{1}{2}k_BT\ln(\dfrac{N_c}{N_v})=E_v+\dfrac{1}{2}E_g-\dfrac{3}{4}k_BT\ln(\dfrac{m_e^*}{m_h^*}) EFi​​=Ev​+21​Eg​−21​kB​Tln(Nv​Nc​​)=Ev​+21​Eg​−43​kB​Tln(mh∗​me∗​​)

  • LED发光原理:自发辐射

    • 同质节LED:n区重掺杂,电子到p区复合;缺点:光子被吸收

      h ν 0 = E g + 1 2 k B T h\nu _0 =E_g+\dfrac{1}{2}k_BT hν0​=Eg​+21​kB​T

    • 异质结LED:限制载流子,减少吸收

    • QWLED:

    • LED效率:

      η I Q E = τ r − 1 τ r − 1 + τ n r − 1 \eta _{IQE}=\dfrac{\tau_r^{-1}}{\tau_r^{-1}+\tau_{nr}^{-1}} ηIQE​=τr−1​+τnr−1​τr−1​​

      η E E = P o ( i n t ) P o \eta _{EE}=\dfrac{P_{o(int)}}{P_o} ηEE​=Po​Po(int)​​

      η E Q E = P o / h ν I / e \eta _{EQE}=\dfrac{P_o/h\nu}{I/e} ηEQE​=I/ePo​/hν​

      η P C E = P o I V \eta _{PCE}=\dfrac{P_o}{IV} ηPCE​=IVPo​​

      η L E = Φ ν I V \eta _{LE}=\dfrac{\Phi_{\nu}}{IV} ηLE​=IVΦν​​

      Φ ν = P o × ( 633 l m W − 1 ) × V ( λ ) \Phi _{\nu}=P_o\times(633lmW^{-1})\times V(\lambda) Φν​=Po​×(633lmW−1)×V(λ)

    • LED types

      SLED:surface emitting

      ELED:edge emitting

    • 白光:

      光致发光(光照发光):蓝光照射黄光LED

  • 形成激光的必要条件

    • 受激辐射(stimulated emission)
    • 粒子数反转(population inversion)
    • 谐振腔(resonant cavity)
  • 激光的几个特征

    • 同相位(phase)
    • 同传播方向(direction of propagation)
    • 同频率(frequency)
    • 同极化方向(direction of polarization)
  • 红宝石激光器发光原理

    红宝石激光器由红宝石棒、脉冲氙灯、聚光器和谐振腔组成

    可看作是一个三能级系统

  • 量子阱

    材料构成:窄带隙半导体材料和宽带隙半导体材料

    结构:宽带隙势垒层夹着一个窄带隙超薄层

    能级结构: E n = E c + h 2 n 2 8 m e ∗ d 2 E_n=E_c+\dfrac{h^2n^2}{8m_e^*d^2} En​=Ec​+8me∗​d2h2n2​

  • 光探测器的输入输出

计算题

课本例题

  • 1.1.1(P26)

    Consider a He-Ne laser beam at 633 nm with a spot size of 1 mm. Assuming a Gaussian beam, what is the divergence of the beam? What are the Rayleigh range and the beam width at 25 m?

    Solution:

    divergence: 2 θ = 4 λ π ( 2 w o ) 2\theta =\dfrac{4\lambda}{\pi (2w _o)} 2θ=π(2wo​)4λ​

    Rayleigh range: z 0 = π w 0 2 λ z_0 =\dfrac{\pi w_0^2}{\lambda} z0​=λπw02​​

    beam width: 2 w = 2 w 0 [ 1 + ( z λ π w 0 2 ) 2 ] 1 / 2 2w=2w_0[1+(\dfrac{z\lambda}{\pi w _0^2})^2]^{1/2} 2w=2w0​[1+(πw02​zλ​)2]1/2

  • 1.4.2(P37)

    Consider a 5 mW He-Ne laser that is operating at 633 nm, and has a spot size of 1 mm. Find the maximum irradiance of the beam and the axial(maximum) irradiance at 25 m from the laser.

    Solution:

    maximum irradiance of the beam: I 0 = 2 P 0 π w 0 2 I_0=\dfrac{2P_0}{\pi w_0^2} I0​=πw02​2P0​​

    axial irradiance: I a x i s = I 0 ( z 0 z ) 2 = I 0 ( π w 0 2 λ z ) 2 I_{axis}=I_0(\dfrac{z_0}z)^2=I_0(\dfrac{\pi w_0^2}{\lambda z})^2 Iaxis​=I0​(zz0​​)2=I0​(λzπw02​​)2

  • 1.11.1(P73)

    Consider a Farbry-Perot optical cavity made of a semiconductor material with mirrors at its ends. The length of the semiconductor , and hense the cavity, is 250 μ \mu μm and mirrors at the ends have a reflectance of 0.90. Calculate the cavity mode nearest to the free-space wavelength of 1310 nm. Calculate the separation of the modes, finesse, spectral width of each mode in width of each mode in frequency and wavelength, and the Q-factor.

    Solution:

    nearest mode: m = 2 n L λ = 1374.05 m=\dfrac{2nL}\lambda=1374.05 m=λ2nL​=1374.05

    ​ λ m = 2 n L m \lambda_m=\dfrac{2nL}m λm​=m2nL​

    separation: Δ ν m = ν f = c 2 n L \Delta \nu_m=\nu _f=\dfrac{c}{2nL} Δνm​=νf​=2nLc​

    finesse: F = π R 1 − R F=\dfrac{\pi\sqrt{R}}{1-R} F=1−RπR ​​

    width: δ ν m = ν f F , δ λ m = δ ( c ν m ) = ∣ − c ν m 2 ∣ δ ν m \delta \nu _m=\dfrac{\nu _f}{F}, \delta\lambda _m=\delta(\dfrac c{\nu _m})=\left|-\dfrac{c}{\nu _m^2}\right|\delta\nu _m δνm​=Fνf​​,δλm​=δ(νm​c​)=∣∣∣∣​−νm2​c​∣∣∣∣​δνm​

    Q-factor: Q = m F Q=mF Q=mF

  • 3.3.1(P209)Fermi levels in semiconductors

    An n-type Si wafer has been doped uniformly with 1 0 16 10^{16} 1016 phosphorus atoms c m − 3 cm^{-3} cm−3. Calculate the position of the Fermi energy with respect to the Fermi energy E F i E_{F_i} EFi​​ in intrisic Si. The above n-type Si sample is further doped with 2 × 1 0 17 2\times 10^{17} 2×1017 boron atoms c m − 3 cm^{-3} cm−3. Calculate the position of the Fermi energy with respect to the Fermi energy E F i E_{F_i} EFi​​ in intrisic Si at the room temperature(300K), and hence with respect to the Fermi energy in the n-type case above.

    Solution:

    n = N c exp ⁡ [ − E c − E F n k B T ] n=N_c\exp[-\dfrac{E_c-E_{F_n}}{k_BT}] n=Nc​exp[−kB​TEc​−EFn​​​]

    n i = N c exp ⁡ [ − E c − E F i k B T ] n_i=N_c\exp[-\dfrac{E_c-E_{F_i}}{k_BT}] ni​=Nc​exp[−kB​TEc​−EFi​​​]

    n n i = exp ⁡ [ E F n − E F i k B T ] \dfrac{n}{n_i}=\exp[\dfrac{E_{F_n}-E_{F_i}}{k_BT}] ni​n​=exp[kB​TEFn​​−EFi​​​]

    ∴ E F n − E F i = k B T ln ⁡ ( n / n i ) \therefore E_{F_n}-E_{F_i}=k_BT\ln(n/n_i) ∴EFn​​−EFi​​=kB​Tln(n/ni​)

    similarly: ∴ E F p − E F i = − k B T ln ⁡ ( p / n i ) \therefore E_{F_p}-E_{F_i}=-k_BT\ln(p/n_i) ∴EFp​​−EFi​​=−kB​Tln(p/ni​)

    ∴ E F n − E F p = k B T ln ⁡ ( n / p ) \therefore E_{F_n}-E_{F_p}=k_BT\ln(n/p) ∴EFn​​−EFp​​=kB​Tln(n/p)

  • 3.9.1(P237)The built-in voltage from the band diagram

    e V o = Φ p − Φ n = E F n − E F p ( b e f o r e c o n t a c t ) eV_o=\Phi _p-\Phi _n=E_{F_n}-E_{F_p}(before\ contact) eVo​=Φp​−Φn​=EFn​​−EFp​​(before contact)

    n = N c exp ⁡ ( − E c − E F n k B T ) n=N_c\exp(-\dfrac{E_c-E_{F_n}}{k_BT}) n=Nc​exp(−kB​TEc​−EFn​​​)

    p = N v exp ⁡ ( − E F p − E v k B T ) p=N_v\exp(-\dfrac{E_{F_p}-E_v}{k_BT}) p=Nv​exp(−kB​TEFp​​−Ev​​)

    ∴ n p = N a N d = N c N v exp ⁡ ( − E c − E v + E F p − E F n k B T ) = n i 2 exp ⁡ ( F n − E F p k B T ) \therefore np=N_aN_d=N_cN_v\exp(-\dfrac{E_c-E_v+E_{F_p}-E_{F_n}}{k_BT})=n_i^2\exp(\dfrac{{F_n}-E_{F_p}}{k_BT}) ∴np=Na​Nd​=Nc​Nv​exp(−kB​TEc​−Ev​+EFp​​−EFn​​​)=ni2​exp(kB​TFn​−EFp​​​)

    e V o = k B T ln ⁡ [ ( N a N d ) / n i 2 ] eV_o=k_BT\ln[(N_aN_d)/n_i^2] eVo​=kB​Tln[(Na​Nd​)/ni2​]

  • 4.10.1(P336)Modes in a semiconductor laser and the optical cavity length

    Consider an AlGaAs-based heterostructure laser diode that has an optial cavity of length 200 μ m \mu m μm. The peak radiation is at 870 nm and the refractive index of GaAs is about 3.6. What is the mode integer m of the peak radiation and the separation between the modes of cavity? If the optial gain vs. wavelength characteristics has a FWHM wavelength width of about 6 nm, how many modes are there within this bandwidth?How many modes are there if the cavity length is 20 μ m \mu m μm?

    Solution:

    m = 2 n L λ m=\dfrac{2nL}{\lambda} m=λ2nL​

    Δ λ m = 2 n L m − 2 n L m + 1 = 2 n L m 2 = λ 2 2 n L \Delta \lambda _m=\dfrac{2nL}m-\dfrac{2nL}{m+1}=\dfrac{2nL}{m^2}=\dfrac{\lambda ^2}{2nL} Δλm​=m2nL​−m+12nL​=m22nL​=2nLλ2​

    number of modes: Δ λ 1 / 2 Δ λ m \dfrac{\Delta\lambda_{1/2}}{\Delta\lambda_m} Δλm​Δλ1/2​​

  • 4.11.1(P339)A GaAs quantum well

    Consider a very thin GaAs quantum well sandwiched between two wider bandgap semiconductor layers of AlGaAs. The QW depth from E c E_c Ec​ and E v E_v Ev​ are approximately 0.28 eV and 0.16 eV, respectively. Effective mass m e ∗ m_e^* me∗​ of a conduction electron in GaAs is approximately 0.07 m e m_e me​, where m e m_e me​ is the electron mass in vacuum. Calculate the first two electron energy levels for a quantum well of thickness 10 nm. What is the hole energy in the QW above E v E_v Ev​ of GaAs if the hole effective mass m h ∗ ≈ 0.50 m e m_h^*\approx0.50m_e mh∗​≈0.50me​? What is the change oin the emission wavelength with respect to bulk GaAs, for which E g = 1.42 e V E_g=1.42eV Eg​=1.42eV? Assume infinite QW depths for the calculations.

    Solution:

    ε n = E n − E c = h 2 n 2 8 m e ∗ d 2 \varepsilon_n=E_n-E_c=\dfrac{h^2n^2}{8m_e^*d^2} εn​=En​−Ec​=8me∗​d2h2n2​

    ε n ′ = E v − E n = h 2 n ′ 2 8 m h ∗ d 2 \varepsilon_{n\prime}=E_v-E_n=\dfrac{h^2n\prime^2}{8m_h^*d^2} εn′​=Ev​−En​=8mh∗​d2h2n′2​

    λ g = h c E g \lambda_g=\dfrac{hc}{E_g} λg​=Eg​hc​

    λ Q W = h c E g + ε 1 + ε 1 ′ \lambda_{QW}=\dfrac{hc}{E_g+\varepsilon_1+\varepsilon_1^\prime} λQW​=Eg​+ε1​+ε1′​hc​

  • 4.12.1(P346)Laser output wavelength wariation with temperature

    The refractive index n of GaAs is approximately 3.6 and it has a temperature dependence d n / d T ≈ 2.0 × 1 0 − 4 K − 1 dn/dT\approx2.0\times10^{-4}K^{-1} dn/dT≈2.0×10−4K−1. Estimate the change in th emitted wavelength at around 870 nm per degree change in the temperature for a given mode.

    Solution:

    d λ m d T = d d T [ 2 m n L ] = 2 L m d n d T = λ m n d n d T \dfrac{d\lambda_m}{dT}=\dfrac{d}{dT}[\dfrac2mnL]=\dfrac{2L}m\dfrac{dn}{dT}=\dfrac{\lambda_m}n\dfrac{dn}{dT} dTdλm​​=dTd​[m2​nL]=m2L​dTdn​=nλm​​dTdn​

课后习题

  • 1.1Maxwell’s wave equation and plane waves

    ∂ 2 E ∂ x 2 + ∂ 2 E ∂ y 2 + ∂ 2 E ∂ z 2 − ε 0 ε r μ 0 ∂ 2 E ∂ t 2 = 0 \dfrac{\partial^2E}{\partial x^2}+\dfrac{\partial^2E}{\partial y^2}+\dfrac{\partial^2E}{\partial z^2}-\varepsilon_0\varepsilon_r\mu_0\dfrac{\partial^2E}{\partial t^2}=0 ∂x2∂2E​+∂y2∂2E​+∂z2∂2E​−ε0​εr​μ0​∂t2∂2E​=0

  • 3.6Electrons in GaAs

    Given that the electron effective mass m e ∗ m_e^* me∗​ for the GaAs is 0.067 m e m_e me​, calculate the thermal velocity of electrons in the CB of a nondegenately doped GaAs at room temperture. If μ e \mu_e μe​ is the drift mobility of the electrons and τ e \tau_e τe​ the mean free time between electron scaterring everents and if μ e = e τ e / m e ∗ \mu_e=e\tau_e/m_e^* μe​=eτe​/me∗​, calculate τ e \tau_e τe​, given μ e = 8500 c m 2 V − 1 s − 1 \mu_e=8500cm^2V^{-1}s^{-1} μe​=8500cm2V−1s−1. Calculate the drift velocity v d = μ e E v_d=\mu_eE vd​=μe​E of the CB electrons in an applied field E of 1 0 5 V m − 1 10^5Vm^{-1} 105Vm−1.

    Solution:

    1 2 m e ∗ v t h 2 = 3 2 k B T \dfrac{1}2m_e^*v_{th}^2=\dfrac32k_BT 21​me∗​vth2​=23​kB​T

    τ e = m e ∗ μ e e \tau_e=\dfrac{m_e^*\mu_e}e τe​=eme∗​μe​​

    v d = μ e E v_d=\mu_eE vd​=μe​E

  • 3.9Compensation doping in n-type Si

    An n-type Si sample has been doped with 1 0 16 10^{16} 1016 phosphorus atoms c m − 3 cm^{-3} cm−3. ( a )What are the electron and hole concentrations?( b )Calculate the room temperature conductivety of the sample. ( c )Where is the Fermi level with respect to E F i E_{F_i} EFi​​? ( d )If we now dope the crystal with 1 0 17 10^{17} 1017 boron acceptors, what will be the electron and hole concentrations? ( e )Where is the Fermi level with respect to E F i E_{F_i} EFi​​.

    Solution:

    ( a ) n = N d , p = n i 2 / n n=N_d,\ p=n_i^2/n n=Nd​, p=ni2​/n

    ( b ) σ = e n μ e + e p μ h \sigma=en\mu_e+ep\mu_h σ=enμe​+epμh​

    ( c ) n = N c exp ⁡ ( − E − E F n k B T ) n=N_c\exp(-\dfrac{E_-E_{F_n}}{k_BT}) n=Nc​exp(−kB​TE−​EFn​​​)

    n i = N c exp ⁡ ( − E c − E F i k B T ) n_i=N_c\exp(-\dfrac{E_c-E_{F_i}}{k_BT}) ni​=Nc​exp(−kB​TEc​−EFi​​​)

    n / n i = exp ⁡ ( E F n − E F i k B T ) n/n_i=\exp(\dfrac{E_{F_n}-E_{F_i}}{k_BT}) n/ni​=exp(kB​TEFn​​−EFi​​​)

    E F n − E F i = k B T ln ⁡ ( N d / n i ) E_{F_n}-E_{F_i}=k_BT\ln(N_d/n_i) EFn​​−EFi​​=kB​Tln(Nd​/ni​)

    ( d ) p = N a − N d , n = n i 2 / p p=N_a-N_d,\ n=n_i^2/p p=Na​−Nd​, n=ni2​/p

    ( e ) E F p − E F i = k B T ln ⁡ ( n i / p ) E_{F_p}-E_{F_i}=k_BT\ln(n_i/p) EFp​​−EFi​​=kB​Tln(ni​/p)

  • 3.29LED efficients

    A partiaclar 890 nm IR LED for use instrumentation has an AlGaAs chip. The cative region has been doped p-type with 4 × 1 0 17 c m − 3 4\times10^{17}cm^{-3} 4×1017cm−3 of acceptors and the nonradiative lifetime is about 60 ns. At a forward current of 50 mA, the voltage across it is 1.4 V, and the emitted optical power is 10 mW. Calculate the PCE, IQE, EQE, and estimate the light eatration ratio. For AlGaAs, B ≈ 1 × 1 0 16 m 3 s − 1 B\approx1\times10^{16}m^3s^{-1} B≈1×1016m3s−1.

    Solution:

    τ r = 1 B N a \tau_r=\dfrac{1}{BN_a} τr​=BNa​1​

    η I Q E = τ r − 1 τ r − 1 + τ n r − 1 \eta_{IQE}=\dfrac{\tau_r^{-1}}{\tau_r^{-1}+\tau_{nr}^{-1}} ηIQE​=τr−1​+τnr−1​τr−1​​

    η P C E = P o I V \eta_{PCE}=\dfrac{P_o}{IV} ηPCE​=IVPo​​

    η E Q E = P o / h ν I / E \eta_{EQE}=\dfrac{P_o/h\nu}{I/E} ηEQE​=I/EPo​/hν​

    η E E = η I W Q / η E W Q \eta_{EE}=\eta_{IWQ}/\eta_{EWQ} ηEE​=ηIWQ​/ηEWQ​

  • 4.13 Photon concentration in a gas laser

    The Ar ion laser has a strong lasing emission at 488 nm. The laser tube is 1 m in length, and the bore diameter is 3 mm. The output power is 1 W. Assume that most of the out put power is in the 488 nm emission. Assume that the tube end has a transittance T of 0.1. Calcultate the photon output flow, photon flux, and estimate the order of magnitude of the steady state photon concentration in the tube.

    Solution:

    P h o t o n F l o w = P o h ν Photon\ Flow=\dfrac{P_o}{h\nu} Photon Flow=hνPo​​

    Γ p h = P o A h ν \Gamma_{ph}=\dfrac{P_o}{Ah\nu} Γph​=AhνPo​​

    P o h ν = T n p h A L Δ t \dfrac{P_o}{h\nu}=T\dfrac{n_{ph}AL}{\Delta t} hνPo​​=TΔtnph​AL​

    Δ t = 2 L / c \Delta t=2L/c Δt=2L/c

    n p h = P o T A c h ν n_{ph}=\dfrac{P_o}{TAch\nu} nph​=TAchνPo​​

  • constant

    k B = 1.38 × 1 0 − 23 J / K k_B=1.38\times10^{-23}J/K kB​=1.38×10−23J/K

    h = 6.626 × 1 0 − 34 J ⋅ s h=6.626\times10^{-34}J\cdot s h=6.626×10−34J⋅s

    m e = 9.10956 × 1 0 − 31 k g m_e=9.10956\times10^{-31}kg me​=9.10956×10−31kg

    e = 1.602 × 1 0 − 19 C e=1.602\times10^{-19}C e=1.602×10−19C

光电子学期末复习笔记相关推荐

  1. 【期末复习笔记】知识产权法——著作权、专利法、商标权

    [期末复习笔记]知识产权法 著作权 著作权法不予以保护的客体 著作权的归属 著作权的内容 著作人身权 著作财产权 著作权的取得方式:自动取得 著作权的保护期限: 邻接权 表演者权 表演者义务 表演者权 ...

  2. 【Python数据分析与可视化】期末复习笔记整理(不挂科)

    [Python数据分析与可视化]期末复习笔记 1. 数据分析与可视化概述 对比 概念 常用工具 Python常用类库 Jupyter notebook中的常用快捷方式 2. Python编程基础 co ...

  3. RFID原理及应用期末复习笔记 | 1.RFID概述【完结✿✿ヽ(°▽°)ノ✿】

    系列索引:RFID原理及应用期末复习笔记 | 快速索引 RFID是博主大三下的一门专业课,因为疫情缩短学期进程提前结课,所以期末考试也来的更早,这里就简单记录一下自己复习时的一些笔记,也给后来的学弟学 ...

  4. 南邮部分期末复习笔记汇总@tou

    README 知识库链接:tou/njupt-cst-notes 这个知识库存放了部分我在 NJUPT-CST 专业就读期间的期末复习笔记,这一部分公开的语雀笔记是我众多笔记中总结的还算 OK 的,仅 ...

  5. 奇异矩阵能lu分解条件_矩阵分析-期末复习笔记(上)

    (复习笔记,可能有点乱.夹杂着乱七八糟的英文,因为要用英文考试.) (如果有误请一定要和我说!祝我final考个好成绩-) 目录: 特征值,特征向量,相似 (Eigenvalues, eigenvec ...

  6. 数理统计期末复习笔记(一)

    数理统计期末复习笔记 主要内容: 数据压缩,点估计,假设检验,区间检验 Reference: Statistical Inference, Casella&Berger Chapter 6 D ...

  7. 【期末复习】北京邮电大学《数字内容安全》课程期末复习笔记(5. 社交媒体安全)

    [相关链接] [期末复习]北京邮电大学<数字内容安全>课程期末复习笔记(1. 绪论) [期末复习]北京邮电大学<数字内容安全>课程期末复习笔记(2. 信息隐藏与数字水印) [期 ...

  8. 抽样调查理论与方法期末复习笔记

    第3章 简单随机抽样 均方误差=方差+偏倚的平方 ​ 3.5某林场共有1000公顷林地,随机布设了50块面积为0.06公顷的方形样地,测得这50块样本地的平均木材蓄积量为9m3,标准差为1.63m3. ...

  9. 2021/06/29计算机视觉期末复习笔记整理

    计算机视觉期末复习笔记整理 引言 我的复习参考 期末考试考题回忆 PPT对应中文笔记整理 参考的几篇博客的笔记 引言 刚结束可能是我学生时代最后一场考试了,orz热乎着,记录一下. 这门课是学校新开的 ...

最新文章

  1. (0047)iOS开发之nil/Nil/NULL的区别
  2. 提高你30%的设计效率的PPT快捷键
  3. JS正则表达式常见场景下的用法总结
  4. 图论基础知识--最小生成树算法kruskal(克鲁斯克尔)和普里姆算法(Prim算法);最短路径算法Dijkstra(迪杰斯特拉)和Floyd(弗洛伊德)
  5. __set() And __get() 使用详解.
  6. 嵌入式Linux入门6:u-boot移植
  7. Android studio进行文件,代码对比
  8. gRPC调试, 用 Apipost
  9. 浙江省计算机二级办公软件高级应用技术,浙江省计算机二级办公软件高级应用技术考试大纲.doc...
  10. 【0】嵌入式TCP/IP协议——————Art-Net协议详解
  11. PCI Express (PCIe) 介绍
  12. 什么是大型机和小型机
  13. 将DLL注册到GAC
  14. 360与QQ大战,谁之过?
  15. HDU 6441 Find Integer(费马大定理)
  16. 怎么区分zh和ch_怎样区分zhchsh与zcs
  17. 计算机网络笔试面试题目大全
  18. 云计算方向研究热点、 云计算有怎样的发展前景?
  19. 基本概念:色调、色相、饱和度、对比度、亮度
  20. 为Linux内核函数插入二进制指令并且校准偏移的手艺

热门文章

  1. PostgreSQL及可视化界面navicat在linux-Ubuntu的搭建
  2. html5的for,HTML5 | Be For Web - 为网而生
  3. 宝鲲财经:炒汇高手补仓技巧
  4. python 期末复习笔记
  5. 图像特征分析(一):颜色特征描述,颜色矩,颜色直方图(附matlab代码)
  6. P1136 迎接仪式 (动态规划)
  7. 红旗 Linux 桌面操作系统11来了:支持国产自主CPU,全新UI风格设计,兼容面广...
  8. 关于编辑C语言代码中间位置时每次输入都被替换的解决方案
  9. OpenCV-Python教程:直方图及其绘制(calcHist)
  10. 红米5plus成功移植刷入统信UOS