赛题概况

比赛要求参赛选手根据给定的数据集,建立模型,预测金融风险。

赛题以预测金融风险为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

通过这道赛题来引导大家走进金融风控数据竞赛的世界,主要针对于于竞赛新人进行自我练习、自我提高。

数据概况

一般而言,对于数据在比赛界面都有对应的数据概况介绍(匿名特征除外),说明列的性质特征。了解列的性质会有助于我们对于数据的理解和后续分析。 Tip:匿名特征,就是未告知数据列所属的性质的特征列。

train.csv

  • id 为贷款清单分配的唯一信用证标识
  • loanAmnt 贷款金额
  • term 贷款期限(year)
  • interestRate 贷款利率
  • installment 分期付款金额
  • grade 贷款等级
  • subGrade 贷款等级之子级
  • employmentTitle 就业职称
  • employmentLength 就业年限(年)
  • homeOwnership 借款人在登记时提供的房屋所有权状况
  • annualIncome 年收入
  • verificationStatus 验证状态
  • issueDate 贷款发放的月份
  • purpose 借款人在贷款申请时的贷款用途类别
  • postCode 借款人在贷款申请中提供的邮政编码的前3位数字
  • regionCode 地区编码
  • dti 债务收入比
  • delinquency_2years 借款人过去2年信用档案中逾期30天以上的违约事件数
  • ficoRangeLow 借款人在贷款发放时的fico所属的下限范围
  • ficoRangeHigh 借款人在贷款发放时的fico所属的上限范围
  • openAcc 借款人信用档案中未结信用额度的数量
  • pubRec 贬损公共记录的数量
  • pubRecBankruptcies 公开记录清除的数量
  • revolBal 信贷周转余额合计
  • revolUtil 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额
  • totalAcc 借款人信用档案中当前的信用额度总数
  • initialListStatus 贷款的初始列表状态
  • applicationType 表明贷款是个人申请还是与两个共同借款人的联合申请
  • earliesCreditLine 借款人最早报告的信用额度开立的月份
  • title 借款人提供的贷款名称
  • policyCode 公开可用的策略_代码=1新产品不公开可用的策略_代码=2,n系列匿名特征 匿名特征n0-n14,为一些贷款人行为计数特征的处理

预测指标

竞赛采用AUC作为评价指标。AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积。
分类算法常见的评估指标如下:

1、混淆矩阵(Confuse Matrix)

(1)若一个实例是正类,并且被预测为正类,即为真正类TP(True Positive )
(2)若一个实例是正类,但是被预测为负类,即为假负类FN(False Negative )
(3)若一个实例是负类,但是被预测为正类,即为假正类FP(False Positive )
(4)若一个实例是负类,并且被预测为负类,即为真负类TN(True Negative )

2、准确率(Accuracy) 准确率是常用的一个评价指标,但是不适合样本不均衡的情况。 Accuracy=TP+TNTP+TN+FP+FNAccuracy = \frac{TP + TN}{TP + TN + FP + FN}Accuracy=TP+TN+FP+FNTP+TN​

3、精确率(Precision) 又称查准率,正确预测为正样本(TP)占预测为正样本(TP+FP)的百分比。 Precision=TPTP+FPPrecision = \frac{TP}{TP + FP}Precision=TP+FPTP​

4、召回率(Recall) 又称为查全率,正确预测为正样本(TP)占正样本(TP+FN)的百分比。 Recall=TPTP+FNRecall = \frac{TP}{TP + FN}Recall=TP+FNTP​

5、F1 Score 精确率和召回率是相互影响的,精确率升高则召回率下降,召回率升高则精确率下降,如果需要兼顾二者,就需要精确率、召回率的结合F1 Score。 F1−Score=21Precision+1RecallF1-Score = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}F1−Score=Precision1​+Recall1​2​

6、P-R曲线(Precision-Recall Curve) P-R曲线是描述精确率和召回率变化的曲线

7、 ROC(Receiver Operating Characteristic)

ROC空间将假正例率(FPR)定义为 X 轴,真正例率(TPR)定义为 Y 轴。

TPR:在所有实际为正例的样本中,被正确地判断为正例之比率。 TPR=TPTP+FNTPR = \frac{TP}{TP + FN}TPR=TP+FNTP​ FPR:在所有实际为负例的样本中,被错误地判断为正例之比率。 FPR=FPFP+TNFPR = \frac{FP}{FP + TN}FPR=FP+TNFP​

8、AUC(Area Under Curve) AUC(Area Under Curve)被定义为 ROC曲线 下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

对于金融风控预测类常见的评估指标如下:

1、KS(Kolmogorov-Smirnov) KS统计量由两位苏联数学家A.N. Kolmogorov和N.V. Smirnov提出。在风控中,KS常用于评估模型区分度。区分度越大,说明模型的风险排序能力(ranking ability)越强。 K-S曲线与ROC曲线类似,不同在于

ROC曲线将真正例率和假正例率作为横纵轴

K-S曲线将真正例率和假正例率都作为纵轴,横轴则由选定的阈值来充当。 公式如下: KS=max(TPR−FPR)KS=max(TPR-FPR)KS=max(TPR−FPR) KS不同代表的不同情况,一般情况KS值越大,模型的区分能力越强,但是也不是越大模型效果就越好,如果KS过大,模型可能存在异常,所以当KS值过高可能需要检查模型是否过拟合。以下为KS值对应的模型情况,但此对应不是唯一的,只代表大致趋势。

KS (%) 好坏区分能力 20%下 不建议采用 20−40较好 41−50良好 51−60很强 61−75非常强 75以上 过于高, 疑似存在问题 \begin{array}{|c|c|} \hline \text { KS (\%) } & \text { 好坏区分能力 } \\ \hline 20 \% \text { 下 } & \text { 不建议采用 } \\ \hline 20-40 & \text { 较好 } \\ \hline 41-50 & \text { 良好 } \\ \hline 51-60 & \text { 很强 } \\ \hline 61-75 & \text { 非常强 } \\ \hline \text { 75以上 } & \text { 过于高, 疑似存在问题 } \\ \hline \end{array} KS (%) 20% 下 20−4041−5051−6061−75 75以上 ​ 好坏区分能力  不建议采用  较好  良好  很强  非常强  过于高, 疑似存在问题 ​​

2、ROC

3、AUC

初步分析

import pandas as pd
import numpy as np
train = pd.read_csv('E:/python-project/deep-learning/datawhale/tianchi/FinancialRiskControl/data/train.csv')
testA = pd.read_csv('E:/python-project/deep-learning/datawhale/tianchi/FinancialRiskControl/data/testA.csv')
train.head()
train.info()
train.describe()




分类指标评价计算示例

##
import numpy as np
from sklearn.metrics import confusion_matrix
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('混淆矩阵:\n',confusion_matrix(y_true, y_pred))

混淆矩阵:
[[1 1]
[1 1]]

## accuracy
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('ACC:',accuracy_score(y_true, y_pred))

ACC: 0.5

## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 0]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))

Precision 0.5
Recall 0.5
F1-score: 0.5

## P-R曲线
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
plt.plot(precision, recall)

## ROC曲线
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
plt.title('ROC')
plt.plot(FPR, TPR,'b')
plt.plot([0,1],[0,1],'r--')
plt.ylabel('TPR')
plt.xlabel('FPR')

## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))

AUC socre: 0.75

## KS值 在实际操作时往往使用ROC曲线配合求出KS值
from sklearn.metrics import roc_curve
y_pred = [0, 1, 1, 0, 1, 1, 0, 1, 1, 1]
y_true = [0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
FPR,TPR,thresholds=roc_curve(y_true, y_pred)
KS=abs(FPR-TPR).max()
print('KS值:',KS)

KS值: 0.5238095238095237

#评分卡 不是标准评分卡
def Score(prob,P0=600,PDO=20,badrate=None,goodrate=None):P0 = P0PDO = PDOtheta0 = badrate/goodrateB = PDO/np.log(2)A = P0 + B*np.log(2*theta0)score = A-B*np.log(prob/(1-prob))return score

数据竞赛入门-金融风控(贷款违约预测)一、赛题介绍相关推荐

  1. DataWhale天池-金融风控贷款违约预测-Task01赛题理解

    目录 一.赛题概况 二.数据集介绍 三.预测指标 理解 通过ROC曲线评估分类器 最佳阈值点选择 一.赛题概况 本次新人赛是Datawhale与天池联合发起的0基础入门系列赛事第四场 -- 零基础入门 ...

  2. 笔记之零基础入门金融风控-贷款违约预测

    零基础入门金融风控-贷款违约预测 赛题描述 赛题概况 数据概况 合理的创建标题,有助于目录的生成 预测指标 赛题流程 评分卡 笔记记录转载 赛题描述 赛题以金融风控中的个人信贷为背景,要求选手根据贷款 ...

  3. 零基础入门金融风控-贷款违约预测_Task1

    贷款违约预测_Task1 零基础入门金融风控-贷款违约预测_Task1 数据概况 预测指标 零基础入门金融风控-贷款违约预测_Task1 数据概况 数据包含三部分:训练集(train.csv).测试集 ...

  4. 零基础入门金融风控-贷款违约预测-机器学习-数据分析

    零基础入门金融风控-贷款违约预测 一.赛题数据 赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变 ...

  5. 零基础入门金融风控-贷款违约预测-Task05——模型融合

    有幸参加了阿里云举办的零基础入门金融风控-贷款违约预测训练营.收获颇多. 每天记录一些自己之前的知识盲点,需经常温习. 第五次的学习任务,是模型融合. 一.模型融合常用方法 模型融合有常用的如下六种方 ...

  6. 阿里天池零基础入门金融风控-贷款违约预测文本处理

    阿里天池零基础入门金融风控-贷款违约预测文本处理 文本处理 日期处理 等级处理 就业年限处理 删除含有空值的行 数据归一化 踩坑 文本处理 日期处理 earliesCreditLine: 可以看到ea ...

  7. 1.天池金融风控-贷款违约预测新人赛之预备知识

    比赛链接:金融风控-贷款违约预测 因为这是一个金融风控专题的数据挖掘实战,在开始之前先引入一些预备知识. 1.预备知识 1.1预测指标 本次竞赛用AUC作为评价指标,AUC为ROC曲线下与坐标轴围成的 ...

  8. 零基础入门金融风控-贷款违约预测

    写在前面: 刚接触数据挖掘,看了几页python就跳进了这个大坑,也不知道该咋写这个博客,先瞎写着吧.介绍下自己参加的这个项目,是Datawhale和天池比赛联合发起的,我们在Datawhale组对学 ...

  9. 零基础入门金融风控-贷款违约预测-Task4 建模与调参

    此部分为零基础入门金融风控的 Task4 建模调参部分,带你来了解各种模型以及模型的评价和调参策略,欢迎大家后续多多交流. 项目地址 比赛地址 4.1 学习目标 学习在金融分控领域常用的机器学习模型 ...

  10. 天池新人赛-零基础入门金融风控-贷款违约预测-排名174

    赛题以预测用户贷款是否违约为任务,该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量.从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B ...

最新文章

  1. 连接 linux服务器
  2. .ipynb文件转.py文件
  3. 投资银行对Java进行的二十大核心面试问答
  4. 软件工程形式化技术简介
  5. F5 root密码恢复
  6. 利用arcgis基本比例尺标准分幅编号流程
  7. python怎么下载网易云歌曲_python 下载网易云歌曲(能在线听都可以)
  8. 【编译原理总结】由正则式构造等价的DFA并将其最小化
  9. java Http请求工具类【post/get】
  10. H264码流中SPS PPS SEI概念及详解
  11. 张宇基础30讲——第6讲-中值定理
  12. 斯坦福AI百年报告2017:人工智能与机器学习全景式概览
  13. 【Coding】Latex添加表格注释footnote
  14. 2021年煤矿瓦斯检查证考试及煤矿瓦斯检查模拟考试题
  15. hive的大表join小表
  16. key rocketmq 有什么用_RocketMQ原理介绍
  17. ECCV 2022 | 阿里提出:快速动作识别的时空自注意力模型
  18. 浅谈SAP咨询行业的衰落
  19. 基于项目协同过滤的电子商务推荐系统
  20. powerpc linux交叉编译器,[转载]搭建PowerPC交叉编译器 二

热门文章

  1. js 请求接口获取不到登录cookie xhrFields 配置
  2. C#LeetCode刷题之#11-盛最多水的容器(Container With Most Water)
  3. C#LeetCode刷题之#110-平衡二叉树(Balanced Binary Tree)
  4. C#LeetCode刷题之#168-Excel表列名称(Excel Sheet Column Title)
  5. mysql排序之order by
  6. react 组件引用组件_自定位React组件
  7. gocd_如何将DangerJS集成到GoCD管道中
  8. git git 查看远程库_如何从Git远程存储库中提取
  9. 同步应用(python 版)
  10. 多进程修改全局变量(python版)