博主福利:100G+电子设计学习资源包!

http://mp.weixin.qq.com/mp/homepage?__biz=MzU3OTczMzk5Mg==&hid=7&sn=ad5d5d0f15df84f4a92ebf72f88d4ee8&scene=18#wechat_redirect
--------------------------------------------------------------------------------------------------------------------------

基于51的MPU6050模块通信简介(入门级)

因为是入门级,就先最简单的介绍如何利用51从MPU6050中读取数据吧(对于想知道卡尔曼滤波、俯角仰角、距离测量、摔倒检测、记步等算法的可能要在接下来介绍)。既然要和MPU6050通信,那么必不可少的是阅读芯片手册,如果您觉得亲自去看又长又多而且都是英文的手册很费时,不仿看看我找的简要版:

MPU-60X0是全球首例9轴运动处理器。它集成了3轴MEMS陀螺仪,3轴MEMS加速计,以及1个可扩展的数字运动处理器DMP(Digital Motion Processor),可用I2C接口连接一个第三方的数字传感器,比如磁力计。扩展之后就可以通过其I2C或SPI接口输出一个9轴的信号。MPU-60X0也可以通过其I2C接口连接非惯性的数字传感器,比如压力传感器。

MPU-60X0对陀螺仪和加速计分别用了三个16位的ADC,将其测量的模拟量转化为可输出的数字量。为了精确跟踪快速和慢速运动,传感器的测量范围是可控的,陀螺仪可测范围为±250,±500,±1000,±2000°/秒(dps),加速计可测范围为±2,±4,±8,±16g(重力加速度)。

注:下图是采用串口助手将MPU6050采集的数据显示在上位机上,其中前三列输出为三维的加速度(这里的加速度包括地球本身的重力加速度),后三列为三维的角速度。

但是这里的输出值并不是真正的加速度和角速度的值,上面说过,MPU是一个16位AD量程可程控的设备,这里设置的加速度传感器的测量量程为正负2g(这里的g为重力加速度),陀螺仪的量程为正负2000°/s。所以要用下面的公式进行转化:

好了,有了上面的基础知识之后咱们就能尝试用51的I2C总线从MPU6050读取实时的3轴加速度和3轴角速度了。由于51本身不带有I2C总线通信协议,所以我们要自己实现一个I2C通信协议,下面是我从网上找的并稍加修改的一个I2C总线通信的代码:

 1 #include <REG52.H>2 #include <INTRINS.H>3     4 typedef unsigned char  uchar;5 typedef unsigned short ushort;6 typedef unsigned int   uint;7 8 //-----------------------------------------9 // 定义MPU6050内部地址
10 //-----------------------------------------
11 #define    SMPLRT_DIV      0x19    //陀螺仪采样率,典型值:0x07(125Hz)
12 #define    CONFIG          0x1A    //低通滤波频率,典型值:0x06(5Hz)
13 #define    GYRO_CONFIG     0x1B    //陀螺仪自检及测量范围,典型值:0x18(不自检,2000deg/s)
14 #define    ACCEL_CONFIG    0x1C    //加速计自检、测量范围及高通滤波频率,典型值:0x01(不自检,2G,5Hz)
15 #define    ACCEL_XOUT_H    0x3B
16 #define    ACCEL_XOUT_L    0x3C
17 #define    ACCEL_YOUT_H    0x3D
18 #define    ACCEL_YOUT_L    0x3E
19 #define    ACCEL_ZOUT_H    0x3F
20 #define    ACCEL_ZOUT_L    0x40
21 #define    TEMP_OUT_H      0x41
22 #define    TEMP_OUT_L      0x42
23 #define    GYRO_XOUT_H     0x43
24 #define    GYRO_XOUT_L     0x44
25 #define    GYRO_YOUT_H     0x45
26 #define    GYRO_YOUT_L     0x46
27 #define    GYRO_ZOUT_H     0x47
28 #define    GYRO_ZOUT_L     0x48
29 #define    PWR_MGMT_1      0x6B    //电源管理,典型值:0x00(正常启用)
30 #define    WHO_AM_I        0x75    //IIC地址寄存器(默认数值0x68,只读)
31 #define    SlaveAddress    0xD0    //IIC写入时的地址字节数据,+1为读取
32
33 //-----------------------------------------
34 // I2C总线通信函数
35 //-----------------------------------------
36 void  I2C_Start();                  //I2C起始信号
37 void  I2C_Stop();                   //I2C停止信号
38 void  I2C_SendACK(bit ack);         //I2C发送应答信号[入口参数:ack (0:ACK 1:NAK)]
39 bit   I2C_RecvACK();                //I2C接收应答信号
40 void  I2C_SendByte(uchar dat);      //向I2C总线发送一个字节数据
41 uchar I2C_RecvByte();               //从I2C总线接收一个字节数据
42 void  Single_WriteI2C(uchar REG_Address,uchar REG_data);//向I2C设备写入一个字节数据
43 uchar Single_ReadI2C(uchar REG_Address);                //从I2C设备读取一个字节数据
44
45 //-----------------------------------------
46 // 通过I2C和MPU6050通信的函数
47 //-----------------------------------------
48 void InitMPU6050();                //初始化MPU6050
49 int GetData(uchar REG_Address);    //合成数据

如果你没搞过硬件又从未听说过I2C,那么想想socket的握手再看看上面36~43行的有关ACK、Send、Write的函数大概能明白I2C的功能。当我们实现I2C的通信函数之后就可以与带有I2C通信接口的芯片进行通信,那么怎样通信呢?其实很简单——你可以把每个芯片比做为一个巨大的储物柜,储物柜里每个抽屉里存着相应的东西,你想让佣人帮你去拿个东西,只要告诉佣人对应的抽屉号就行了。这里I2C总线相当于这个佣人,每个抽屉相当于芯片中的寄存器,抽屉号相当于寄存器地址。当你想设置芯片的某些属性时是向对应的寄存器内写数据,当想从芯片内获取相关数据时,就要通过I2C向对应的地址写数据然后接收芯片返回的数据。这里的8~31行为MPU-6050芯片内几个常用的寄存器地址,前四个常用来作为设置芯片工作属性,15~28共14个寄存器地址用来获取传感器的3轴加速度、3轴角速度和温度的数据(这里每一种信息都包括H和L两位,是由于8位表示不完该数据,于是分高低两部分)

这样我们便不难理解InitMPU6050()和GetData(uchar REG_Address)函数:初始化函数是向相应的地址写初始化配置数据(关于0x00\0x07等意思请参看MPU6050寄存器版说明书),而GetData则是传入想获得数据项的低地址,然后连续读取当前地址数据和下一地址数据合成为想要的项目数据(上面讲了数据分高低部分)。

 1 //-----------------------------------------2 //初始化MPU60503 //-----------------------------------------4 void InitMPU6050()5 {6     Single_WriteI2C(PWR_MGMT_1, 0x00);    //解除休眠状态7     Single_WriteI2C(SMPLRT_DIV, 0x07);8     Single_WriteI2C(CONFIG, 0x06);9     Single_WriteI2C(GYRO_CONFIG, 0x18);
10     Single_WriteI2C(ACCEL_CONFIG, 0x01);
11 }
12 //-----------------------------------------
13 //合成数据
14 //-----------------------------------------
15 int GetData(uchar REG_Address)
16 {
17     uchar H,L;
18     H=Single_ReadI2C(REG_Address);
19     L=Single_ReadI2C(REG_Address+1);
20     return (H<<8)+L;   //合成数据
21 }


2、陀螺仪数据采集与传输及帧格式介绍(小技巧)

上面我们已经知道单片机如何利用I2C设置MPU6050的工作属性,以及从MPU6050获得3轴加速度和3轴角速度的数据。那么接下来将介绍单片机是如何将数据通过蓝牙发送给上位机的。如下图左半部分,下位机部分包括一个MPU6050、一个单片机、一个电源模块,以及一个蓝牙模块。对于蓝牙模块我不想做过多的讲解(我记得我已经写了不下于3次关于手机、PC等和下位机通信的教程了:(如果是想用安卓手机和蓝牙模块通信来实现遥控功能的话,可以参考:http://www.cnblogs.com/zjutlitao/p/4231635.html;想用笔记本和蓝牙模块通信来实现遥控功能的话可以参考:http://www.cnblogs.com/zjutlitao/p/3886826.html)

其实,利用串口蓝牙模块单片机要做的工作和对串口进行的操作一样,对串口写数据则送至蓝牙模块将数据发出,当外部有数据传送过来时,单片机可以用相应的中断捕获该事件,然后接收消息。因此主函数中初始化串口和MPU6050之后就进入循环数据发送状态,在循环中GetData是上面介绍的获得3轴加速度、3轴角速度或温度的值的函数,SendData则是将int类型的值转换为字符串然后一位一位的发送出去,而最开始和最后分别发送一个#和$作为该帧的开始和结束标志位,具体格式如下:

#    1 2 3 5 4 - 2 1 3 3 2 - 2 1 1 2 5 $

注:符号位要么为'-',要么为空。

 1 //-----------------------------------------2 //主程序3 //-----------------------------------------4 void main()5 { 6     delay(500);        //上电延时        7     init_uart();8     InitMPU6050();    //初始化MPU60509     delay(150);
10     while(1)
11     {
12         SeriPushSend('#');//
13         SendData(GetData(0x3B));    //X轴加速度
14         SendData(GetData(0x3D));    //Y轴加速度
15         SendData(GetData(0x3F));    //Z轴加速度
16         SeriPushSend('$'); //结束
17         delay(20);
18     }
19 }


3、基于C#的串口接收函数(C#基本知识)

上面讲到下位机通过串口蓝牙将数据发送给上位机,那么上位机如何接收蓝牙信号呢?其实以我的笔记本为例,因为笔记本内置蓝牙模块,所以无需在上位机上独立安装一个USB-蓝牙模块。而上位机操作蓝牙模块和操作串口几乎一模一样。如下面的C#程序,当点击连接按钮时实例化SerialPort,设置端口号、读超时、然后实例化一个串口数据接收事件句柄(这里PortDataReceived作为数据接收的回调函数)。

 1 //Create a serial port for Connection2 SerialPort Connection = new SerialPort();3 private void btn_link_Click(object sender, EventArgs e)4 {5     if (!Connection.IsOpen)6     {7         //Start8         //Status = "正在连接...";9         Connection = new SerialPort();
10         btn_link.Enabled = false;
11         Connection.PortName = PortList.SelectedItem.ToString();
12         Connection.Open();
13         Connection.ReadTimeout = 10000;
14         Connection.DataReceived += new SerialDataReceivedEventHandler(PortDataReceived);
15         //Status = "连接成功";
16         timer1.Start();
17     }
18 }

在PortDataReceived中,只要简单调用Connection.Read(data, 0, length);就能从串口缓冲区读取数据到data中。

1 private void PortDataReceived(object o, SerialDataReceivedEventArgs e)
2 {
3     byte[] data = new byte[length];
4     int num=Connection.Read(data, 0, length);
5     datepool.push_back(data,num);//实际接收的不一定是length,之前一直错
6     Connection.DiscardInBuffer();
7     Connection.DiscardOutBuffer();
8 }

注:本来是每次读取1byte放入数据池,结果出现程序运行速度越来越慢,本以为是上面的数据池设计的有问题,结果把数据池里的线程注释掉改为ask函数来每次需要数据时才获得,但是问题并不在于此;于是想到可能是绘制折线图的函数有问题,但是重查了一遍发现问题不在于此;于是仔细测量每个过程耗时,发现每个模块耗时正常,最后发现是由于串口缓冲区数据积累造成程序变慢,(因为下位机每20ms发送一次20byte的数据给上位机,上位机若一次不接收完所有数据,将会造成每次都有剩余而逐渐变慢),于是直接改成每次接收20byte,问题得到解决。


4、多线程数据池解决高速串口实时性问题(难点)

由于下位机10ms发送一次20byte的数据,上位机一方面要做好接收工作,保证数据不拥挤在串口接收缓冲区;另一方面也要实时获取当前从串口读到的最新数据。如果采用传统多线程+锁的机制是可以的,但是当多线程中加入锁势必会影响程序执行效率,通过综合分析该问题最终抽象出一个特殊的数据模型——自动更新的环形栈:

这样,当采用多线程时,用一个类似于栈的环状栈结构体(实时从串口读数据放入数据池,数据池用p_write标记最新数据存储位置,当外部程序想得到最新数据时,调用ask程序,ask程序从当前p_write向前取40个数据(因为有效数据长度为20,一次取40保证至少有一个有效数据),然后从这40个数据中找出有效信息,赋值给X,Y,Z;然后外部程序可以直接用对象访问X,Y,Z),通过适当调节环的容量达到自我覆盖的效果,同时根据p_write指针可以实时取得最新数据。

 1 /// <summary>2 /// 询问当前值3 /// </summary>4 /// <returns>如果解析到则返回真</returns>5 public bool ask()6 {7     i = 0;//立刻将相应的40个字符复制出来8     p_read_from = p_write - 40;9     while (i < 40)
10     {
11         str[i] = pool[(p_read_from + pool_size) % pool_size];
12         i++;
13         p_read_from++;
14     }
15     i = 39;
16     while (i > 18 && str[i] != '$') i--;
17     if (i == 18) return false;
18     i--;
19     data_Z = 0;
20     for (int j = 4; j > -1; j--)
21     {
22         data_Z *= 10;
23         data_Z += (str[i - j] - '0');
24     }
25     if (str[i - 5] == '-') data_Z = -data_Z;
26     i -= 6;
27
28     data_Y = 0;
29     for (int j = 4; j > -1; j--)
30     {
31         data_Y *= 10;
32         data_Y += (str[i - j] - '0');
33     }
34     if (str[i - 5] == '-') data_Y = -data_Y;
35     i -= 6;
36
37     data_X = 0;
38     for (int j = 4; j > -1; j--)
39     {
40         data_X *= 10;
41         data_X += (str[i - j] - '0');
42     }
43     if (str[i - 5] == '-') data_X = -data_X;
44
45     X = data_X;
46     Y = data_Y;
47     Z = data_Z;
48     return true;
49 }
50
51 /// <summary>
52 /// 将数据输入数据池
53 /// </summary>
54 /// <param name="date">数据</param>
55 /// <param name="length">长度</param>
56 internal void push_back(byte[] date, int length)
57 {
58     for (int i = 0; i < length; i++)
59     {
60         pool[p_write++] = date[i];
61         if (p_write == pool_size) p_write = 0;
62     }
63 }


5、折线图可视化模块(程序员基本功)

通过上面几步我们已经可以将下位机的陀螺仪3轴的加速度收集过来了,但是如果先将数据收集好,然后再用matlab绘制,我们很难知道哪个动作对应哪个数据,不利于我们观察效果(虽然matlab上自带串口接口,但是LZ就是任性!有一张好看的脸,还是想着靠实力赢得地位,哈哈哈~)。

如本节小标题括号内所示,在C#里写一个绘制折线图的程序应该属于我们的基本功(我可不是调用相应的绘图接口哦!),其大致思想就是用一个List存储num个数据,当list中的数据少于num个时则不断添加,当list内的数据大于num个时,则从尾部进来一个的同时从头部删除一个(这样才能实现perfect的效果)。

注:其实中间还出现了一个逻辑错误性小插曲:原初写好之后,本以为能够实现高效数据采集显示,但是仔细观察发现还是有很大延时,但是旁边的数据显示却非常实时。这是为什么呢?查找了一会最终发现问题出在折线图绘制上——本来采用固定的模式(一张图能存放多少数据点就用vector<int>P/Q/R在初始化的时候存放这么多点,然后每次有一个新的数据过来时就会将新数据加到vector后面,同时删除最前面的一个数据,这样做是为了方便初始vector里没有数据绘制折线图错误的问题),可是问题就出在这!咋一看这种思路很好,初始化vector中放num个点,每次新的来到将最前面一个数据冲掉,这样这个vector始终保持着num个点,且最新的在最后面,整个折线图能反应实时情况。但是由于我为了“安全”起见,在vector初始化时多Add几个数据,这样导致vector中的数据量N>折线图一次能呈现的数据量num,所以最新的数据总会在之后出现!当时没有想到是这个原因,就直接改了下DateLineChar函数,实现根据vector大小自动绘制的算法(这样就不用预先在vector中装入一定量的值了)

MPU6050 - 陀螺仪 - 技术总结相关推荐

  1. 【51单片机快速入门指南】4.3: I2C读取MPU6050陀螺仪的原始数据

    目录 硬知识 特性参数 MPU6050 简介 模块重要寄存器简介 电源管理寄存器 1 陀螺仪配置寄存器 加速度传感器配置寄存器 FIFO 使能寄存器 陀螺仪采样率分频寄存器 配置寄存器 电源管理寄存器 ...

  2. MPU-6050陀螺仪灵敏度LSBs/°/sec含义并与GY-85对比

    MPU-6050陀螺仪灵敏度LSBs/°/sec含义并与GY-85对比 引言 MPU-6050陀螺仪灵敏度参数 GY-85陀螺仪灵敏度参数 结语 引言 在研究MEMS陀螺的时候尝试过GY-85,但是测 ...

  3. android 陀螺仪滤波_Arduino MPU6050陀螺仪运用卡尔曼滤波姿态解算实验

    Arduino MPU6050陀螺仪运用卡尔曼滤波姿态解算实验 版权声明:本文为博主原创文章,未经博主允许不得转载. 2019年3月20日 发布 实例效果 输出效果: 首先看看本例程XYZ轴的输出效果 ...

  4. android 陀螺仪滤波_Arduino+mpu6050陀螺仪运用卡尔曼滤波姿态解算实验

    MPU6050六轴陀螺仪 作用于四轴无人机,平衡车,机器人等等的电子实作当中,用于姿态判断,掌握了可以发挥自己的想象完成更多更有趣的作品. 本例程输出XYZ的角度,正负90度. 运用卡尔曼滤波算法解算 ...

  5. 树莓派基础实验31:MPU6050陀螺仪加速度传感器实验

    一.介绍    MPU6050是世界上第一款也是唯一一款专为智能手机.平板电脑和可穿戴传感器的低功耗.低成本和高性能要求而设计的6轴运动跟踪设备.    它集成了3轴MEMS陀螺仪,3轴MEMS加速度 ...

  6. Arduino uno + mpu6050 陀螺仪 运用卡尔曼滤波姿态解算实验

    MPU6050六轴陀螺仪 作用于四轴无人机,平衡车,机器人等等的电子实作当中,用于姿态判断,掌握了可以发挥自己的想象完成更多更有趣的作品. 本例程输出XYZ的角度,正负90度. 运用卡尔曼滤波算法解算 ...

  7. STM32F4之MPU6050陀螺仪

    STM32F4之MPU6050陀螺仪串口输出DMP角度 1.陀螺仪的yaw.pitch.roll方向 2.陀螺仪.加速度计.磁场计及滤波算法与姿态融合 3.快速使用官方代码(以正点原子MPU6050为 ...

  8. 平衡车入门---MPU6050陀螺仪的使用

    平衡车入门---MPU6050陀螺仪的使用 一.MPU6050简介 二.学习MPU6050的步骤 三.I2C协议简介 四.MPU6050硬件介绍 五.MPU6050的几个重要寄存器 六.原始数据的单位 ...

  9. ESP-Drone四旋翼无人机控制板上的MPU6050陀螺仪芯片I2C总线测试

    1.摘要 一款新的控制板卡在第一次使用时,都需要进行硬件功能的测试,以确保所有的硬件都能够正常工作后,才可以进入后续的软件编程阶段,ESP-Drone四旋翼无人机的控制板使用了mpu6050陀螺仪芯片 ...

最新文章

  1. Go 分布式学习利器(19)-- Go并发编程 之 CSP(communicating sequential processes) 机制
  2. 转:Android之 MTP框架和流程分析
  3. python群控_带你用 Python 实现自动化群控入门篇
  4. [云炬创业基础笔记]第十一章创业计划书测试6
  5. java shp求相交面积_shp文件自相交处理的方法
  6. 筛法求10000以内的质数
  7. python即时标记_【Python】读书笔记:Python基础教程-项目1-即时标记
  8. ogg oracle 测试kafka_基于OGG的Oracle与Hadoop集群/kafka准实时同步
  9. java处理url中的特殊字符%等
  10. 数字能排序字符串不能排序_动图解说堆排序原理,让体育生也能看得明白
  11. 数学建模美赛该如何准备?
  12. 好用的跨平台开源截图工具推荐--flameshot
  13. cv曲线面积的意义_南昌大学陈义旺、武汉大学闵杰《AFM》:大面积有机太阳能电池中一种减少非辐射复合损耗的有效方法...
  14. STM32环境下AS5048A14位磁旋转编码器SPI通讯调试记录——我学到的东西、遇到的问题、解决的过程
  15. 谓语动词语态和时态相结合
  16. react实现echarts的疫情地图
  17. EDID是什么,跟显示器有什么关系?
  18. 笔记本卡顿不流畅是什么原因_简单解决电脑不流畅经常卡顿问题,非常有用快点看看...
  19. SOAP协议规范介绍
  20. 互联网日报 | 美团市值超2000亿美元;蚂蚁集团完成A股上市辅导;微博快手纷纷宣布收购KPL战队...

热门文章

  1. PostgreSQL定义返回表函数
  2. Dynamo 2.x Essential Training Dynamo 2.x基本训练 Lynda课程中文字幕
  3. 如何在ubuntu系统上安装多个cudn环境(及对应cudnn、pytorch 、torchvision安装方法 )
  4. 360wifi真机测试
  5. Android OpenGL ES FrameBuffer离屏渲染
  6. java狗具有特别的接飞盘的方法_训练狗接飞盘的5个技巧
  7. python求圆面积_python如何求圆的面积
  8. 01资源网百度网盘目录索引搭建教程:如何把百度网盘文件做成在线html目录列表?
  9. C程序设计实现高内聚低耦合
  10. 2021年安全员-A证-主要负责人(广东省)新版试题及安全员-A证-主要负责人(广东省)考试试卷