一、概述。

实变函数又叫实分析,整本书满满的证明就讲了一个勒贝格积分。

最为大家所熟知的是用牛顿-莱布尼茨公式算的黎曼积分。但是黎曼积分本身依赖于函数的连续性,像不连续的狄利克雷函数就无法积分了。

为了解决这一问题,勒贝格利用分割值域的方法,使得函数可积。

但是分割出来的值域,只能放在一起,形式集合。

如果我们要求出狄利克雷函数的面积,就需要知道它的边长,也就是长度。

集合本身没有“长度”这一概念,所以需要用测度来得到集合的“长度”。(测度=集合的“长度”)

于是,狄利克雷函数在区间[0,1]的积分=1*m(Q)+0*m(I)。

区间[0,1]的有理数的测度m(Q)=0,区间[0,1]的无理数的测度m(I)=1;所以1*m(Q)+0*m(I)=0。

勒贝格本人举的例子:

假设要数一堆硬币,黎曼积分就是一个一个地数,而勒贝格积分就是先根据硬币的面值分好类,再一小堆一小堆地数。

二、集合。

1、有限覆盖定理。

有一开区间族B(B1到Bk的并)覆盖了闭区间A,那么可以在B中选出有限个开区间(虚线小圆)来覆盖A。

2、区间套定理。

若干个闭区间相交,而且一个比一个小,最后交集为一点(同心圆的圆心)。

3、对等和基数。

集合1和集合2中的元素一一对应,称为对等。对等的集合基数相同,基数可以衡量集合的个数,但是基数不是一个准确的数,而是一个代号。基数又称“势”。

无限集可以与它的真子集对等(有限集没有这个性质)。对等用~来表示。

如:{正整数全体}~{正偶数全体},令x=正整数,那么正偶数φ(x)=2x。

对等关系具有以下性质:自反性、对称性、传递性。

如果A≠B,但是A~B的真子集,那么B的基数比A大。

伯恩斯坦定理(用于建立对等),如下:

(0,1)  → (0,1)⊆ (0,1] ,(0,1)属于(0,1]的子区间,该子区间与前面的(0,1)对等。

(0,1]  → (0,1/2]⊆ (0,1) ,(0,1/2]属于(0,1)的子区间,该子区间与前面的(0,1]对等。

所以(0,1) ~ (0,1]。

4、可数集合。

全体有理数、正整数是可数集合(所有元素都可以一一列出来)。

一一列出的意思是:如正整数,可以用1,2,3,……,正无穷来列出。

5、不可数集合。

全体实数R、无理数是不可数集合(不能一一列出所有元素)。

三、点集。

1、内点、外点、界点、聚点、孤立点。

红点在圆内,为内点;黄点在圆边界,为界点;蓝点在圆外,为外点。

红点和黄点是聚点。

有一集合E=[a,b]并{c}。c点存在去心邻域(黄色区域),均不属于E,则c是孤立点。

2、开核、边界、导集、闭包。

红色部分和蓝色部分为开核,它不包括边界。

边界,就是圆周,但是圆周可以属于圆(红圆实线黑色边界),也可以不属于圆(蓝圆虚线边界)。

导集=开核+边界。

闭包=集合本身+导集。

3、开集、闭集、完备集。

红色部分(包括实线黑色边界)为闭集,它的每一个聚点都属于集合本身。蓝色部分(不包括虚线黑色边界)为开集,它的每一个内点都属于集合本身。

红色部分(包括实线黑色边界)为自密集,它的每一个聚点都属于集合本身。同时,它也是闭集,自密闭集就是完备集。

4、康托尔三分集P的性质。

P是完备集。

P没有内点。因为P的闭包没有内点,所以P是疏朗集。

P的测度为0,P在区间[0,1]的补集的测度为1。

P的基数为c。

康托尔三分集的Matlab代码如下:

function [] = main()
clear;close all;clc;
cantorSet(0,10,10,10);function f = cantorSet(ax,ay,bx,by) %康托尔三分集
c=0.001; %横线的最小宽度
d=0.005; %上、下两条横线的间距if((bx-ax) > c)x = [ax,bx];y = [ay,by];hold on;plot(x,y,'LineWidth',2); % 画线一条线hold off;cx = ax + (bx-ax)/3; %第一条横线从最左点ax,增加1/3长度cy=ay-d; % 横线向下递减ddx = bx-(bx-ax)/3; % 第二条横线从最右边bx,减少1/3长度dy=by-d; % 横线向下递减day=ay-d; % 横线向下递减dby=by-d; % 横线向下递减dcantorSet(ax,ay,cx,cy); % 递归画左边横线cantorSet(dx,dy,bx,by); % 递归画右边横线
end

结果如下:

四、测度论。

1、内测度和外测度。

内测度,是内填,对应于圆的内接多边形,只要多边形的边数足够多,上确界就能逼近圆的面积。

外测度,是外包,对应于圆的外切多边形,只要多边形的边数足够多,下确界就能逼近圆的面积。

2、外测度的次可数可加性。

因为外测度是外包,要不等于圆的面积,要不大于圆的面积,这就是次可数可加性。而可数可加性就只有等于圆的面积。

3、可测集。

外测度可以从外面包围任意集合,但这不能使得任意集合都可测,于是,外测度需要添加一个条件(卡拉泰奥多里条件):

这样,计算测度时,不需要同时使用内外两种测度,而是只使用外测度,大大简化计算。

4、可测集类。

可测集有以下几种类型:

a、凡外测度为零之集皆可测,称为零测度集。

b、零测度集之任何子集仍为零测度集。

c、有限个或可数个零测度集之和集仍为零测度集。

d、区间都是可测集合,且mI=I的“长度”。

e、凡开集、闭集皆可测。

f、凡博雷尔集都是L可测集。

五、可测函数。

六、积分论。

七、微分与不定积分。

未完待续。。。

实变函数/实分析总结相关推荐

  1. 数学系本科开c语言课程,数学系本科需要学习“高数”吗?他(她)们在学什么?...

    我们知道,在大学期间,很多同学对高等数学.线性代数等课程叫苦不迭,数学系本科似乎是一种神秘的存在,那么,数学系本科到底学些什么?他们需不需要学习"高数"呢? 实际上,数学系本科学习 ...

  2. 实变函数笔记-勒贝格积分

    [参考资料] [1]<实变函数与泛函分析基础> [2]陶哲轩 <实分析> 非负简单函数 定义: 设f(x)的定义域E可分为有限个互不相交的可测集E1,E2,...,EsE_1, ...

  3. 实变函数笔记-外测度,可测集,可测函数

    [参考资料] [1]<实变函数与泛函分析基础> [2]<陶泽轩实分析> [3]<实变函数与泛函分析> 外测度 定义: 设E为RnR^nRn中任一点集,对于每一列覆盖 ...

  4. 陶哲轩实分析定理17.3.8(三)

    本文继承了这篇博文. 为了证明$f$在$x_0$处可微,我们只用证明,存在线性映射$T$,使得 \begin{equation} \lim_{x'\to x_0;x'\neq x_0}\frac{f( ...

  5. 陶哲轩实分析命题10.1.7

    设$X$是$\mathbf{R}$的子集合,$x_0$是$X$的极限点,设$f:X\to\mathbf{R}$是函数,并设$L$是实数,则下述命题在逻辑上等价: (a):$f$在$x_0$处在$X$上 ...

  6. 实变函数与泛函分析导论

    1. 内容 实变函数: 测度理论(measure): 基于测度的积分(integration): 拓扑(topology): 泛函分析: Banach Space Compact operator H ...

  7. 陶哲轩实分析 定理 8.2.2 (无限和的富比尼定理) 证明

    设$f:\mathbb{N}\times\mathbb{N}\to\mathbb{R}$是函数.使得$$\sum_{(n,m)\in\mathbb{N}\times\mathbb{N}}f(n,m)$ ...

  8. 傅里叶分析斯坦恩中文版pdf_实分析(英文版)[(美)斯坦恩(Stein,E.M.) 著] 2013年版...

    实分析(英文版) 出版时间:2013年版 内容简介 <实分析(英文)>在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用.其教学目的是,用统一的.联系 ...

  9. UA MATH523A 实分析3 积分理论例题 集合的特征函数L2收敛的条件

    UA MATH523A 实分析3 积分理论例题 集合的特征函数L2收敛的条件 例 假设{En}\{E_n\}{En​}是一个有限测度空间(X,M,μ)(X,\mathcal{M},\mu)(X,M,μ ...

最新文章

  1. Python的Xpath介绍和语法详解
  2. 基于TensorFlow打造强化学习API:TensorForce是怎样炼成的?
  3. VS2010中的新特点(上)
  4. Wireshark非标准分析port无流量
  5. VTK计算网格模型上的最短路径
  6. H5页面在iOS网页数字颜色自动被改变成蓝色
  7. 共享内存中使用指针_详解c++中字符指针数组的使用
  8. 值得借鉴的30条好习惯
  9. uat测试用例怎么写_你会写测试用例吗
  10. 现实中很多人买了车,都是自己开
  11. java并发常量_Java并发编程-常量对象(七)
  12. 春招你必须掌握的Python经典面试题(附赠简历模版)
  13. wikioi 1430 素数判定
  14. javaweb学习总结四——Http协议
  15. syslog日志转换器_图解将windows日志转成syslog格式并发送
  16. 2022软工K班个人编程任务
  17. 训练集,验证集,测试集
  18. ios备忘录下载安卓版_ios8备忘录安卓版下载,ios8备忘录app软件下载安卓版 v3.0-开心路...
  19. 氮化镓 服务器电源管理系统报价,氮化镓(GaN)技术推动电源管理不断革新
  20. css中好看常用的中文字体

热门文章

  1. Memory Tagging Extension简介
  2. Python循环语句及随机数生成
  3. 12.8@烤仔建工 | 烤仔的新衣计划
  4. 静态库和动态库生成教程
  5. 介绍几个移动广告平台
  6. 直击根源:vue项目微信小程序页面跳转web-view不刷新
  7. 基于Openstack环境下开启SRIOV
  8. 对偶专题——KKT条件
  9. 用php照片艺术化,图像滤镜艺术--大雪滤镜
  10. 资本观察:合肥星诉企业管理有限公司获天使轮融资