content

  • 1.Definition定义
  • 2.Example例子
    • 2.1Channel symbol coupling of the TDM pulses
    • 2.2Channel symbol coupling of the FDM pulses
    • 2.3Channel symbol coupling of the OTFS pulses

前言:和前面的类似,这部分依旧比较偏概念性的描述而缺少实际的公式和例子说明,是对延迟-多普勒信道符号耦合特性的描述

1.Definition定义

The wireless channel is governed by simple physics. It is composed of a collection of specular reflectors, some of which are static and some of which are moving. The transmitted waveform propagates through the medium and bounces off each reflector. The signal that arrives at the receiver is a superposition of the direct signal and the reflected echoes. Each of the reflected echoes arrives at the receiver at a delayed time (multipath effect) and possibly also shifted in frequency (Doppler effect) due to the relative velocity between the reflector and the transmitter/receiver. The channel physics is mathematically modeled through the delay-Doppler impulse response where each tap represents a cluster of reflectors with specific delay and Doppler characteristics, as shown in Figure 4. Our goal in this section is to describe the channel-symbol coupling (CSC for short) between the wireless channel and the OTFS carrier waveform given by a localized pulse in the delay-Doppler representation. As a motivation, we first discuss the channelsymbol coupling of the TDM and FDM pulses.

这个定义揭示的是信道和传输符号耦合的实质。即符号经过由多径产生的时延以及多普勒产生的频移的各个符号的叠加。

2.Example例子

2.1Channel symbol coupling of the TDM pulses

Transmitting a localized TDM pulse in the time representation gives rise at the receiver to a configuration of echoes which appear at specific time displacements which corresponds to the multipath delays imposed by the various reflectors. The phase and amplitude of
each echo depend on the initial position of the transmitted pulse and might change significantly among different coherence time intervals – a phenomenon referred to as time selectivity.
There are two mechanisms involved. The phase of the echo changes due to the Doppler effect and the amplitude of the echo changes due to destructive superposition of numerous reflectors sharing the same delay but differing in Doppler, resulting from the inability of the TDM pulse to separate reflectors along Doppler. In Figure 9, counting the TDM echoes from left to right we see that the first and third echoes are due to static reflectors hence are time invariant, the fourth echo is due to moving reflector thus is time varying and the second echo is due to superposition of two reflectors, one of which is moving thus is fading.

解释一下这段话的含义:

  • 每个回波的相位和振幅取决于发射脉冲的初始位置,并可能在不同的相干时间间隔之间发生显著变化,这种现象称为时间选择性。
  • 回波的相位由于多普勒效应而改变,而回波的振幅由于具有相同延迟但不同多普勒的多个反射器的破坏性叠加而改变,这是由于TDM脉冲无法沿多普勒分离反射器造成的
  • 说明一下例子:
    从时间维度来看

    • 一和三是静态的反射器且只有一个,所以是时不变的
    • 四因为车在移动所以是时变的
    • 二是两个的叠加,一个动一个不动,所以是衰落

2.2Channel symbol coupling of the FDM pulses

Reciprocally, transmitting a localized FDM pulse in the frequency representation gives rise at the receiver to a configuration of echoes at specific frequency displacements which correspond to the Doppler shifts induced by the various reflectors. The phase and amplitude of each echo depends on the initial position of the transmitted pulse and might change significantly among different coherence frequency intervals – a phenomenon referred to as frequency selectivity. The phase of the echo changes due to the multipath effect and the amplitude of the echo changes due to destructive superposition of numerous reflectors sharing the same Doppler but perhaps differing in delay, resulting from the inability of the FDM pulse to separate reflectors along delay. For example, in Figure 9, counting the received FDM echoes from bottom up, we see that the first and third echoes are frequency varying and the second echo is due to superposition of three static reflectors thus is fading.

回波的相位由于多径效应而改变,而回波的振幅由于共享同一多普勒但可能不同延迟的多个反射器的破坏性叠加而改变,也就是说从频域来看,如果多普勒频移一致,但是时延不同的话,就会导致不同的回波相位不同,可能就会导致叠加在一起的相位呈现出不同的特性。

2.3Channel symbol coupling of the OTFS pulses

Transmitting a localized OTFS pulse in the delay-Doppler representation gives rise at the receiver to a configuration of echoes that appear at specific delay-Doppler displacements, which corresponds to the delay and Doppler shifts induced by the various reflectors, as shown in Figure 10. In contrast to the previous two cases, the following properties now hold:

  • CSC invariance: the phase and amplitude of the delay-Doppler echoes are independent of the location of the original pulse inside the fundamental domain, since the delay and Doppler periods are smaller than the coherence time and bandwidth of the channel respectively
  • CSC separability: all the reflections are separated from one another along their delay and Doppler characteristics, hence their effects do not add up destructively and there is no loss of energy on the QAM symbol level.
  • CSC orthogonality: the received echoes are confined to a small rectangular box around the transmitted pulse with dimensions equal the delay and Doppler spread of the channel which are much smaller than the outer delay and Doppler periods.??? As result, when two transmit pulses are geometrically separated at the transmitter they will remain orthogonal at the receiver.

An alternate way to express the OTFS channel-symbol coupling is as a two dimensional convolution between the delay-Doppler impulse response and the QAM symbols. This can be seen in Figure 11, which shows numerous delta functions (representing QAM symbols) convolved with the delay-Doppler impulse response of the channel.

这段话的意思是因为具有时移和多普勒两个维度的分辨能力,所以我们的OTFS脉冲具有了不变性,可分离性,正交性.但是为什么具有这个能力也没有具体论述

The delay-doppler Channel Symbol Coupling(延迟-多普勒信道符号耦合)(6)相关推荐

  1. 【OTFS与信号处理:论文阅读4】OTFS时延多普勒域嵌入导频辅助信道估计

    2023.07.10 虽说目前已经有频谱效率更高的叠加导频设计,但是这篇论文堪称OTFS嵌入式导频的经典之作,经常被其他论文引用,左思右想觉得还是有必要重新阅读并记录学习过程.(注:关于MIMO的部分 ...

  2. USRP N310,Gnuradio初探

    文章目录 实验平台 USRP-OFDM发送端框架 发送端模块简介 OFDM符号结构 发送端外部TCP客户端程序 USRP-OFDM接收端框架 接收端模块简介 接收端外部TCP服务端程序 TCP客户端服 ...

  3. 延迟队列Delay Queue

    利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果.这种消息模式就称为延迟队列(Delay Queue)模式. 延迟队列的使用场景包括: 延迟发送短信 用户下单,如果用户在15 ...

  4. linux内核那些事之delay延迟技术

    在开发驱动过程中在与硬件交互的过程中,不可避免的需要使用到延迟技术,例如在设置外设寄存器后,由于硬件延迟等原因 设置之后并不会立即马上上生效,需要等待延迟一小段时间以便设置能够生效,驱动开发人员不可避 ...

  5. 【Simulink 仿真】SISO Fading Channel模块介绍

    目录 1 简介 2 Rayleigh Fading channel参数 3 Rician Fading channel参数 4 可视化选项设置 6 MATLAB代码实现 1 简介 SISO衰落通道模块 ...

  6. RabbitMQ —— 延迟队列

    RabbitMQ实现延迟队列一:在队列上设置TTL Publish --> delaysync.exchange --> delay.5m.queue(延迟队列) --> delay ...

  7. 【音效处理】Delay/Echo 简介

    系列文章目录 Delay Line 简介及其 C/C++ 实现 LFO 低频振荡器简介及其 C/C++ 实现 文章目录 系列文章目录 一.Delay 是什么 二.Delay 原理 2.1 The Ba ...

  8. c16语言延时函数delay,《linux设备驱动开发详解》笔记——10中断与时钟

    10.1 中断与定时器 中断一般有如下类型: 内部中断和外部中断:内部中断来自CPU,例如软件中断指令.溢出.除0错误等:外部中断有外部设备触发 可屏蔽中断和不可屏蔽中断 向量中断和非向量中断,ARM ...

  9. 【雷达信号处理】脉冲多普勒PD及其MATLAB实现

    这是目录 1 原理介绍 1.1 脉冲多普勒过程 1.2 信号模型 1.3 PD的实现 1.4 相参和非相参累积 2 实验内容 2.1 参数 3 MATLAB实现 参考文献 1 原理介绍 1.1 脉冲多 ...

  10. 【 Vivado 】输入延迟约束实例

    上篇博文讲了输入延迟约束( Input Delay Constraints):输入延迟约束(Constraining Input Delay) 这篇博文讲解具体的实例,通过实例去学习是最有效果的. 实 ...

最新文章

  1. 王爽汇编第二册:将每个单词的前四位改为大写字母
  2. 10个学习Android开发的网站推荐
  3. Python词汇比较运算符
  4. 解决yum锁定Another app is currently holding the yum lock; waiting for it to exit...
  5. 使用Visual Studio比较两个数据库、查找差异和更新
  6. 二叉树 查找失败 asl_算法——二分搜索amp;折半查找
  7. JSON解析(C++)
  8. golang xorm cmd xorm工具使用 reverse 反转一个数据库结构,生成代码
  9. 中缀表达式、前缀表达式、后缀表达式
  10. 牛顿插值法python代码_Python实现牛顿插值法(差商表)
  11. 网络高清视频远程会议系统EasyRTC在Windows10上运行程序无返回信息问题解决
  12. 数据执行保护呈灰色无法开启 用命令BCEDIT无效 请问怎么解决?
  13. 股票交易接口申请方式有哪几种?
  14. 计算机学校属于什么学历,技校毕业是什么学历 技校属于什么文凭
  15. verilog中initial、always模块的使用方法
  16. C语言scanf()返回值以及EOF
  17. ecstore2.0数据库词典
  18. 无线局域网简介 小白级别
  19. Word2Vec源码解析
  20. 深入剖析串口通信数据格式

热门文章

  1. js中数组的一些常见操作 - 1
  2. vmware中修改虚拟机MAC地址的方法!
  3. 1078 最小生成树
  4. [C++]面向对象部分——类
  5. 关于Adapter模式
  6. Flash Player10一个非常牛的功能SaveBitmap
  7. 温故知新----css布局
  8. c语言程序设计与算法,程序设计与算法(一)C语言程序设计
  9. catv系统主要有哪三部分组成_光纤通信系统的组成与特点
  10. Mysql之各种各样的函数啦