1 数据增强

在目前分类效果最好的EficientNet系列模型中,EfficientNet-B7版本的模型就是使用随机数据增强方法训练而成的。

RandAugment方法也是目前主流的数据增强方法,用RandAugment方法进行训练,会使模型的精度得到提升。

2 RandAugment

2.1 RandAugment方法简介

RandAugment方法是一种新的数据增强方法,它比自动数据增强(AutOAugment)方法更简单、更好用。它可以在原有的训练框架中,直接对AutoAugment方法进行替换。

2.1.1 Tip

AuoAugment方法包含30多个参数,可以对图片数据进行各种变换(参见arXiv网站上编号为1805.09501的论文)。

2.2 RandAugment方法的构成

RandAugment方法是在AutoAugment方法的基础之上,将30多个参数进行策略级的优化管理,使这30多个参数被简化成两个参数:图片的N次变换和每次变换的强度M。其中每次变换的强度M,取值为0~10(只取整数),表示使原有图片增强失真的大小。

RandAugment方法以结果为导向,使数据增强过程更加面向用。在减少AutoAugment的运算消耗的同时,又使增强的效果变得可控。详细内容可以参考相关论文(参见arXⅳ网站上编号为1909.13719的论文)。

2.2 代码获取

https://github.com/heartInsert/randaugment
# 只有一个代码文件Rand_Augment,py,将其下载后,直接引入代码即可使用。

3 本节案例(带有数据增强的识别)

3.1 案例简介

使用迁移学习对预训练模型进行微调的基础上实现数据增强,让其学习鸟类数据集,实现对多种鸟类进行识别。

3.2 代码实现:load_data函数加载图片名称与标签的加载----Transfer_bird2_Augmentation.py(第1部分)

import glob
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt #plt 用于显示图片
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset,DataLoader
import torchvision
import torchvision.models as model
from torchvision.transforms import ToPILImage
import torchvision.transforms as transforms
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'# 1.1 实现load_data函数加载图片名称与标签的加载,并使用torch.utils.data接口将其封装成程序可用的数据集类OwnDataset。
def load_dir(directory,labstart=0): # 获取所有directory中的所有图与标签# 返回path指定的文件夹所包含的文件或文件名的名称列表strlabels = os.listdir(directory)# 对标签进行排序,以便训练和验证按照相同的顺序进行:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。strlabels.sort()# 创建文件标签列表file_labels = []for i,label in enumerate(strlabels):print(label)jpg_names = glob.glob(os.path.join(directory,label,"*.jpg"))print(jpg_names)# 加入列表file_labels.extend(zip(jpg_names, [i + labstart] * len(jpg_names)))return file_labels,strlabelsdef load_data(dataset_path): # 定义函数load_data函数完成对数据集中图片文件名称和标签的加载。# 该函数可以实现两层文件夹的嵌套结构。其中,外层结构使用load_data函数进行遍历,内层结构使用load_dir函进行遍历。sub_dir = sorted(os.listdir(dataset_path)) # 跳过子文件夹:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。start = 1 # 第0类是nonetfile_lables,tstrlabels = [],['none'] # 在制作标签时,人为地在前面添加了一个序号为0的none类。这是一个训练图文类模型的技巧,为了区分模型输出值是0和预测值是0这两种情况。for i in sub_dir:directory = os.path.join(dataset_path,i)if os.path.isdir(directory) == False: # 只处理文件夹中的数据print(directory)continuefile_labels,strlables = load_dir(directory,labstart=start)tfile_lables.extend(file_labels)tstrlabels.extend(strlables)start = len(strlables)# 将数据路径与标签解压缩,把数据路径和标签解压缩出来filenames,labels = zip(*tfile_lables)return filenames, labels, tstrlabels

3.3 代码实现:自定义数据集类OwnDataset----Transfer_bird2_Augmentation.py(第2部分)

# 1.2 实现自定义数据集OwnDataset
def default_loader(path) : # 定义函数加载图片return Image.open(path).convert('RGB')class OwnDataset(Dataset): # 复用性较强,可根据自己的数据集略加修改使用# 在PyTorch中,提供了一个torch.utis.data接口,可以用来对数据集进行封装。在实现时,只需要继承torch.utis.data.Dataset类,并重载其__gettem__方法。# 在使用时,框架会向__gettem__方法传入索引index,在__gettem__方法内部根据指定index加载数据,并返回。def __init__(self,img_dir,labels,indexlist=None,transform=transforms.ToTensor(),loader=default_loader,cache=True): # 初始化self.labels = labels # 存放标签self.img_dir = img_dir # 样本图片文件名self.transform = transform # 预处理方法self.loader = loader # 加载方法self.cache = cache # 缓存标志if indexlist is None: # 要加载的数据序列self.indexlist = list(range(len(self.img_dir)))else:self.indexlist = indexlistself.data = [None] * len(self.indexlist) # 存放样本图片def __getitem__(self, idx): # 加载指定索引数据if self.data[idx] is None: # 第一次加载data = self.loader(self.img_dir[self.indexlist[idx]])if self.transform:data = self.transform(data)else:data = self.data[idx]if self.cache: # 保存到缓存里self.data[idx] = datareturn data,self.labels[self.indexlist[idx]]def __len__(self): # 计算数据集长度return len(self.indexlist)

3.4 代码实战:测试数据集----Transfer_bird2_Augmentation.py(第3部分)【数据增强模块】

# 1.3 测试数据集:在完成数据集的制作之后,编写代码对其进行测试。
# 数据增强模块
from Rand_Augment import  Rand_Augment
data_transform = { #定义数据的预处理方法'train':transforms.Compose([Rand_Augment(), # 数据增强的方法带入 仅此一处修改transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),'val':transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),
}
def Reduction_img(tensor,mean,std): #还原图片,实现了图片归一化的逆操作,显示数据集中的原始图片。dtype = tensor.dtypemean = torch.as_tensor(mean,dtype=dtype,device=tensor.device)std = torch.as_tensor(std,dtype=dtype,device=tensor.device)tensor.mul_(std[:,None,None]).add_(mean[:,None,None]) # 还原操作dataset_path = r'./data/cub200/' # 加载数据集路径
filenames,labels,classes = load_data(dataset_path) # 调用load_data函数对数据集中图片文件名称和标签进行加载,其返回对象classes中包含全部的类名。
# 打乱数据顺序
# 110-115行对数据文件列表的序号进行乱序划分,分为测试数据集和训练数集两个索引列表。该索引列表会传入OwnDataset类做成指定的数据集。
np.random.seed(0)
label_shuffle_index = np.random.permutation(len(labels))
label_train_num = (len(labels)//10) * 8 # 划分训练数据集和测试数据集
train_list = label_shuffle_index[0:label_train_num]
test_list = label_shuffle_index[label_train_num:] # 没带:train_dataset = OwnDataset(filenames,labels,train_list,data_transform['train'])# 实例化训练数据集
val_dataset = OwnDataset(filenames,labels,test_list,data_transform['val']) # 实例化测试数据集
# 实例化批次数据集:OwnDataset类所定义的数据集,其使用方法与PyTorch中的内置数据集的使用方法完全一致,配合DataLoader接口即可生成可以进行训练或测试的批次数据。具体代码如下。
train_loader = DataLoader(dataset=train_dataset,batch_size=32,shuffle=True)
val_loader = DataLoader(dataset=val_dataset,batch_size=32,shuffle=True)sample = iter(train_loader) # 获取一批次数据,进行测试
images,labels = sample.next()
print("样本形状",np.shape(images))
print("标签个数",len(classes))
mulimgs = torchvision.utils.make_grid(images[:10],nrow=10) # 拼接多张图片
Reduction_img(mulimgs,[0.485,0.456,0.406],[0.229,0.224,0.225])
_img = ToPILImage()(mulimgs) # 将张量转化为图片
plt.axis('off')
plt.imshow(_img) # 显示
plt.show()
print(','.join('%5s' % classes[labels[j]] for j in range(len(images[:10]))))

输出:

样本形状 torch.Size([32, 3, 224, 224])
标签个数 6

输出数据集中的10个图片

3.5 代码实战:获取并改造ResNet模型----Transfer_bird2_Augmentation.py(第4部分)

# 1.4 获取并改造ResNet模型:获取ResNet模型,并加载预训练模型的权重。将其最后一层(输出层)去掉,换成一个全新的全连接层,该全连接层的输出节点数与本例分类数相同。
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# get_ResNet函数,获取预训练模型,可指定pretrained=True来实现自动下载预训练模型,也可指定loadfile来从本地路径加载预训练模型。
def get_ResNet(classes,pretrained=True,loadfile=None):ResNet = model.resnet101(pretrained) # 自动下载官方的预训练模型if loadfile != None:ResNet.load_state_dict(torch.load(loadfile)) # 加载本地模型# 将所有的参数层进行冻结:设置模型仅最后一层可以进行训练,使模型只针对最后一层进行微调。for param in ResNet.parameters():param.requires_grad = False# 输出全连接层的信息print(ResNet.fc)x = ResNet.fc.in_features # 获取全连接层的输入ResNet.fc = nn.Linear(x,len(classes)) # 定义一个新的全连接层print(ResNet.fc) # 最后输出新的模型return ResNet
ResNet = get_ResNet(classes) # 实例化模型
ResNet.to(device=device)

3.6 代码实战:定义损失函数、训练函数及测试函数,对模型的最后一层进行微调----Transfer_bird2_Augmentation.py(第5部分)

# 1.5 定义损失函数、训练函数及测试函数,对模型的最后一层进行微调。
criterion = nn.CrossEntropyLoss()
# 指定新加的全连接层的学习率
optimizer = torch.optim.Adam([{'params':ResNet.fc.parameters()}],lr=0.01)
def train(model,device,train_loader,epoch,optimizer): # 定义训练函数model.train()allloss = []for batch_idx,data in enumerate(train_loader):x,y = datax = x.to(device)y = y.to(device)optimizer.zero_grad()y_hat = model(x)loss = criterion(y_hat,y)loss.backward()allloss.append(loss.item())optimizer.step()print('Train Epoch:{}\t Loss:{:.6f}'.format(epoch,np.mean(allloss))) # 输出训练结果def test(model,device,val_loader): # 定义测试函数model.eval()test_loss = []correct = []with torch.no_grad(): # 使模型在运行时不进行梯度跟踪,可以减少模型运行时对内存的占用。for i,data in enumerate(val_loader):x, y = datax = x.to(device)y = y.to(device)y_hat = model(x)test_loss.append(criterion(y_hat,y).item()) # 收集损失函数pred = y_hat.max(1,keepdim=True)[1] # 获取预测结果correct.append(pred.eq(y.view_as(pred)).sum().item()/pred.shape[0]) # 收集精确度print('\nTest:Average loss:{:,.4f},Accuracy:({:,.0f}%)\n'.format(np.mean(test_loss),np.mean(correct)*100)) # 输出测试结果# 迁移学习的两个步骤如下
if __name__ == '__main__':
# 迁移学习步骤①:固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛。firstmodepth = './data/cub200/firstmodepth_1.pth' # 定义模型文件的地址if os.path.exists(firstmodepth) == False:print("—————————固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛—————————")for epoch in range(1,2): # 迭代两次train(ResNet,device,train_loader,epoch,optimizer)test(ResNet,device,val_loader)# 保存模型torch.save(ResNet.state_dict(),firstmodepth)

3.7 代码实战:使用退化学习率对模型进行全局微调----Transfer_bird2_Augmentation.py(第6部分)

# 1.6 使用退化学习率对模型进行全局微调
#迁移学习步骤②:使用较小的学习率,对全部模型进行训练,并对每层的权重进行细微的调节,即将模型的每层权重都设为可训练,并定义带有退化学习率的优化器。(1.6部分)secondmodepth = './data/cub200/firstmodepth_2.pth'optimizer2 = optim.SGD(ResNet.parameters(),lr=0.001,momentum=0.9) # 第198行代码定义带有退化学习率的SGD优化器。该优化器常用来对模型进行手动微调。有实验表明,使用经过手动调节的SGD优化器,在训练模型的后期效果优于Adam优化器。exp_lr_scheduler = lr_scheduler.StepLR(optimizer2,step_size=2,gamma=0.9) # 由于退化学习率会在训练过程中不断地变小,为了防止学习率过小,最终无法进行权重需要对其设置最小值。当学习率低于该值时,停止对退化学习率的操作。for param in ResNet.parameters(): # 所有参数设计为可训练param.requires_grad = Trueif os.path.exists(secondmodepth):ResNet.load_state_dict(torch.load(secondmodepth)) # 加载本地模型else:ResNet.load_state_dict(torch.load(firstmodepth)) # 加载本地模型print("____使用较小的学习率,对全部模型进行训练,定义带有退化学习率的优化器______")for epoch in range(1,100):train(ResNet,device,train_loader,epoch,optimizer2)if optimizer2.state_dict()['param_groups'][0]['lr'] > 0.00001:exp_lr_scheduler.step()print("___lr:",optimizer2.state_dict()['param_groups'][0]['lr'])test(ResNet,device,val_loader)# 保存模型torch.save(ResNet.state_dict(),secondmodepth)

4 代码总览Transfer_bird2_Augmentation.py

import glob
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt #plt 用于显示图片
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import Dataset,DataLoader
import torchvision
import torchvision.models as model
from torchvision.transforms import ToPILImage
import torchvision.transforms as transforms
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'# 1.1 实现load_data函数加载图片名称与标签的加载,并使用torch.utils.data接口将其封装成程序可用的数据集类OwnDataset。
def load_dir(directory,labstart=0): # 获取所有directory中的所有图与标签# 返回path指定的文件夹所包含的文件或文件名的名称列表strlabels = os.listdir(directory)# 对标签进行排序,以便训练和验证按照相同的顺序进行:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。strlabels.sort()# 创建文件标签列表file_labels = []for i,label in enumerate(strlabels):print(label)jpg_names = glob.glob(os.path.join(directory,label,"*.jpg"))print(jpg_names)# 加入列表file_labels.extend(zip(jpg_names, [i + labstart] * len(jpg_names)))return file_labels,strlabelsdef load_data(dataset_path): # 定义函数load_data函数完成对数据集中图片文件名称和标签的加载。# 该函数可以实现两层文件夹的嵌套结构。其中,外层结构使用load_data函数进行遍历,内层结构使用load_dir函进行遍历。sub_dir = sorted(os.listdir(dataset_path)) # 跳过子文件夹:在不同的操作系统中,加载文件夹的顺序可能不同。目录不同的情况会导致在不同的操作系统中,模型的标签出现串位的现象。所以需要对文件夹进行排序,保证其顺序的一致性。start = 1 # 第0类是nonetfile_lables,tstrlabels = [],['none'] # 在制作标签时,人为地在前面添加了一个序号为0的none类。这是一个训练图文类模型的技巧,为了区分模型输出值是0和预测值是0这两种情况。for i in sub_dir:directory = os.path.join(dataset_path,i)if os.path.isdir(directory) == False: # 只处理文件夹中的数据print(directory)continuefile_labels,strlables = load_dir(directory,labstart=start)tfile_lables.extend(file_labels)tstrlabels.extend(strlables)start = len(strlables)# 将数据路径与标签解压缩,把数据路径和标签解压缩出来filenames,labels = zip(*tfile_lables)return filenames, labels, tstrlabels# 1.2 实现自定义数据集OwnDataset
def default_loader(path) : # 定义函数加载图片return Image.open(path).convert('RGB')class OwnDataset(Dataset): # 复用性较强,可根据自己的数据集略加修改使用# 在PyTorch中,提供了一个torch.utis.data接口,可以用来对数据集进行封装。在实现时,只需要继承torch.utis.data.Dataset类,并重载其__gettem__方法。# 在使用时,框架会向__gettem__方法传入索引index,在__gettem__方法内部根据指定index加载数据,并返回。def __init__(self,img_dir,labels,indexlist=None,transform=transforms.ToTensor(),loader=default_loader,cache=True): # 初始化self.labels = labels # 存放标签self.img_dir = img_dir # 样本图片文件名self.transform = transform # 预处理方法self.loader = loader # 加载方法self.cache = cache # 缓存标志if indexlist is None: # 要加载的数据序列self.indexlist = list(range(len(self.img_dir)))else:self.indexlist = indexlistself.data = [None] * len(self.indexlist) # 存放样本图片def __getitem__(self, idx): # 加载指定索引数据if self.data[idx] is None: # 第一次加载data = self.loader(self.img_dir[self.indexlist[idx]])if self.transform:data = self.transform(data)else:data = self.data[idx]if self.cache: # 保存到缓存里self.data[idx] = datareturn data,self.labels[self.indexlist[idx]]def __len__(self): # 计算数据集长度return len(self.indexlist)# 1.3 测试数据集:在完成数据集的制作之后,编写代码对其进行测试。
# 数据增强模块
from Rand_Augment import  Rand_Augment
data_transform = { #定义数据的预处理方法'train':transforms.Compose([Rand_Augment(), # 数据增强的方法带入 仅此一处修改transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),'val':transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),
}
def Reduction_img(tensor,mean,std): #还原图片,实现了图片归一化的逆操作,显示数据集中的原始图片。dtype = tensor.dtypemean = torch.as_tensor(mean,dtype=dtype,device=tensor.device)std = torch.as_tensor(std,dtype=dtype,device=tensor.device)tensor.mul_(std[:,None,None]).add_(mean[:,None,None]) # 还原操作dataset_path = r'./data/cub200/' # 加载数据集路径
filenames,labels,classes = load_data(dataset_path) # 调用load_data函数对数据集中图片文件名称和标签进行加载,其返回对象classes中包含全部的类名。
# 打乱数据顺序
# 110-115行对数据文件列表的序号进行乱序划分,分为测试数据集和训练数集两个索引列表。该索引列表会传入OwnDataset类做成指定的数据集。
np.random.seed(0)
label_shuffle_index = np.random.permutation(len(labels))
label_train_num = (len(labels)//10) * 8 # 划分训练数据集和测试数据集
train_list = label_shuffle_index[0:label_train_num]
test_list = label_shuffle_index[label_train_num:] # 没带:train_dataset = OwnDataset(filenames,labels,train_list,data_transform['train'])# 实例化训练数据集
val_dataset = OwnDataset(filenames,labels,test_list,data_transform['val']) # 实例化测试数据集
# 实例化批次数据集:OwnDataset类所定义的数据集,其使用方法与PyTorch中的内置数据集的使用方法完全一致,配合DataLoader接口即可生成可以进行训练或测试的批次数据。具体代码如下。
train_loader = DataLoader(dataset=train_dataset,batch_size=32,shuffle=True)
val_loader = DataLoader(dataset=val_dataset,batch_size=32,shuffle=True)sample = iter(train_loader) # 获取一批次数据,进行测试
images,labels = sample.next()
print("样本形状",np.shape(images))
print("标签个数",len(classes))
mulimgs = torchvision.utils.make_grid(images[:10],nrow=10) # 拼接多张图片
Reduction_img(mulimgs,[0.485,0.456,0.406],[0.229,0.224,0.225])
_img = ToPILImage()(mulimgs) # 将张量转化为图片
plt.axis('off')
plt.imshow(_img) # 显示
plt.show()
print(','.join('%5s' % classes[labels[j]] for j in range(len(images[:10]))))# 1.4 获取并改造ResNet模型:获取ResNet模型,并加载预训练模型的权重。将其最后一层(输出层)去掉,换成一个全新的全连接层,该全连接层的输出节点数与本例分类数相同。
# 指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
# get_ResNet函数,获取预训练模型,可指定pretrained=True来实现自动下载预训练模型,也可指定loadfile来从本地路径加载预训练模型。
def get_ResNet(classes,pretrained=True,loadfile=None):ResNet = model.resnet101(pretrained) # 自动下载官方的预训练模型if loadfile != None:ResNet.load_state_dict(torch.load(loadfile)) # 加载本地模型# 将所有的参数层进行冻结:设置模型仅最后一层可以进行训练,使模型只针对最后一层进行微调。for param in ResNet.parameters():param.requires_grad = False# 输出全连接层的信息print(ResNet.fc)x = ResNet.fc.in_features # 获取全连接层的输入ResNet.fc = nn.Linear(x,len(classes)) # 定义一个新的全连接层print(ResNet.fc) # 最后输出新的模型return ResNet
ResNet = get_ResNet(classes) # 实例化模型
ResNet.to(device=device)# 1.5 定义损失函数、训练函数及测试函数,对模型的最后一层进行微调。
criterion = nn.CrossEntropyLoss()
# 指定新加的全连接层的学习率
optimizer = torch.optim.Adam([{'params':ResNet.fc.parameters()}],lr=0.01)
def train(model,device,train_loader,epoch,optimizer): # 定义训练函数model.train()allloss = []for batch_idx,data in enumerate(train_loader):x,y = datax = x.to(device)y = y.to(device)optimizer.zero_grad()y_hat = model(x)loss = criterion(y_hat,y)loss.backward()allloss.append(loss.item())optimizer.step()print('Train Epoch:{}\t Loss:{:.6f}'.format(epoch,np.mean(allloss))) # 输出训练结果def test(model,device,val_loader): # 定义测试函数model.eval()test_loss = []correct = []with torch.no_grad(): # 使模型在运行时不进行梯度跟踪,可以减少模型运行时对内存的占用。for i,data in enumerate(val_loader):x, y = datax = x.to(device)y = y.to(device)y_hat = model(x)test_loss.append(criterion(y_hat,y).item()) # 收集损失函数pred = y_hat.max(1,keepdim=True)[1] # 获取预测结果correct.append(pred.eq(y.view_as(pred)).sum().item()/pred.shape[0]) # 收集精确度print('\nTest:Average loss:{:,.4f},Accuracy:({:,.0f}%)\n'.format(np.mean(test_loss),np.mean(correct)*100)) # 输出测试结果# 迁移学习的两个步骤如下
if __name__ == '__main__':
# 迁移学习步骤①:固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛。firstmodepth = './data/cub200/firstmodepth_1.pth' # 定义模型文件的地址if os.path.exists(firstmodepth) == False:print("—————————固定预训练模型的特征提取部分,只对最后一层进行训练,使其快速收敛—————————")for epoch in range(1,2): # 迭代两次train(ResNet,device,train_loader,epoch,optimizer)test(ResNet,device,val_loader)# 保存模型torch.save(ResNet.state_dict(),firstmodepth)
# 1.6 使用退化学习率对模型进行全局微调
#迁移学习步骤②:使用较小的学习率,对全部模型进行训练,并对每层的权重进行细微的调节,即将模型的每层权重都设为可训练,并定义带有退化学习率的优化器。(1.6部分)secondmodepth = './data/cub200/firstmodepth_2.pth'optimizer2 = optim.SGD(ResNet.parameters(),lr=0.001,momentum=0.9) # 第198行代码定义带有退化学习率的SGD优化器。该优化器常用来对模型进行手动微调。有实验表明,使用经过手动调节的SGD优化器,在训练模型的后期效果优于Adam优化器。exp_lr_scheduler = lr_scheduler.StepLR(optimizer2,step_size=2,gamma=0.9) # 由于退化学习率会在训练过程中不断地变小,为了防止学习率过小,最终无法进行权重需要对其设置最小值。当学习率低于该值时,停止对退化学习率的操作。for param in ResNet.parameters(): # 所有参数设计为可训练param.requires_grad = Trueif os.path.exists(secondmodepth):ResNet.load_state_dict(torch.load(secondmodepth)) # 加载本地模型else:ResNet.load_state_dict(torch.load(firstmodepth)) # 加载本地模型print("____使用较小的学习率,对全部模型进行训练,定义带有退化学习率的优化器______")for epoch in range(1,100):train(ResNet,device,train_loader,epoch,optimizer2)if optimizer2.state_dict()['param_groups'][0]['lr'] > 0.00001:exp_lr_scheduler.step()print("___lr:",optimizer2.state_dict()['param_groups'][0]['lr'])test(ResNet,device,val_loader)# 保存模型torch.save(ResNet.state_dict(),secondmodepth)

【Pytorch神经网络实战案例】25 (带数据增强)基于迁移学习识别多种鸟类(CUB-200数据集)相关推荐

  1. 【Pytorch神经网络实战案例】24 基于迁移学习识别多种鸟类(CUB-200数据集)

    1 迁移学习 在实际开发中,常会使用迁移学习将预训练模型中的特征提取能力转移到自己的模型中. 1.1 迁移学习定义 迁移学习指将在一个任务上训练完成的模型进行简单的修改,再用另一个任务的数据继续训练, ...

  2. 【Pytorch神经网络实战案例】21 基于Cora数据集实现Multi_Sample Dropout图卷积网络模型的论文分类

    Multi-sample Dropout是Dropout的一个变种方法,该方法比普通Dropout的泛化能力更好,同时又可以缩短模型的训练时间.XMuli-sampleDropout还可以降低训练集和 ...

  3. 【Pytorch神经网络实战案例】18 最大化深度互信信息模型DIM实现搜索最相关与最不相关的图片

    图片搜索器分为图片的特征提取和匹配两部分,其中图片的特征提取是关键.将使用一种基于无监督模型的提取特征的方法实现特征提取,即最大化深度互信息(DeepInfoMax,DIM)方法. 1 最大深度互信信 ...

  4. 【Pytorch神经网络实战案例】07 预测泰坦尼克号上生存的乘客

    1 样本处理 1.1 载入样本代码---Titanic forecast.py(第1部分) import numpy as np import torch import torch.nn as nn ...

  5. 使用卷积神经网络(普通CNN和改进型LeNet)以及数据增强和迁移学习技巧识别猫和狗,并制作成分类器软件(基于Keras)

    数据集:https://www.microsoft.com/en-us/download/confirmation.aspx?id=54765 猫和狗的图片各自有12500张. 第一步 整理数据集,查 ...

  6. 【Pytorch神经网络实战案例】17 带W散度的WGAN-div模型生成Fashon-MNST模拟数据

    1 WGAN-div 简介 W散度的损失函数GAN-dv模型使用了W散度来替换W距离的计算方式,将原有的真假样本采样操作换为基于分布层面的计算. 2 代码实现 在WGAN-gp的基础上稍加改动来实现, ...

  7. 【Pytorch神经网络实战案例】15 WGAN-gp模型生成Fashon-MNST模拟数据

    1 WGAN-gp模型生成模拟数据案例说明 使用WGAN-gp模型模拟Fashion-MNIST数据的生成,会使用到WGAN-gp模型.深度卷积GAN(DeepConvolutional GAN,DC ...

  8. 【Pytorch神经网络实战案例】14 构建条件变分自编码神经网络模型生成可控Fashon-MNST模拟数据

    1 条件变分自编码神经网络生成模拟数据案例说明 在实际应用中,条件变分自编码神经网络的应用会更为广泛一些,因为它使得模型输出的模拟数据可控,即可以指定模型输出鞋子或者上衣. 1.1 案例描述 在变分自 ...

  9. 【Pytorch神经网络实战案例】13 构建变分自编码神经网络模型生成Fashon-MNST模拟数据

    1 变分自编码神经网络生成模拟数据案例说明 变分自编码里面真正的公式只有一个KL散度. 1.1 变分自编码神经网络模型介绍 主要由以下三个部分构成: 1.1.1 编码器 由两层全连接神经网络组成,第一 ...

最新文章

  1. 并查集c++代码_[Leetcode 每日精选](本周主题-并查集) 547. 朋友圈
  2. 分布式事务——消息最终一致性方案
  3. 基于Hadoop生态技术构建阿里搜索离线系统
  4. ZAM 3D入门教程(3):Viewport
  5. Angular NgModule providers字段维护了多个字段后的初始化实现
  6. python mysql 性能监控_MySQL性能监控工具 orzdba python版本
  7. Adobe (Acrobat)Reader 6.0以上版本支持对有特殊权限的PDF进行添加注释,填写标单以及保存的功能。...
  8. Android 安全 (一)
  9. java new string编码_Java String 类型编码转换
  10. Ubuntu18.04下,QT5移植到ARM板上运行程序发生异常:could not find or load the Qt platform plugin linuxfb原因
  11. dubbo反序列化问题 Unable to find class: path
  12. Win10系统邮件添加QQ邮件账户
  13. Try{}里有一个return语句,那么紧跟在这个try后面的finally{}里的code会不会执行,什么时候执行,在return之前还是之后?
  14. mac下载、破解、安装webstorm编辑器
  15. gpu训练cnn人脸识别准确率_opencv+mtcnn+facenet+python+tensorflow 实现实时人脸识别
  16. 一个游戏程序员的资料一(转)
  17. wingrub命令行启动深度linux,GRUB(包括WINGRUB)命令行模式引导安装Linux
  18. 2022-2027年中国智能手机维修行业发展监测及投资战略研究报告
  19. 学习《Linux就该这么学》第十五课
  20. 2021年复杂美区块链入选市级企业高新技术研究开发中心

热门文章

  1. 用多媒体库 Bass.dll 播放 mp3 [9] - 绘制波形图
  2. 设计模式学习笔记六:.NET反射工厂
  3. 机器学习预测+akshare
  4. oom 如何避免 高并发_【高并发】高并发环境下如何防止Tomcat内存溢出?看完我懂了!!...
  5. Golang语言基础课件
  6. 小程序mpvue图片绘制水印_开发笔记:使用 mpvue 开发斗图小程序
  7. Java IO 系统
  8. framebuffer驱动详解4——framebuffer驱动分析2(probe函数讲解)
  9. Linux进程全解11——进程间通信(IPC)概述
  10. dhcp failover linux,ISC dhcp failover的mclt参数很重要啊