P图大家都知道吧,但是用Python来P图我相信有很多人还是不知道的。今天就教大家如何用Python实现替换照片背景,听起来就很好玩,等下就拿你女朋友或者男朋友的照片练手......

项目结构
我们先看一下项目的结构,如图:

其中,model文件夹放的是模型文件,模型文件的下载地址为:https://drive.google.com/drive/folders/1NmyTItr2jRac0nLoZMeixlcU1myMiYTs

下载该模型放到model文件夹下。
依赖文件-requirements.txt,说明一下,pytorch的安装需要使用官网给出的,避免显卡驱动对应不上。
依赖文件如下:

kornia==0.4.1
tensorboard==2.3.0
torch==1.7.0
torchvision==0.8.1
tqdm==4.51.0
opencv-python==4.4.0.44
onnxruntime==1.6.0

数据准备
我们需要准备一张照片以及照片的背景图,和你需要替换的图片。我这边选择的是BackgroundMattingV2给出的一些参考图,原始图与背景图如下:

新的背景图(我随便找的)如下:

替换背景图代码

####Python学习交流Q群:906715085#####不废话了,上核心代码。
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/11/14 21:24
# @Author  : 剑客阿良_ALiang
# @Site    :
# @File    : inferance_hy.py
import argparse
import torch
import osfrom torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from torch.utils.data import Dataset
from PIL import Image
from typing import Callable, Optional, List, Tuple
import glob
from torch import nn
from torchvision.models.resnet import ResNet, Bottleneck
from torch import Tensor
import torchvision
import numpy as np
import cv2
import uuid# --------------- hy ---------------
class HomographicAlignment:"""Apply homographic alignment on background to match with the source image."""def __init__(self):self.detector = cv2.ORB_create()self.matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE)def __call__(self, src, bgr):src = np.asarray(src)bgr = np.asarray(bgr)keypoints_src, descriptors_src = self.detector.detectAndCompute(src, None)keypoints_bgr, descriptors_bgr = self.detector.detectAndCompute(bgr, None)matches = self.matcher.match(descriptors_bgr, descriptors_src, None)matches.sort(key=lambda x: x.distance, reverse=False)num_good_matches = int(len(matches) * 0.15)matches = matches[:num_good_matches]points_src = np.zeros((len(matches), 2), dtype=np.float32)points_bgr = np.zeros((len(matches), 2), dtype=np.float32)for i, match in enumerate(matches):points_src[i, :] = keypoints_src[match.trainIdx].ptpoints_bgr[i, :] = keypoints_bgr[match.queryIdx].ptH, _ = cv2.findHomography(points_bgr, points_src, cv2.RANSAC)h, w = src.shape[:2]bgr = cv2.warpPerspective(bgr, H, (w, h))msk = cv2.warpPerspective(np.ones((h, w)), H, (w, h))# For areas that is outside of the background,# We just copy pixels from the source.bgr[msk != 1] = src[msk != 1]src = Image.fromarray(src)bgr = Image.fromarray(bgr)return src, bgrclass Refiner(nn.Module):# For TorchScript export optimization.__constants__ = ['kernel_size', 'patch_crop_method', 'patch_replace_method']def __init__(self,mode: str,sample_pixels: int,threshold: float,kernel_size: int = 3,prevent_oversampling: bool = True,patch_crop_method: str = 'unfold',patch_replace_method: str = 'scatter_nd'):super().__init__()assert mode in ['full', 'sampling', 'thresholding']assert kernel_size in [1, 3]assert patch_crop_method in ['unfold', 'roi_align', 'gather']assert patch_replace_method in ['scatter_nd', 'scatter_element']self.mode = modeself.sample_pixels = sample_pixelsself.threshold = thresholdself.kernel_size = kernel_sizeself.prevent_oversampling = prevent_oversamplingself.patch_crop_method = patch_crop_methodself.patch_replace_method = patch_replace_methodchannels = [32, 24, 16, 12, 4]self.conv1 = nn.Conv2d(channels[0] + 6 + 4, channels[1], kernel_size, bias=False)self.bn1 = nn.BatchNorm2d(channels[1])self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size, bias=False)self.bn2 = nn.BatchNorm2d(channels[2])self.conv3 = nn.Conv2d(channels[2] + 6, channels[3], kernel_size, bias=False)self.bn3 = nn.BatchNorm2d(channels[3])self.conv4 = nn.Conv2d(channels[3], channels[4], kernel_size, bias=True)self.relu = nn.ReLU(True)def forward(self,src: torch.Tensor,bgr: torch.Tensor,pha: torch.Tensor,fgr: torch.Tensor,err: torch.Tensor,hid: torch.Tensor):H_full, W_full = src.shape[2:]H_half, W_half = H_full // 2, W_full // 2H_quat, W_quat = H_full // 4, W_full // 4src_bgr = torch.cat([src, bgr], dim=1)if self.mode != 'full':err = F.interpolate(err, (H_quat, W_quat), mode='bilinear', align_corners=False)ref = self.select_refinement_regions(err)idx = torch.nonzero(ref.squeeze(1))idx = idx[:, 0], idx[:, 1], idx[:, 2]if idx[0].size(0) > 0:x = torch.cat([hid, pha, fgr], dim=1)x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)x = self.crop_patch(x, idx, 2, 3 if self.kernel_size == 3 else 0)y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)y = self.crop_patch(y, idx, 2, 3 if self.kernel_size == 3 else 0)x = self.conv1(torch.cat([x, y], dim=1))x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x = self.relu(x)x = F.interpolate(x, 8 if self.kernel_size == 3 else 4, mode='nearest')y = self.crop_patch(src_bgr, idx, 4, 2 if self.kernel_size == 3 else 0)x = self.conv3(torch.cat([x, y], dim=1))x = self.bn3(x)x = self.relu(x)x = self.conv4(x)out = torch.cat([pha, fgr], dim=1)out = F.interpolate(out, (H_full, W_full), mode='bilinear', align_corners=False)out = self.replace_patch(out, x, idx)pha = out[:, :1]fgr = out[:, 1:]else:pha = F.interpolate(pha, (H_full, W_full), mode='bilinear', align_corners=False)fgr = F.interpolate(fgr, (H_full, W_full), mode='bilinear', align_corners=False)else:x = torch.cat([hid, pha, fgr], dim=1)x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)if self.kernel_size == 3:x = F.pad(x, (3, 3, 3, 3))y = F.pad(y, (3, 3, 3, 3))x = self.conv1(torch.cat([x, y], dim=1))x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)x = self.relu(x)if self.kernel_size == 3:x = F.interpolate(x, (H_full + 4, W_full + 4))y = F.pad(src_bgr, (2, 2, 2, 2))else:x = F.interpolate(x, (H_full, W_full), mode='nearest')y = src_bgrx = self.conv3(torch.cat([x, y], dim=1))x = self.bn3(x)x = self.relu(x)x = self.conv4(x)pha = x[:, :1]fgr = x[:, 1:]ref = torch.ones((src.size(0), 1, H_quat, W_quat), device=src.device, dtype=src.dtype)return pha, fgr, refdef select_refinement_regions(self, err: torch.Tensor):"""Select refinement regions.Input:err: error map (B, 1, H, W)Output:ref: refinement regions (B, 1, H, W). FloatTensor. 1 is selected, 0 is not."""if self.mode == 'sampling':# Sampling mode.b, _, h, w = err.shapeerr = err.view(b, -1)idx = err.topk(self.sample_pixels // 16, dim=1, sorted=False).indicesref = torch.zeros_like(err)ref.scatter_(1, idx, 1.)if self.prevent_oversampling:ref.mul_(err.gt(0).float())ref = ref.view(b, 1, h, w)else:# Thresholding mode.ref = err.gt(self.threshold).float()return refdef crop_patch(self,x: torch.Tensor,idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],size: int,padding: int):"""Crops selected patches from image given indices.Inputs:x: image (B, C, H, W).idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.size: center size of the patch, also stride of the crop.padding: expansion size of the patch.Output:patch: (P, C, h, w), where h = w = size + 2 * padding."""if padding != 0:x = F.pad(x, (padding,) * 4)if self.patch_crop_method == 'unfold':# Use unfold. Best performance for PyTorch and TorchScript.return x.permute(0, 2, 3, 1) \.unfold(1, size + 2 * padding, size) \.unfold(2, size + 2 * padding, size)[idx[0], idx[1], idx[2]]elif self.patch_crop_method == 'roi_align':# Use roi_align. Best compatibility for ONNX.idx = idx[0].type_as(x), idx[1].type_as(x), idx[2].type_as(x)b = idx[0]x1 = idx[2] * size - 0.5y1 = idx[1] * size - 0.5x2 = idx[2] * size + size + 2 * padding - 0.5y2 = idx[1] * size + size + 2 * padding - 0.5boxes = torch.stack([b, x1, y1, x2, y2], dim=1)return torchvision.ops.roi_align(x, boxes, size + 2 * padding, sampling_ratio=1)else:# Use gather. Crops out patches pixel by pixel.idx_pix = self.compute_pixel_indices(x, idx, size, padding)pat = torch.gather(x.view(-1), 0, idx_pix.view(-1))pat = pat.view(-1, x.size(1), size + 2 * padding, size + 2 * padding)return patdef replace_patch(self,x: torch.Tensor,y: torch.Tensor,idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]):"""Replaces patches back into image given index.Inputs:x: image (B, C, H, W)y: patches (P, C, h, w)idx: selection indices Tuple[(P,), (P,), (P,)] where the 3 values are (B, H, W) index.Output:image: (B, C, H, W), where patches at idx locations are replaced with y."""xB, xC, xH, xW = x.shapeyB, yC, yH, yW = y.shapeif self.patch_replace_method == 'scatter_nd':# Use scatter_nd. Best performance for PyTorch and TorchScript. Replacing patch by patch.x = x.view(xB, xC, xH // yH, yH, xW // yW, yW).permute(0, 2, 4, 1, 3, 5)x[idx[0], idx[1], idx[2]] = yx = x.permute(0, 3, 1, 4, 2, 5).view(xB, xC, xH, xW)return xelse:# Use scatter_element. Best compatibility for ONNX. Replacing pixel by pixel.idx_pix = self.compute_pixel_indices(x, idx, size=4, padding=0)return x.view(-1).scatter_(0, idx_pix.view(-1), y.view(-1)).view(x.shape)def compute_pixel_indices(self,x: torch.Tensor,idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],size: int,padding: int):"""Compute selected pixel indices in the tensor.Used for crop_method == 'gather' and replace_method == 'scatter_element', which crop and replace pixel by pixel.Input:x: image: (B, C, H, W)idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.size: center size of the patch, also stride of the crop.padding: expansion size of the patch.Output:idx: (P, C, O, O) long tensor where O is the output size: size + 2 * padding, P is number of patches.the element are indices pointing to the input x.view(-1)."""B, C, H, W = x.shapeS, P = size, paddingO = S + 2 * Pb, y, x = idxn = b.size(0)c = torch.arange(C)o = torch.arange(O)idx_pat = (c * H * W).view(C, 1, 1).expand([C, O, O]) + (o * W).view(1, O, 1).expand([C, O, O]) + o.view(1, 1,O).expand([C, O, O])idx_loc = b * W * H + y * W * S + x * Sidx_pix = idx_loc.view(-1, 1, 1, 1).expand([n, C, O, O]) + idx_pat.view(1, C, O, O).expand([n, C, O, O])return idx_pixdef load_matched_state_dict(model, state_dict, print_stats=True):"""Only loads weights that matched in key and shape. Ignore other weights."""num_matched, num_total = 0, 0curr_state_dict = model.state_dict()for key in curr_state_dict.keys():num_total += 1if key in state_dict and curr_state_dict[key].shape == state_dict[key].shape:curr_state_dict[key] = state_dict[key]num_matched += 1model.load_state_dict(curr_state_dict)if print_stats:print(f'Loaded state_dict: {num_matched}/{num_total} matched')def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int:"""This function is taken from the original tf repo.It ensures that all layers have a channel number that is divisible by 8It can be seen here:https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py"""if min_value is None:min_value = divisornew_v = max(min_value, int(v + divisor / 2) // divisor * divisor)# Make sure that round down does not go down by more than 10%.if new_v < 0.9 * v:new_v += divisorreturn new_vclass ConvNormActivation(torch.nn.Sequential):def __init__(self,in_channels: int,out_channels: int,kernel_size: int = 3,stride: int = 1,padding: Optional[int] = None,groups: int = 1,norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,dilation: int = 1,inplace: bool = True,) -> None:if padding is None:padding = (kernel_size - 1) // 2 * dilationlayers = [torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding,dilation=dilation, groups=groups, bias=norm_layer is None)]if norm_layer is not None:layers.append(norm_layer(out_channels))if activation_layer is not None:layers.append(activation_layer(inplace=inplace))super().__init__(*layers)self.out_channels = out_channelsclass InvertedResidual(nn.Module):def __init__(self,inp: int,oup: int,stride: int,expand_ratio: int,norm_layer: Optional[Callable[..., nn.Module]] = None) -> None:super(InvertedResidual, self).__init__()self.stride = strideassert stride in [1, 2]if norm_layer is None:norm_layer = nn.BatchNorm2dhidden_dim = int(round(inp * expand_ratio))self.use_res_connect = self.stride == 1 and inp == ouplayers: List[nn.Module] = []if expand_ratio != 1:# pwlayers.append(ConvNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer,activation_layer=nn.ReLU6))layers.extend([# dwConvNormActivation(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer,activation_layer=nn.ReLU6),# pw-linearnn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),norm_layer(oup),])self.conv = nn.Sequential(*layers)self.out_channels = oupself._is_cn = stride > 1def forward(self, x: Tensor) -> Tensor:if self.use_res_connect:return x + self.conv(x)else:return self.conv(x)class MobileNetV2(nn.Module):def __init__(self,num_classes: int = 1000,width_mult: float = 1.0,inverted_residual_setting: Optional[List[List[int]]] = None,round_nearest: int = 8,block: Optional[Callable[..., nn.Module]] = None,norm_layer: Optional[Callable[..., nn.Module]] = None) -> None:"""MobileNet V2 main classArgs:num_classes (int): Number of classeswidth_mult (float): Width multiplier - adjusts number of channels in each layer by this amountinverted_residual_setting: Network structureround_nearest (int): Round the number of channels in each layer to be a multiple of this numberSet to 1 to turn off roundingblock: Module specifying inverted residual building block for mobilenetnorm_layer: Module specifying the normalization layer to use"""super(MobileNetV2, self).__init__()if block is None:block = InvertedResidualif norm_layer is None:norm_layer = nn.BatchNorm2dinput_channel = 32last_channel = 1280if inverted_residual_setting is None:inverted_residual_setting = [# t, c, n, s[1, 16, 1, 1],[6, 24, 2, 2],[6, 32, 3, 2],[6, 64, 4, 2],[6, 96, 3, 1],[6, 160, 3, 2],[6, 320, 1, 1],]# only check the first element, assuming user knows t,c,n,s are requiredif len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:raise ValueError("inverted_residual_setting should be non-empty ""or a 4-element list, got {}".format(inverted_residual_setting))# building first layerinput_channel = _make_divisible(input_channel * width_mult, round_nearest)self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)features: List[nn.Module] = [ConvNormActivation(3, input_channel, stride=2, norm_layer=norm_layer,activation_layer=nn.ReLU6)]# building inverted residual blocksfor t, c, n, s in inverted_residual_setting:output_channel = _make_divisible(c * width_mult, round_nearest)for i in range(n):stride = s if i == 0 else 1features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))input_channel = output_channel# building last several layersfeatures.append(ConvNormActivation(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer,activation_layer=nn.ReLU6))# make it nn.Sequentialself.features = nn.Sequential(*features)# building classifierself.classifier = nn.Sequential(nn.Dropout(0.2),nn.Linear(self.last_channel, num_classes),)# weight initializationfor m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):nn.init.ones_(m.weight)nn.init.zeros_(m.bias)elif isinstance(m, nn.Linear):nn.init.normal_(m.weight, 0, 0.01)nn.init.zeros_(m.bias)def _forward_impl(self, x: Tensor) -> Tensor:# This exists since TorchScript doesn't support inheritance, so the superclass method# (this one) needs to have a name other than `forward` that can be accessed in a subclassx = self.features(x)# Cannot use "squeeze" as batch-size can be 1x = nn.functional.adaptive_avg_pool2d(x, (1, 1))x = torch.flatten(x, 1)x = self.classifier(x)return xdef forward(self, x: Tensor) -> Tensor:return self._forward_impl(x)class MobileNetV2Encoder(MobileNetV2):"""MobileNetV2Encoder inherits from torchvision's official MobileNetV2. It is modified touse dilation on the last block to maintain output stride 16, and deleted theclassifier block that was originally used for classification. The forward methodadditionally returns the feature maps at all resolutions for decoder's use."""def __init__(self, in_channels, norm_layer=None):super().__init__()# Replace first conv layer if in_channels doesn't match.if in_channels != 3:self.features[0][0] = nn.Conv2d(in_channels, 32, 3, 2, 1, bias=False)# Remove last blockself.features = self.features[:-1]# Change to use dilation to maintain output stride = 16self.features[14].conv[1][0].stride = (1, 1)for feature in self.features[15:]:feature.conv[1][0].dilation = (2, 2)feature.conv[1][0].padding = (2, 2)# Delete classifierdel self.classifierdef forward(self, x):x0 = x  # 1/1x = self.features[0](x)x = self.features[1](x)x1 = x  # 1/2x = self.features[2](x)x = self.features[3](x)x2 = x  # 1/4x = self.features[4](x)x = self.features[5](x)x = self.features[6](x)x3 = x  # 1/8x = self.features[7](x)x = self.features[8](x)x = self.features[9](x)x = self.features[10](x)x = self.features[11](x)x = self.features[12](x)x = self.features[13](x)x = self.features[14](x)x = self.features[15](x)x = self.features[16](x)x = self.features[17](x)x4 = x  # 1/16return x4, x3, x2, x1, x0class Decoder(nn.Module):def __init__(self, channels, feature_channels):super().__init__()self.conv1 = nn.Conv2d(feature_channels[0] + channels[0], channels[1], 3, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(channels[1])self.conv2 = nn.Conv2d(feature_channels[1] + channels[1], channels[2], 3, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(channels[2])self.conv3 = nn.Conv2d(feature_channels[2] + channels[2], channels[3], 3, padding=1, bias=False)self.bn3 = nn.BatchNorm2d(channels[3])self.conv4 = nn.Conv2d(feature_channels[3] + channels[3], channels[4], 3, padding=1)self.relu = nn.ReLU(True)def forward(self, x4, x3, x2, x1, x0):x = F.interpolate(x4, size=x3.shape[2:], mode='bilinear', align_corners=False)x = torch.cat([x, x3], dim=1)x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = F.interpolate(x, size=x2.shape[2:], mode='bilinear', align_corners=False)x = torch.cat([x, x2], dim=1)x = self.conv2(x)x = self.bn2(x)x = self.relu(x)x = F.interpolate(x, size=x1.shape[2:], mode='bilinear', align_corners=False)x = torch.cat([x, x1], dim=1)x = self.conv3(x)x = self.bn3(x)x = self.relu(x)x = F.interpolate(x, size=x0.shape[2:], mode='bilinear', align_corners=False)x = torch.cat([x, x0], dim=1)x = self.conv4(x)return xclass ASPPPooling(nn.Sequential):def __init__(self, in_channels: int, out_channels: int) -> None:super(ASPPPooling, self).__init__(nn.AdaptiveAvgPool2d(1),nn.Conv2d(in_channels, out_channels, 1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU())def forward(self, x: torch.Tensor) -> torch.Tensor:size = x.shape[-2:]for mod in self:x = mod(x)return F.interpolate(x, size=size, mode='bilinear', align_corners=False)class ASPPConv(nn.Sequential):def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None:modules = [nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU()]super(ASPPConv, self).__init__(*modules)class ASPP(nn.Module):def __init__(self, in_channels: int, atrous_rates: List[int], out_channels: int = 256) -> None:super(ASPP, self).__init__()modules = []modules.append(nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU()))rates = tuple(atrous_rates)for rate in rates:modules.append(ASPPConv(in_channels, out_channels, rate))modules.append(ASPPPooling(in_channels, out_channels))self.convs = nn.ModuleList(modules)self.project = nn.Sequential(nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(),nn.Dropout(0.5))def forward(self, x: torch.Tensor) -> torch.Tensor:_res = []for conv in self.convs:_res.append(conv(x))res = torch.cat(_res, dim=1)return self.project(res)class ResNetEncoder(ResNet):layers = {'resnet50': [3, 4, 6, 3],'resnet101': [3, 4, 23, 3],}def __init__(self, in_channels, variant='resnet101', norm_layer=None):super().__init__(block=Bottleneck,layers=self.layers[variant],replace_stride_with_dilation=[False, False, True],norm_layer=norm_layer)# Replace first conv layer if in_channels doesn't match.if in_channels != 3:self.conv1 = nn.Conv2d(in_channels, 64, 7, 2, 3, bias=False)# Delete fully-connected layerdel self.avgpooldel self.fcdef forward(self, x):x0 = x  # 1/1x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x1 = x  # 1/2x = self.maxpool(x)x = self.layer1(x)x2 = x  # 1/4x = self.layer2(x)x3 = x  # 1/8x = self.layer3(x)x = self.layer4(x)x4 = x  # 1/16return x4, x3, x2, x1, x0class Base(nn.Module):"""A generic implementation of the base encoder-decoder network inspired by DeepLab.Accepts arbitrary channels for input and output."""def __init__(self, backbone: str, in_channels: int, out_channels: int):super().__init__()assert backbone in ["resnet50", "resnet101", "mobilenetv2"]if backbone in ['resnet50', 'resnet101']:self.backbone = ResNetEncoder(in_channels, variant=backbone)self.aspp = ASPP(2048, [3, 6, 9])self.decoder = Decoder([256, 128, 64, 48, out_channels], [512, 256, 64, in_channels])else:self.backbone = MobileNetV2Encoder(in_channels)self.aspp = ASPP(320, [3, 6, 9])self.decoder = Decoder([256, 128, 64, 48, out_channels], [32, 24, 16, in_channels])def forward(self, x):x, *shortcuts = self.backbone(x)x = self.aspp(x)x = self.decoder(x, *shortcuts)return xdef load_pretrained_deeplabv3_state_dict(self, state_dict, print_stats=True):# Pretrained DeepLabV3 models are provided by <https://github.com/VainF/DeepLabV3Plus-Pytorch>.# This method converts and loads their pretrained state_dict to match with our model structure.# This method is not needed if you are not planning to train from deeplab weights.# Use load_state_dict() for normal weight loading.# Convert state_dict naming for aspp modulestate_dict = {k.replace('classifier.classifier.0', 'aspp'): v for k, v in state_dict.items()}if isinstance(self.backbone, ResNetEncoder):# ResNet backbone does not need change.load_matched_state_dict(self, state_dict, print_stats)else:# Change MobileNetV2 backbone to state_dict format, then change back after loading.backbone_features = self.backbone.featuresself.backbone.low_level_features = backbone_features[:4]self.backbone.high_level_features = backbone_features[4:]del self.backbone.featuresload_matched_state_dict(self, state_dict, print_stats)self.backbone.features = backbone_featuresdel self.backbone.low_level_featuresdel self.backbone.high_level_featuresclass MattingBase(Base):def __init__(self, backbone: str):super().__init__(backbone, in_channels=6, out_channels=(1 + 3 + 1 + 32))def forward(self, src, bgr):x = torch.cat([src, bgr], dim=1)x, *shortcuts = self.backbone(x)x = self.aspp(x)x = self.decoder(x, *shortcuts)pha = x[:, 0:1].clamp_(0., 1.)fgr = x[:, 1:4].add(src).clamp_(0., 1.)err = x[:, 4:5].clamp_(0., 1.)hid = x[:, 5:].relu_()return pha, fgr, err, hidclass MattingRefine(MattingBase):def __init__(self,backbone: str,backbone_scale: float = 1 / 4,refine_mode: str = 'sampling',refine_sample_pixels: int = 80_000,refine_threshold: float = 0.1,refine_kernel_size: int = 3,refine_prevent_oversampling: bool = True,refine_patch_crop_method: str = 'unfold',refine_patch_replace_method: str = 'scatter_nd'):assert backbone_scale <= 1 / 2, 'backbone_scale should not be greater than 1/2'super().__init__(backbone)self.backbone_scale = backbone_scaleself.refiner = Refiner(refine_mode,refine_sample_pixels,refine_threshold,refine_kernel_size,refine_prevent_oversampling,refine_patch_crop_method,refine_patch_replace_method)def forward(self, src, bgr):assert src.size() == bgr.size(), 'src and bgr must have the same shape'assert src.size(2) // 4 * 4 == src.size(2) and src.size(3) // 4 * 4 == src.size(3), \'src and bgr must have width and height that are divisible by 4'# Downsample src and bgr for backbonesrc_sm = F.interpolate(src,scale_factor=self.backbone_scale,mode='bilinear',align_corners=False,recompute_scale_factor=True)bgr_sm = F.interpolate(bgr,scale_factor=self.backbone_scale,mode='bilinear',align_corners=False,recompute_scale_factor=True)# Basex = torch.cat([src_sm, bgr_sm], dim=1)x, *shortcuts = self.backbone(x)x = self.aspp(x)x = self.decoder(x, *shortcuts)pha_sm = x[:, 0:1].clamp_(0., 1.)fgr_sm = x[:, 1:4]err_sm = x[:, 4:5].clamp_(0., 1.)hid_sm = x[:, 5:].relu_()# Refinerpha, fgr, ref_sm = self.refiner(src, bgr, pha_sm, fgr_sm, err_sm, hid_sm)# Clamp outputspha = pha.clamp_(0., 1.)fgr = fgr.add_(src).clamp_(0., 1.)fgr_sm = src_sm.add_(fgr_sm).clamp_(0., 1.)return pha, fgr, pha_sm, fgr_sm, err_sm, ref_smclass ImagesDataset(Dataset):def __init__(self, root, mode='RGB', transforms=None):self.transforms = transformsself.mode = modeself.filenames = sorted([*glob.glob(os.path.join(root, '**', '*.jpg'), recursive=True),*glob.glob(os.path.join(root, '**', '*.png'), recursive=True)])def __len__(self):return len(self.filenames)def __getitem__(self, idx):with Image.open(self.filenames[idx]) as img:img = img.convert(self.mode)if self.transforms:img = self.transforms(img)return imgclass NewImagesDataset(Dataset):def __init__(self, root, mode='RGB', transforms=None):self.transforms = transformsself.mode = modeself.filenames = [root]print(self.filenames)def __len__(self):return len(self.filenames)def __getitem__(self, idx):with Image.open(self.filenames[idx]) as img:img = img.convert(self.mode)if self.transforms:img = self.transforms(img)return imgclass ZipDataset(Dataset):def __init__(self, datasets: List[Dataset], transforms=None, assert_equal_length=False):self.datasets = datasetsself.transforms = transformsif assert_equal_length:for i in range(1, len(datasets)):assert len(datasets[i]) == len(datasets[i - 1]), 'Datasets are not equal in length.'def __len__(self):return max(len(d) for d in self.datasets)def __getitem__(self, idx):x = tuple(d[idx % len(d)] for d in self.datasets)print(x)if self.transforms:x = self.transforms(*x)return xclass PairCompose(T.Compose):def __call__(self, *x):for transform in self.transforms:x = transform(*x)return xclass PairApply:def __init__(self, transforms):self.transforms = transformsdef __call__(self, *x):return [self.transforms(xi) for xi in x]# --------------- Arguments ---------------parser = argparse.ArgumentParser(description='hy-replace-background')parser.add_argument('--model-type', type=str, required=False, choices=['mattingbase', 'mattingrefine'],default='mattingrefine')
parser.add_argument('--model-backbone', type=str, required=False, choices=['resnet101', 'resnet50', 'mobilenetv2'],default='resnet50')
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str, required=False, default='model/pytorch_resnet50.pth')
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-threshold', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--num-workers', type=int, default=0,help='number of worker threads used in DataLoader. Note that Windows need to use single thread (0).')
parser.add_argument('--preprocess-alignment', action='store_true')parser.add_argument('--output-dir', type=str, required=False, default='content/output')
parser.add_argument('--output-types', type=str, required=False, nargs='+',choices=['com', 'pha', 'fgr', 'err', 'ref', 'new'],default=['new'])
parser.add_argument('-y', action='store_true')def handle(image_path: str, bgr_path: str, new_bg: str):parser.add_argument('--images-src', type=str, required=False, default=image_path)parser.add_argument('--images-bgr', type=str, required=False, default=bgr_path)args = parser.parse_args()assert 'err' not in args.output_types or args.model_type in ['mattingbase', 'mattingrefine'], \'Only mattingbase and mattingrefine support err output'assert 'ref' not in args.output_types or args.model_type in ['mattingrefine'], \'Only mattingrefine support ref output'# --------------- Main ---------------device = torch.device(args.device)# Load modelif args.model_type == 'mattingbase':model = MattingBase(args.model_backbone)if args.model_type == 'mattingrefine':model = MattingRefine(args.model_backbone,args.model_backbone_scale,args.model_refine_mode,args.model_refine_sample_pixels,args.model_refine_threshold,args.model_refine_kernel_size)model = model.to(device).eval()model.load_state_dict(torch.load(args.model_checkpoint, map_location=device), strict=False)# Load imagesdataset = ZipDataset([NewImagesDataset(args.images_src),NewImagesDataset(args.images_bgr),], assert_equal_length=True, transforms=PairCompose([HomographicAlignment() if args.preprocess_alignment else PairApply(nn.Identity()),PairApply(T.ToTensor())]))dataloader = DataLoader(dataset, batch_size=1, num_workers=args.num_workers, pin_memory=True)# # Create output directory# if os.path.exists(args.output_dir):#     if args.y or input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':#         shutil.rmtree(args.output_dir)#     else:#         exit()for output_type in args.output_types:if os.path.exists(os.path.join(args.output_dir, output_type)) is False:os.makedirs(os.path.join(args.output_dir, output_type))# Worker functiondef writer(img, path):img = to_pil_image(img[0].cpu())img.save(path)# Worker functiondef writer_hy(img, new_bg, path):img = to_pil_image(img[0].cpu())img_size = img.sizenew_bg_img = Image.open(new_bg).convert('RGBA')new_bg_img.resize(img_size, Image.ANTIALIAS)out = Image.alpha_composite(new_bg_img, img)out.save(path)result_file_name = str(uuid.uuid4())# Conversion loopwith torch.no_grad():for i, (src, bgr) in enumerate(tqdm(dataloader)):src = src.to(device, non_blocking=True)bgr = bgr.to(device, non_blocking=True)if args.model_type == 'mattingbase':pha, fgr, err, _ = model(src, bgr)elif args.model_type == 'mattingrefine':pha, fgr, _, _, err, ref = model(src, bgr)pathname = dataset.datasets[0].filenames[i]pathname = os.path.relpath(pathname, args.images_src)pathname = os.path.splitext(pathname)[0]if 'new' in args.output_types:new = torch.cat([fgr * pha.ne(0), pha], dim=1)Thread(target=writer_hy,args=(new, new_bg, os.path.join(args.output_dir, 'new', result_file_name + '.png'))).start()if 'com' in args.output_types:com = torch.cat([fgr * pha.ne(0), pha], dim=1)Thread(target=writer, args=(com, os.path.join(args.output_dir, 'com', pathname + '.png'))).start()if 'pha' in args.output_types:Thread(target=writer, args=(pha, os.path.join(args.output_dir, 'pha', pathname + '.jpg'))).start()if 'fgr' in args.output_types:Thread(target=writer, args=(fgr, os.path.join(args.output_dir, 'fgr', pathname + '.jpg'))).start()if 'err' in args.output_types:err = F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False)Thread(target=writer, args=(err, os.path.join(args.output_dir, 'err', pathname + '.jpg'))).start()if 'ref' in args.output_types:ref = F.interpolate(ref, src.shape[2:], mode='nearest')Thread(target=writer, args=(ref, os.path.join(args.output_dir, 'ref', pathname + '.jpg'))).start()return os.path.join(args.output_dir, 'new', result_file_name + '.png')if __name__ == '__main__':handle("data/img2.png", "data/bg.png", "data/newbg.jpg")

代码说明
1、handle方法的参数一次为:原始图路径、原始背景图路径、新背景图路径。
1、我将原项目中inferance_images使用的类都移到一个文件中,精简一下项目结构。
2、ImagesDateSet我重新构造了一个新的NewImagesDateSet,,主要是因为我只打算处理一张图片。
3、最终图片都存在相同目录下,避免重复使用uuid作为文件名。
4、本文给出的代码没有对文件格式做严格校正,不是很关键,如果需要补充就行。
验证一下效果

怎么样?还是很炫吧!用Python也能做出PS的效果,这样的操作还是很秀的。有哪里不懂可以提出来一起解决噢,到这里就近尾声了,下一篇文章见。

Python实现替换照片人物背景,精细到头发丝(附代码)相关推荐

  1. Python实现替换照片人物背景,精细到头发丝(附上代码) | 机器学习

    目录 前言 项目说明 项目结构 数据准备 替换背景图代码 总结 前言 根据我另一篇文章:如何将照片或者视频中的背景图抠掉,机器学习开源项目使用 | 机器学习_阿良的博客-CSDN博客 发现Backgr ...

  2. Python实现替换照片人物背景,精细到头发丝 | 机器学习

    前言 根据我另一篇文章:如何将照片或者视频中的背景图抠掉,机器学习开源项目使用 | 机器学习_阿良的博客-CSDN博客 发现BackgroundMattingV2项目的一些使用上的小缺陷,但是他却可以 ...

  3. 该卸载PhotoShop了!MIT用AI实现3分钟自动抠图,精细到头发丝

    是时候卸载你的PS软件了. 最近,MIT计算机科学与人工智能实验室(CSAIL)的研究人员开发了一种AI辅助的图像编辑工具,它可以自动抠图,替换任何图像的背景. 像这样: 和这样: 要使抠完的这些图像 ...

  4. python抓取朋友圈动态_如何利用Python网络爬虫爬取微信朋友圈动态--附代码(下)...

    原标题:如何利用Python网络爬虫爬取微信朋友圈动态--附代码(下) 前天给大家分享了如何利用Python网络爬虫爬取微信朋友圈数据的上篇(理论篇),今天给大家分享一下代码实现(实战篇),接着上篇往 ...

  5. Python爬虫:Xpath爬取网页信息(附代码)

    Python爬虫:Xpath爬取网页信息(附代码) 上一次分享了使用Python简单爬取网页信息的方法.但是仅仅对于单一网页的信息爬取一般无法满足我们的数据需求.对于一般的数据需求,我们通常需要从一个 ...

  6. 2021-07-16 python与HFSS联合仿真思路讲解(内附代码文件)

    版权声明:本文为博主(MNVCAT)原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42312 ...

  7. python中soup_python中BeautifulSoup的详细介绍(附代码)

    本篇文章给大家带来的内容是关于python中BeautifulSoup的详细介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. Beautiful Soup提供一些简单的. ...

  8. 精细到头发丝,Adobe深度抠图方法的实现来了!

    抠图是件体力活.传统抠图算法主要是以色彩为特征分离前景与背景,并在小数据集上完成,这造成了传统算法的局限性.去年年初,Adobe 等机构发表论文<Deep Image Matting>,采 ...

  9. python中import cv2遇到的错误及安装方法_独家利用OpenCV,Python和Ubidots来构建行人计数器程序(附代码amp;解析)...

    作者:Jose Garcia 翻译:吴振东 校对:张一豪 本文约4000字,建议阅读14分钟. 本文将利用OpenCV,Python和Ubidots来编写一个行人计数器程序,并对代码进行了较为详细的讲 ...

最新文章

  1. [转]VC获取各类指针
  2. 怎么获取html页面追加,添加df.to_html格式()到现有的HTML页面
  3. CSS3属性之多栏布局column
  4. 018_html文件路径
  5. 从近两年的CVPR会议来看,目标检测的研究方向是怎么样的?
  6. matlab求图形的聚类系数,求助,为什么画不出来聚类系数的图?一直为0啊
  7. oracle变量最大多少位,oracle – 是否有可能获得变量的最大可能长度
  8. 云炬随笔20171213
  9. linux datetime,Python datetime模块示例详解
  10. 计算机目标导学方法,计算机教学计划
  11. c# mysql 连接
  12. 鸿蒙眼镜怎么样,Babiators儿童太阳镜怎么样 Babiators儿童太阳镜测评
  13. 指针用作函数参数、指针型函数和函数指针
  14. dwz框架在网站群项目中的应用(2)—html拓展之页面形式
  15. 元编程: is_floating_point<Tp>
  16. 新闻资讯页面html,html页模板
  17. python+vue 税务申报系统
  18. 微信小程序春天来了 安卓程序员进入冬眠?
  19. python中4j_GitHub - Byron4j/PythonVeterans: Python新手到老鸟的历程;基于Python 3.6
  20. 沙盘游戏让我变成“诗人”

热门文章

  1. Ajax向后端发送PUT请求的两种方法
  2. 网络IO控制 单芯片
  3. 完整版 html代码简洁说明,html简单网页代码模板
  4. u盘正常接入后计算机无法看到,U盘连接XP系统电脑能识别但不显示怎么办?
  5. iOS安全逆向之旅---安全逆向环境搭建和工具使用介绍
  6. 基于DSP的视频采集系统设计
  7. 计算机模拟在复杂系统工程研究中的应用,计算机模拟在材料研究中的应用.pdf...
  8. ffmpeg 实现转码一个普通视频文件为视频mpeg4,音频mp3的功能的程序(摘)
  9. WPF 修改标题栏背景色(标题栏的最小化、最大化、关闭需要调一下)
  10. mysql好考还是office好考_计算机二级最好考哪个 office难考吗