想在黑暗中看清周围,不可避免地要用到夜视仪。那么如果是想在黑暗中拍照,又没有闪光灯,如何才能排到清晰的照片?在CVPR 2018上,英特尔实验室的Vladlen Koltun和陈启峰带领的团队提出了一种在黑暗中快速成像的系统,效果非常赞。
在暗光下的图像易受到低信噪比和低亮度的影响。短曝光的照片会出现很多早点,而长曝光会让照片变得模糊、不真实。目前已经有很多去噪、去模糊、图像增强的技术,但是在极端条件下,他们的作用就很有限了。为了发展基于学习的低光度图像处理,我们引入了一个数据集,内含有原始短曝光低亮度图片,同时还有对应的长时间曝光的图像。利用该数据集。我们创建了一个机遇端到端训练的全卷积网络,用于处理低亮度图像。网络直接使用原始传感器数据,并替代了大量传统图像处理的流程。最终我们发现新数据集的结果很有前景。

概述
噪点在任何成像系统中都存在,但在亮度较低的环境中成像就更加困难。提高ISO可以增加亮度,但也会造成更多噪点。后期处理也是改善噪点过多的方法,但这并不能解决信噪比(SNR)低的问题。其他手段虽然能提高SNR,但都有各自的缺陷。

的确,在低亮度中快速成像的问题一直没有好的解决方法。研究人员提出了各种去噪、去模糊、提高亮度的技术。但这些技术都是假设照片是在略暗淡、稍有噪点的环境中捕捉到的。相反,我们想研究的是在非常黑暗的情况下的成像效果,例如月光下。在这种条件下,传统相机成像的过程就无能为力了,图片必须用原始传感器数据重新构建。

我们提出的系统效果(最右)如图1所示:

图1
左图中,环境中的亮度极低,相机的亮度小于0.1lux,快门速度为1/30,光圈为f/5.6,ISO为8000(通常这已经很高了)。但是照相机照出来仍然是漆黑一片(这可是用索尼全画幅传感器)。

中间图中,把ISO调到409600,这已经超过了大多数相机的极限了,可以看到照出来的图像了,但是图像显得很暗,噪点较多,色彩失真。

而最右边我们的方法则清晰了许多。具体来说,我们训练了深度神经网络学习处理低亮度原始图像数据的过程,包括色彩转化、去马赛克、减少噪点、图像质量提高等等。

数据集
目前大多数处理低亮度的图片都是在合成数据或没有对应标准的低亮度图像上进行的,据我们所知,没有一个公开数据集可以用来训练或是测试低亮度图像处理。于是,我们就新建了一个数据集,称为See-in-the-Dark(SID)。数据集中共有5094张图像,它们都是在低亮度条件下捕捉到的、快速曝光的原始图像。每个低亮度图片都有对应的长时间曝光高质量图片(注意,一张高质量图片可能对应多张低亮度图片)。

数据集包括室内和室外的图像,室外图像大多于夜晚拍摄,光源来自月光或者路灯。室外场景的相机亮度在0.2lux和5lux之间。室内图像就更暗一些了,通常在0.03lux到0.3lux之间。

输入图像的曝光时间通常在1/30秒到1/10秒之间,相对应的正常图片的曝光时间为10到30秒。数据集的具体参数可看下表:

经过长时间曝光的正常图片仍含有少许噪点,但是从视觉上已经达到标准图片的水平了。我们希望我们创建的应用可以在低光度环境下生成表现良好的图像,而不是彻底消除所有噪点或让图像对比度最大化。

模型成像方法
从成像传感器中得到原始数据后,传统图像处理过程会应用一系列模块,例如白平衡、去马赛克、去噪、增加锐度等等。而这些模块只是在某些相机中才有。Jiang等人提出,用本地、线性、可学习的(L3)过滤器来模型现代成像系统中复杂的非线性流程。但是,这些方法都无法成功解决在低亮度中快速成像的问题,还是由于极低的SNR问题。之后,Hasinoff等人对智能手机上的相机提出了bursting imaging成像方法,通过结合多张图像可以生成效果较好的图像,但是复杂程度较高。

对此,我们提出了的端到端的学习方法,即训练一个全卷积网络(FCN)进行图像处理。图2展示了我们所提出的图像处理架构:

对于拜耳阵列,我们将输入的图像打包到四个通道中,并相应地将空间分辨率在每个维度上降低。对于X-Trans阵列(图中未显示),原始数据是按6×6排列的,我们将其打包放到9个通道中。打包后的数据输入到全卷积网络中,输出一个有12通道的图像,空间向量仅为一半。而这个半尺寸的输出被次像素图层处理后,可以恢复到原始分辨率。

基本介绍之后,我们要重点了解一下网络中两个重要的结构:一个多尺寸文本聚合网络(CAN)和U-net。其他工作研究了残差连接,但是我们认为这对我们的模型用处不大,可能是因为我们的输入和输出在不同的颜色空间中表示。另一个影响模型结构选择的是内存消耗,我们的架构可以在GPU上处理全分辨率的图像。由此避免了全连接的图层,他们还需要处理小的图像补丁,然后重新进行组合。我们默认的架构是u-net。

放大比例决定了输出图像的亮度。在我们的图像生成流程中,放大比例是外部决定的,并且是作为图像流程的输入,类似于相机的ISO。图3显示了不同的放大倍数的结果,用户可以自己调整以改变亮度。

最终网络利用L1损失和Adam优化器从零开始训练。

实验过程
首先,将我们提出的方法与传统方法的对比,得到以下结果:

可以看出,我们的方法生成的图片比传统方法优秀得多。

同时,我们认为专门用特定的相机传感器进行训练的网络总能达到最佳效果。但是,最初的实验表明这不是一定的。我们将一个在索尼套件上训练的模型应用于由iPhone 6S拍摄出的相片上,其中通要包含一个拜耳过滤阵列和14位的原始数据。我们用一款app手动设置ISO和其他参数,输出原始数据用于处理。最终的结果如图5所示。传统方法处理的数据有很多噪点,色差较大。而我们的网络生成的图片对比度较强、噪点少并且颜色正常。

结语
由于极少的光子数量和极低的信噪比,在黑暗环境中成像一直是个大难题。想以视频速率在黑暗中成像,对于传统的信号处理方法来说几乎是不可能的。而我们提出的See-in-the-Dark数据集、全卷机的网络证明了这种在极端条件下成像的可能。最后的实验也证明这种方法行之有效,我们希望这项工作能在未来提供更多帮助。

本文转载自:http://www.dalbll.com/Group/Topic/ArchitecturedDesign/5084

因特尔黑科技:黑暗中快速成像系统相关推荐

  1. 【黑科技】百度快速收录 快速提升网站权重

    说起网站收录,网站权重,这些都所有站长共同关心的话题.最快的排名方法就是做好网站任何的细节优化,只有做好细节提升访客体验,才是网站优化本该做的事情,也才是长久之计.因此,快速排名是很多人比较关注的问题 ...

  2. 投票源码程序_2020年老板们不可不知的黑科技磐中槃小程序

    随着互联网的飞速发展,小程序已成最热门的话题. 在过去的2019年,小程序无疑是最热门的领域.互联网大咖百度.腾讯.阿里巴巴.字节跳动都分别推出了小程序项目.不少参会的业内人士认为,在网络基础设施进一 ...

  3. 牛客国庆集训派对Day5 B 电音之王(CCPC_CAMP) 黑科技-蒙哥马利快速乘

    电音之王 dls专卡 Θ ( 1 ) \Theta(1) Θ(1)快速乘,orzzzzz,我只想说,dls牛逼! 题解:蒙哥马利 代码 #include <bits/stdc++.h> u ...

  4. 聊聊H5与JS近几年的黑科技

    聊聊H5与JS近几年的黑科技 自ajax技术的诞生,编程界兴起了一股WEB开发热,facebook,Twitter等众多大佬级企业都在网页应用上大放异彩,这十年我们见证了前端技术的崛起.这期间产生了众 ...

  5. Android 黑科技保活实现原理揭秘

    一直以来,App 进程保活都是各大厂商,特别是头部应用开发商永恒的追求.毕竟App 进程死了,就什么也干不了了:一旦 App 进程死亡,那就再也无法在用户的手机上开展任何业务,所有的商业模型在用户侧都 ...

  6. 三秒一页,快速录入书籍中的文字,掌握这个黑科技不加薪才怪

    手机作为科技发展的重要成果,它从最开始给人们带来通讯,到后来的娱乐,再到现在的可以帮助人们生活,可以说是与我们的生活息息相关.而工作作为生活的一个重要组成,虽然我对某些大佬提出的996制并不赞成,但还 ...

  7. 美军AI黑科技:黑暗中也能准确识别人脸,谁该为此感到紧张?

    今天我们要聊的,是一件让人第一反应很惊讶:"竟然还有这种操作?",但细细想来,又极为惊恐的事情. 这件事,就是美国军方最近搞出来的一个大新闻.据<The Register&g ...

  8. 罗永浩将举办“老人与海”黑科技发布会;京东正式宣告:全面向技术转型;英特尔因CPU短缺向PC厂商道歉 | EA周报...

    EA周报 2019年11月22日 每个星期7分钟,元宝带你喝一杯IT人的浓缩咖啡,了解天下事.掌握IT核心技术. 热点大事件 微软:已获得美国商务部批准,可以向华为出口软件 当地时间 11 月 20 ...

  9. 新一代数据库技术在双11中的黑科技

    摘要: 12月13-14日,由云栖社区与阿里巴巴技术协会共同主办的<2017阿里巴巴双11技术十二讲>顺利结束,集中为大家分享了2017双11背后的黑科技.本文是<新一代数据库技术在 ...

最新文章

  1. 【青少年编程(第32周)】李老师太给力了!
  2. 桌面程序调用Web Service应用实例
  3. python 二维数组元素返回二维坐标_python – 从二维数组中返回生成器而不是位置列表...
  4. 中国第三代半导体行业应用动态与十四五发展格局展望报告2022版
  5. 信号与系统matlab课设报告,MATLAB信号与系统实验报告
  6. [JSOI2016] 最佳团体(0/1分数规划 + 树形dp)
  7. 前端学习(1307):模块查找规则二
  8. vue-cli搭建和“Cannot find module npm-cli.js” 、“operation not permitted” 、 deprecated coffee-script等错误
  9. (node:62099) ExperimentalWarning: The fs.promises API is experimental
  10. leetcode—20.二叉树构建相关题目leetcode总结
  11. POJ读书笔记2.1 —— 鸡兔同笼
  12. ztree 右键菜单功能
  13. vba 添加outlook 签名_如何在Office 365中为VBA宏创建自签名数字证书
  14. Python就业指导
  15. Infor EAM咨询服务调研报告-Infor EAM咨询服务市场地位以及主要的竞争对手
  16. 可见光通信系统的调制效率
  17. 书籍推荐——Python绝技:运用Python成为顶级黑客
  18. [转]部分日文实用网址介绍
  19. 无线桥接怎么设置网关和dns服务器,无线桥接怎么设置网关和dns服务器
  20. 方寸间尽显空间之美,COLMO电热水器的品质沐浴哲学

热门文章

  1. c#学习笔记05-treeview中添加图标
  2. 学习Inventor 体会 三维设计哪个最好用 3D MAX MAYA PRO SW等
  3. 我的世界手机版开服务器领地系统,我的世界手机版服务器赠送领地指令
  4. c语言左移函数_corl_,全国计算机等级三级网络技术上机题库100套.doc
  5. 升序降序排序测试方法
  6. Spring data JPA使用@formula注解使用、查询不到内容
  7. 百万剪辑师是怎么炼成的?几大剪辑逻辑你知道吗?
  8. 揭秘 | 百万并发直播网站龙珠的性能秘籍
  9. oracle mysql 同义词_Oracle数据库创建同义词(synonym)详细讲解
  10. 瑞芯微 Rockchip 升级npu驱动