"""
现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示:导入相应的工具包小车运动数据生成参数初始化利用卡尔曼滤波进行小车状态预测可视化:观察参数的变化与结果
"""#导入包
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"] #支持中文显示
mpl.rcParams["axes.unicode_minus"] = False#小车运动数据生成
#在这里我们假设小车作速度为1的匀速运动
# 生成1000个位置,从1到1000,是小车的实际位置
z = np.linspace(1,1000,1000)
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise#参数初始化
# dim_x 状态向量size,在该例中为[p,v],即位置和速度,size=2
# dim_z 测量向量size,假设小车为匀速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=2, dim_z=1)# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.]])# p 协方差矩阵,表示状态向量内位置与速度的相关性
# 假设速度与位置没关系,协方差矩阵为[[1,0],[0,1]]
my_filter.P = np.array([[1., 0.], [0., 1.]])# F 初始的状态转移矩阵,假设为匀速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.], [0., 1.]])# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0.], [0., 0.0001]])# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0]])
# R 测量噪声,方差为1
my_filter.R = 1#卡尔曼滤波进行预测
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(len(z_nosie)):# 预测过程my_filter.predict()# 利用观测值进行更新my_filter.update(z_nosie[k])# do something with the outputx = my_filter.x# 收集卡尔曼滤波后的速度和位置信息z_new_list.append(x[0][0])v_new_list.append(x[1][0])#可视化
#预测误差的可视化
# 位移的偏差
dif_list = []
for k in range(len(z)):dif_list.append(z_new_list[k]-z[k])
# 速度的偏差
v_dif_list = []
for k in range(len(z)):v_dif_list.append(v_new_list[k]-1)plt.figure(figsize=(20,9))
plt.subplot(1,1,1)
plt.xlim(-50,1050)
plt.ylim(-3.0,3.0)
plt.scatter(range(len(z)),dif_list,color ='b',label = "位置偏差")
plt.scatter(range(len(z)),v_dif_list,color ='y',label = "速度偏差")
plt.legend()
plt.show()#2.卡尔曼滤波器参数的变化
#首先定义方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0,我们看一下参数的变化。
# 定义一个方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0
def filter_comb(p, f, q, h, r):a = np.hstack((p, f))b = np.array([r, 0])b = np.vstack([h, b])b = np.hstack((q, b))a = np.vstack((a, b))return a#对参数变化进行可视化:
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(1):# 预测过程my_filter.predict()# 利用观测值进行更新my_filter.update(z_nosie[k])# do something with the outputx = my_filter.xc = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)plt.figure(figsize=(32,18))sns.set(font_scale=4)#sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)#从图中可以看出变化的P,其他的参数F,Q,H,R为变换。另外状态变量x和卡尔曼系数K也是变化的。
#3.概率密度函数
#为了验证卡尔曼滤波的结果优于测量的结果,绘制预测结果误差和测量误差的概率密度函数:
# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)import seaborn as sns
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)
plt.show()

输出:

智慧交通day02-车流量检测实现05:小车匀速案例相关推荐

  1. 智慧交通day02-车流量检测实现05:卡尔曼滤波器实践(小车模型)

    1.filterpy FilterPy是一个实现了各种滤波器的Python模块,它实现著名的卡尔曼滤波和粒子滤波器.我们可以直接调用该库完成卡尔曼滤波器实现.其中的主要模块包括: filterpy.k ...

  2. 智慧交通day02-车流量检测实现05:小车匀加速案例

    """ 现在利用卡尔曼滤波对小车的运动状态进行预测.主要流程如下所示:导入相应的工具包小车运动数据生成参数初始化利用卡尔曼滤波进行小车状态预测可视化:观察参数的变化与结果 ...

  3. 智慧交通day02-车流量检测实现01:总览

    随着城市交通量的迅猛增加,车流量统计已成为智能交通系统中一项关键技术和热门研究方向.高效而精确的车流量检测可以交通管理者和决策者,以及驾驶员提供数据支撑,从而为交通调度,降低拥堵情况的发生,提高道路利 ...

  4. 智慧交通day02-车流量检测实现04:卡尔曼滤波器

    1.背景介绍 卡尔曼滤波(Kalman)无论是在单目标还是多目标领域都是很常用的一种算法,我们将卡尔曼滤波看做一种运动模型,用来对目标的位置进行预测,并且利用预测结果对跟踪的目标进行修正,属于自动控制 ...

  5. 智慧交通day02-车流量检测实现14:代码汇总+问题修正

    代码+权重文件+资源https://download.csdn.net/download/qq_39237205/43072746https://download.csdn.net/download/ ...

  6. 智慧交通day02-车流量检测实现12:基于yoloV3的目标检测

    在本章节代码编写中,发现之前的代码所处的环境是python3,因此导致了cv2.dnn.readNetFromDarknet()在代码运行中导致了i[0]的获值失败,故总结如下: cv2.dnn.re ...

  7. 智慧交通day02-车流量检测实现11:yoloV3模型

    yoloV3以V1,V2为基础进行的改进,主要有:利用多尺度特征进行目标检测:先验框更丰富:调整了网络结构:对象分类使用logistic代替了softmax,更适用于多标签分类任务. 1.算法简介 Y ...

  8. 智慧交通day02-车流量检测实现10:多目标追踪实现

    在这里我们主要实现了一个多目标跟踪器,管理多个卡尔曼滤波器对象,主要包括以下内容: 初始化:最大检测数,目标未被检测的最大帧数 目标跟踪结果的更新,即跟踪成功和失败的目标的更新 初始化 def __i ...

  9. 智慧交通day02-车流量检测实现09:SORT/deepSORT

    SORT和DeepSORT是多目标跟踪中两个知名度比较高的算法.DeepSORT是原团队对SORT的改进版本.现在来解析一下SORT和DeepSORT的基本思路. 1.SORT SORT核心是卡尔曼滤 ...

最新文章

  1. 附录G Netty与NettyUtils
  2. mysql 设置表空间位置_如何修改表空间数据文件路径
  3. 一种简单的数据库性能测试方法
  4. Python如何实现数据可视化
  5. thymeleaf th:if 案例
  6. Mysql JDBC 连接串参数说明
  7. python调用api接口获取数据_python批量爬取NCBI基因注释并调用谷歌API批量翻译
  8. asp手机拍照显示_会员动态飞凯材料120吨TFTLCD混合液晶显示项目,建后五年达产...
  9. Ubuntu16.4(64位)下gcc-linaro-arm-linux-gnueabihf交叉编译环境安装
  10. xposed 修改参数_【Android 原创】2020春节红包第三题Xposed框架Hook的应用
  11. Iphone开发之音频101(part 2):转换和录音
  12. mongodb日志切割
  13. C语言之计算程序运行时间(八)
  14. 《教孩子学编程(Python语言版)》——1.3 运行Python程序
  15. 华为服务器装系统怎么选pxe,服务器设置pxe启动
  16. react ssr php,从零开始搭建React同构应用(三):配置SSR
  17. 中国新型显示产业竞争格局与发展规模预测报告2022版
  18. TCP/UDP常用端口列表
  19. 2016年8月14日 星期日 --出埃及记 Exodus 16:15
  20. HDU--1010--Tempter of the Bone

热门文章

  1. Thread.yield()和Thread.sleep(0)
  2. Diango博客--16.稳定易用的 Django 分页库,完善分页功能(二)
  3. 安装nginx及fastdfs-nginx-module
  4. linux mysql安装_Linux下安装mysql服务(超详细)
  5. 【spider】多线程爬虫
  6. Django中的F对象和Q对象
  7. Git常用指令及功能总结
  8. C# DataTable的詳細用法
  9. linux中的信号1——信号概述
  10. 软件测试工程师核心竞争力(转)