一、经典最小二乘法

①经典最小二乘法原理介绍

最小二乘法的原理实质比较简单,本质的目的是要确定如下建立的一元线性回归模型的两个回归参数 a 1 a_1 a1​和 b 1 b_1 b1​:
y = a 1 x + b 1 y=a_1x+b_1 y=a1​x+b1​
若已知m组样本观测数据 ( x i , y i ) ( i = 1 , 2 , 3 , 4 ⋅ ⋅ ⋅ m ) (x_i,y_i)(i=1,2,3,4···m) (xi​,yi​)(i=1,2,3,4⋅⋅⋅m),经典的做法是根据离差平方和来达到一种最小的准则来进行确定的,即确定满足下面条件的 a 1 ′ a_1' a1′​和 b 1 ′ b_1' b1′​,它们使得下面函数取到最小值:
Q ( a 1 ′ , b 1 ′ ) = ∑ i = 1 m ( y i − a 1 ′ x i − b 1 ′ ) 2 Q(a_1',b_1')=\sum_{i=1}^m(y_i-a_1'x_i-b_1')^2 Q(a1′​,b1′​)=i=1∑m​(yi​−a1′​xi​−b1′​)2
然后的问题就变得简单了,通过我们上述 Q Q Q函数的定义我们不难知道 Q ( a 1 ′ , b 1 ′ ) Q(a_1',b_1') Q(a1′​,b1′​)是一个非负函数,关于 a 1 ′ , b 1 ′ a_1',b_1' a1′​,b1′​的导数是存在的,通过分别对 a 1 ′ , b 1 ′ a_1',b_1' a1′​,b1′​来进行求导并令其为零会得到:
∂ Q ( a 1 ′ , b 1 ′ ) ∂ a 1 ′ = ∑ i = 1 m − 2 x i ( y i − a 1 ′ x i − b 1 ′ ) = 0 ⟶ ∑ i = 1 m x i y i = ∑ i = 1 m b 1 ′ x i + a 1 ′ ∑ i = 1 m x i 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ① \frac{\partial Q(a_1',b_1')}{\partial a_1'}=\sum_{i=1}^m-2x_i(y_i-a_1'x_i-b_1')=0\longrightarrow \sum_{i=1}^mx_iy_i=\sum_{i=1}^mb_1'x_i+a_1'\sum_{i=1}^mx_i^2·······························① ∂a1′​∂Q(a1′​,b1′​)​=i=1∑m​−2xi​(yi​−a1′​xi​−b1′​)=0⟶i=1∑m​xi​yi​=i=1∑m​b1′​xi​+a1′​i=1∑m​xi2​⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①
∂ Q ( a 1 ′ , b 1 ′ ) ∂ b 1 ′ = ∑ i = 1 m − 2 ( y i − a 1 ′ x i − b 1 ′ ) = 0 ⟶ ∑ i = 1 m y i = m b 1 ′ + a 1 ′ ∑ i = 1 m x i ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ② \frac{\partial Q(a_1',b_1')}{\partial b_1'}=\sum_{i=1}^m-2(y_i-a_1'x_i-b_1')=0\longrightarrow \sum_{i=1}^my_i=mb_1'+a_1'\sum_{i=1}^mx_i·······································② ∂b1′​∂Q(a1′​,b1′​)​=i=1∑m​−2(yi​−a1′​xi​−b1′​)=0⟶i=1∑m​yi​=mb1′​+a1′​i=1∑m​xi​⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅②
联立 ① , ② ①,② ①,②分别对 m m m取平均我们很容易就求出来了 a 1 ′ 和 b 1 ′ a_1'和b_1' a1′​和b1′​:
a 1 ′ = x y ‾ − x ˉ y ˉ x 2 ‾ − ( x ‾ ) 2 a_1'={\overline {xy}-\bar x\bar y\over \overline{x^2}-(\overline{x})^2} a1′​=x2−(x)2xy​−xˉyˉ​​
b 1 ′ = y ‾ − a 1 ′ x ‾ b_1'=\overline {y}-a_1'\overline {x} b1′​=y​−a1′​x

二、基于离差概率平方总和最小对最小二乘法的改进

①改进原理介绍

我们都知道最小二乘法并不能保证所有的样本测试数据点都在整个回归直线上面,而是比较“均匀”的分布在直线两边,我们可以考虑一种概率来重新对数据拟合误差的大小进行一种新规定:
若已知m组样本观测数据 ( x i , y i ) , y i ≠ 0 ( i = 1 , 2 , 3 , 4 ⋅ ⋅ ⋅ m ) (x_i,y_i),y_i\not=0(i=1,2,3,4···m) (xi​,yi​),yi​​=0(i=1,2,3,4⋅⋅⋅m),我们新规定线性回归模型如下:
y = a 2 x + b 2 y=a_2x+b_2 y=a2​x+b2​
下面定义概率 P i P_i Pi​如下:
P i = ∣ y i − a 2 x i − b 2 ∣ y i P_i={|y_i-a_2x_i-b_2|\over y_i} Pi​=yi​∣yi​−a2​xi​−b2​∣​
发现绝对值的存在显然不便于我们处理,我们不妨改进 P i P_i Pi​的定义如下:
P i ( a 2 , b 2 ) = ( y i − a 2 x i − b 2 y i ) 2 P_i(a_2,b_2)=({y_i-a_2x_i-b_2\over y_i})^2 Pi​(a2​,b2​)=(yi​yi​−a2​xi​−b2​​)2
而我们所要求的即为满足如下的函数 R R R的最小值时的 a 2 和 b 2 a_2和b_2 a2​和b2​:
R ( a 2 , b 2 ) = ∑ i = 1 m P i R(a_2,b_2)=\sum_{i=1}^mP_i R(a2​,b2​)=i=1∑m​Pi​
根据 R R R函数的定义我们知道 R ( a 2 , b 2 ) R(a_2,b_2) R(a2​,b2​)是一个非负函数,关于 a 2 , b 2 a_2,b_2 a2​,b2​有偏导数令其偏导为零有:
∂ R ( a 2 , b 2 ) ∂ a 2 = ∑ i = 1 m − 2 x i y i ( 1 − x i y i a 2 − b 2 y i ) = 0 ⟶ ∑ i = 1 m x i y i = a 2 ∑ i = 1 m x i 2 y i 2 + b 2 ∑ i = 1 m x i y i 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ③ \frac{\partial R(a_2,b_2)}{\partial a_2}=\sum_{i=1}^m-2{x_i\over y_i}(1-{x_i\over y_i}a_2-{b_2\over y_i})=0\longrightarrow \sum_{i=1}^m{x_i\over y_i}=a_2\sum_{i=1}^m{x_i^2\over y_i^2}+b_2\sum_{i=1}^m{x_i\over y_i^2}·····························③ ∂a2​∂R(a2​,b2​)​=i=1∑m​−2yi​xi​​(1−yi​xi​​a2​−yi​b2​​)=0⟶i=1∑m​yi​xi​​=a2​i=1∑m​yi2​xi2​​+b2​i=1∑m​yi2​xi​​⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅③
∂ R ( a 2 , b 2 ) ∂ b 2 = ∑ i = 1 m − 2 1 y i ( 1 − x i y i a 2 − b 2 y i ) = 0 ⟶ ∑ i = 1 m 1 y i = a 2 ∑ i = 1 m x i y i 2 + b 2 ∑ i = 1 m 1 y i 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ④ \frac{\partial R(a_2,b_2)}{\partial b_2}=\sum_{i=1}^m-2{1\over y_i}(1-{x_i\over y_i}a_2-{b_2\over y_i})=0\longrightarrow \sum_{i=1}^m{1\over y_i}=a_2\sum_{i=1}^m{x_i\over y_i^2}+b_2\sum_{i=1}^m{1\over y_i^2}·····························④ ∂b2​∂R(a2​,b2​)​=i=1∑m​−2yi​1​(1−yi​xi​​a2​−yi​b2​​)=0⟶i=1∑m​yi​1​=a2​i=1∑m​yi2​xi​​+b2​i=1∑m​yi2​1​⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅④
联立 ③ , ④ ③,④ ③,④分别对 m m m取平均我们很容易就求出来了 a 2 和 b 2 a_2和b_2 a2​和b2​:
b 2 = ( x y ) ‾ × ( x y 2 ) ‾ − ( 1 y ) ‾ × ( x 2 y 2 ) ‾ ( x y 2 ) ‾ × ( x y 2 ) ‾ − ( 1 y 2 ) ‾ × ( x 2 y 2 ) ‾ b_2={\overline{({x\over y})}\times\overline{({x\over y^2})}-\overline{({1\over y})}\times\overline{({x^2\over y^2})}\over\overline{({x\over y^2})}\times\overline{({x\over y^2})}-\overline{({1\over y^2})}\times\overline{({x^2\over y^2})}} b2​=(y2x​)​×(y2x​)​−(y21​)​×(y2x2​)​(yx​)​×(y2x​)​−(y1​)​×(y2x2​)​​
a 2 = ( 1 y ) ‾ − b 2 ( 1 y 2 ) ‾ ( x y 2 ) ‾ a_2={\overline{({1\over y})}-b_2\overline{({1\over y^2})}\over\overline{({x\over y^2})}} a2​=(y2x​)​(y1​)​−b2​(y21​)​​
之后通过利用编程来进行计算这两个参数即可,这种方法对我们的初始数据 ( x i , y i ) (x_i,y_i) (xi​,yi​)中的 y i y_i yi​有着特殊的要求。

三、基于垂线段总和最小对最小二乘法的改进

①改进原理介绍

我们仍假定所求回归直线为:
y = a 3 x + b 3 y=a_3x+b_3 y=a3​x+b3​
经典最小二乘法仅仅是考虑的两点之间的直线距离,我们不妨这样考虑:可否将我们所有的样本点 ( x i , y i ) ( i = 1 , 2 , 3 , 4 ⋅ ⋅ ⋅ m ) (x_i,y_i)(i=1,2,3,4···m) (xi​,yi​)(i=1,2,3,4⋅⋅⋅m)向回归直线做垂线段,并将此平方总和作为度量指标来替代经典二乘法的距离呢?
据此想法,我们定义 S S S函数如下:
S ( a 3 , b 3 ) = ∑ i = 1 m ( a 3 x i − y i + b 3 ) 2 a 3 2 + 1 S(a_3,b_3)=\sum_{i=1}^m {(a_3x_i-y_i+b_3)^2\over a_3^2+1} S(a3​,b3​)=i=1∑m​a32​+1(a3​xi​−yi​+b3​)2​
而我们所要求的即为满足如下的函数 S S S的最小值时的 a 3 和 b 3 a_3和b_3 a3​和b3​:
根据 S S S函数的定义我们知道 S ( a 3 , b 3 ) S(a_3,b_3) S(a3​,b3​)是一个非负函数,关于 a 3 , b 3 a_3,b_3 a3​,b3​有偏导数令其偏导为零有:
∂ S ( a 3 , b 3 ) ∂ a 3 = ∑ i = 1 m 2 x i ( a 3 x i − y i + b 3 ) ( a 3 2 + 1 ) − 2 a 3 ( a 3 x i − y i + b 3 ) 2 a 3 2 + 1 = 0 \frac{\partial S(a_3,b_3)}{\partial a_3}=\sum_{i=1}^m {2x_i(a_3x_i-y_i+b_3)(a_3^2+1)-2a_3(a_3x_i-y_i+b_3)^2\over a_3^2+1}=0 ∂a3​∂S(a3​,b3​)​=i=1∑m​a32​+12xi​(a3​xi​−yi​+b3​)(a32​+1)−2a3​(a3​xi​−yi​+b3​)2​=0
∂ S ( a 3 , b 3 ) ∂ b 3 = ∑ i = 1 m 2 ( a 3 x i − y i + b 3 ) a 3 2 + 1 = 0 \frac{\partial S(a_3,b_3)}{\partial b_3}=\sum_{i=1}^m {2(a_3x_i-y_i+b_3)\over a_3^2+1}=0 ∂b3​∂S(a3​,b3​)​=i=1∑m​a32​+12(a3​xi​−yi​+b3​)​=0
即:
∑ i = 1 m a 3 ( x i 2 − y i 2 ) + ∑ i = 1 m ( a 3 2 − 1 ) x i y i + ∑ i = 1 m b 3 ( 1 − a 3 2 ) x i + ∑ i = 1 m 2 a 3 b 3 y i = a 3 b 3 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⑤ \sum_{i=1}^ma_3(x_i^2-y_i^2)+\sum_{i=1}^m(a_3^2-1)x_iy_i+\sum_{i=1}^mb_3(1-a_3^2)x_i+\sum_{i=1}^m2a_3b_3y_i=a_3b_3^2····································⑤ i=1∑m​a3​(xi2​−yi2​)+i=1∑m​(a32​−1)xi​yi​+i=1∑m​b3​(1−a32​)xi​+i=1∑m​2a3​b3​yi​=a3​b32​⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⑤
∑ i = 1 m ( a 3 x i − y i + b 3 ) = 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⑥ \sum_{i=1}^m(a_3x_i-y_i+b_3)=0·····························⑥ i=1∑m​(a3​xi​−yi​+b3​)=0⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⑥
而由 ⑥ ⑥ ⑥我们可知:
a 3 x ‾ − y ‾ + b 3 = 0 a_3\overline x-\overline y+b_3=0 a3​x−y​+b3​=0
b 3 = y ‾ − a 3 x ‾ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⑦ b_3=\overline y-a_3\overline x·····························⑦ b3​=y​−a3​x⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⑦
联立 ⑤ , ⑦ ⑤,⑦ ⑤,⑦分别对 m m m取平均我们很容易就求出来了 a 3 和 b 3 a_3和b_3 a3​和b3​:
a 3 2 ( x y ‾ − x ˉ y ˉ ) + a 3 ( x 2 − y 2 ‾ − x ˉ x ˉ + y ˉ y ˉ ) + ( x ˉ y ˉ − x y ‾ ) = 0 a_3^2(\overline{xy}-\bar x\bar y)+a_3(\overline{x^2-y^2}-\bar x\bar x+\bar y\bar y)+(\bar x\bar y-\overline{xy})=0 a32​(xy​−xˉyˉ​)+a3​(x2−y2​−xˉxˉ+yˉ​yˉ​)+(xˉyˉ​−xy​)=0
a 3 = − ( x 2 − y 2 ‾ − x ˉ x ˉ + y ˉ y ˉ ) ± ( x 2 − y 2 ‾ − x ˉ x ˉ + y ˉ y ˉ ) 2 + 4 ( x y ‾ − x ˉ y ˉ ) 2 2 ( x y ‾ − x ˉ y ˉ ) ( ( x y ‾ − x ˉ y ˉ ) ≠ 0 ) a_3={-(\overline{x^2-y^2}-\bar x\bar x+\bar y\bar y)\pm\sqrt{(\overline{x^2-y^2}-\bar x\bar x+\bar y\bar y)^2+4(\overline{xy}-\bar x\bar y)^2}\over2(\overline{xy}-\bar x\bar y)}((\overline{xy}-\bar x\bar y)\not=0) a3​=2(xy​−xˉyˉ​)−(x2−y2​−xˉxˉ+yˉ​yˉ​)±(x2−y2​−xˉxˉ+yˉ​yˉ​)2+4(xy​−xˉyˉ​)2 ​​((xy​−xˉyˉ​)​=0)
a 3 = − ( x ˉ y ˉ − x y ‾ ) ( x 2 − y 2 ‾ − x ˉ x ˉ + y ˉ y ˉ ) ( ( x y ‾ − x ˉ y ˉ ) = 0 ) a_3={-(\bar x\bar y-\overline{xy})\over(\overline{x^2-y^2}-\bar x\bar x+\bar y\bar y)}((\overline{xy}-\bar x\bar y)=0) a3​=(x2−y2​−xˉxˉ+yˉ​yˉ​)−(xˉyˉ​−xy​)​((xy​−xˉyˉ​)=0)
再由 ⑦ ⑦ ⑦可得 b 3 b_3 b3​。
根据上面我们会发现有两个 a 3 a_3 a3​供我们选择,当然我们选择哪一个是要根据题意而定的。并非都取,要结合实际数据来看。

下面笔者结合之前写过的最小二乘法改进算法利用MATLAB进行了编程实现检验,进一步证实了实际可行性。

我们假定现在有如下10个数据点如下所示:测试数据来源于应用回归分析(科学出版社,唐年胜,李会琼编著——p15)
(800,594),(1100,638),(1400,1122),(1700,1155)
(2000,1408),(2300,1595),(2600,1969),(2900,2068)
(3200,2585),(3500,2530)

①普通最小二乘法数据点和拟合曲线:

代码样例:

x=[800,1100,1400,1700,2000,2300,2600,2900,3200,3500];
y=[594,638,1122,1155,1408,1595,1969,2068,2585,2530];
avx=sum(x)/10;avy=sum(y)/10;
avxy=sum(x.*y)/10;avx2=sum(x.^2)/10;
a1=(avxy-avx*avy)/(avx2-avx^2);
b1=avy-a1*avx;
plot(x,y,'*')
hold on
y1=a1*x+b1;
plot(x,y1)

得到的拟合数据点结果和拟合回归曲线图如下所示:

回归直线①:

②概率改进最小二乘法数据点和拟合曲线:

代码样例:

x=[800,1100,1400,1700,2000,2300,2600,2900,3200,3500];
y=[594,638,1122,1155,1408,1595,1969,2068,2585,2530];
avx_y=sum((x./y))/10;
avx_y2=sum(x./(y.^2))/10;
avx2_y2=sum((x.^2)./(y.^2))/10;
av1_y=sum(1./y)/10;
av1_y2=sum(1./(y.^2))/10;
b2=(avx_y*avx_y2)-(av1_y*avx2_y2);
b2=((avx_y*avx_y2)-(av1_y*avx2_y2))/((avx_y2*avx_y2)-(av1_y2*avx2_y2));
a2=(av1_y-b2*(av1_y2))/avx_y2;
plot(x,y,'*')
hold on;
y2=a2*x+b2;
plot(x,y2);

得到的拟合数据点结果和拟合回归曲线图如下所示:

回归直线②:

③垂线段改进最小二乘法数据点和拟合曲线:

代码样例:

x=[800,1100,1400,1700,2000,2300,2600,2900,3200,3500];
y=[594,638,1122,1155,1408,1595,1969,2068,2585,2530];
avxy=sum(x.*y)/10;
avx=sum(x)/10;
avy=sum(y)/10;
avx2__y2=sum(x.^2-y.^2)/10;
q1=-(avx2__y2-avx*avx+avy*avy);
q2=sqrt(q1^2+4*((avxy-avx*avy)^2));
q3=2*(avxy-avx*avy);
a3=(q1+q2)/q3;
b3=avy-a3*avx;
plot(x,y,'*');
hold on;
y3=a3*x+b3;
plot(x,y3)

得到的拟合数据点结果和拟合回归曲线图如下所示:

回归直线③:


上述为笔者考虑到的最小二乘法的一些改进方案,主要考虑了概率和垂线两种情况,未尝难免出现数值稳定性考虑不周的情况,恳请大家批评指正,笔者在此深表感谢!

两种方法对经典最小二乘法的改进相关推荐

  1. 求极大子矩阵的两种方法

    例1:玉蟾宫 一句话题意:给出一个元素有R和F两种值的矩阵,求全为F的面积最大的子矩阵的面积. 关于这种求极大子矩阵的问题,比较常用的(本蒟蒻会的)有两种: (1)悬线法 /*以下摘自luogu某da ...

  2. 【剑指offer 07】用迭代和递归两种方法重构二叉树(python实现)

    本文讲解一个经典的面试题,使用 python 通过迭代和递归两种方法重构二叉树. 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字 ...

  3. VB中FSO的调用的两种方法

    方法一:   Dim   objFso      Set   objFso   =   CreateObject("Scripting.FileSystemObject")    ...

  4. PTA—念数字(C语言)两种方法

    PTA-念数字(C语言)两种方法 输入一个整数,输出每个数字对应的拼音.当整数为负数时,先输出fu字.十个数字对应的拼音如下: 0: ling 1: yi 2: er 3: san 4: si 5: ...

  5. 单片机实现延时两种方法

    实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行. ▍1 .使用定时器/计数器实现精确延时 ...

  6. C语言无符号双字节乘法,华为OJ机试标题:两个大整数相乘(纯C语言实现两个大整数相乘,两种方法实现大数相乘)...

    华为OJ机试题目:两个大整数相乘(纯C语言实现两个大整数相乘,两种方法实现大数相乘) 题目描述: 输出两个不超过100位的大整数的乘积. 输入: 输入两个大整数,如1234567 123 输出: 输出 ...

  7. 命名实体识别python_命名实体识别的两种方法

    作者 | Walker [磐创AI导读]:本文主要介绍自然语言处理中的经典问题--命名实体识别的两种方法. 目录 一.什么是命名实体识别 二.基于NLTK的命名实体识别 三.基于Stanford的NE ...

  8. MFC实现从一个窗口向另一个窗口发送消息的两种方法

    实现从一个窗口向另一个窗口发送消息,使用过下面两种方法 /*方法一:通过用SDK的标准API来查找其他对话框窗口返回句柄,并且发送信息 HWND hWnd; //通过SDK的FindWindow函数得 ...

  9. 在日常使用中关于英特尔睿频加速的优劣分析(附带关闭睿频加速的两种方法)

    在日常使用中关于英特尔睿频加速的优劣分析 事情背景 事情起因 过程分析测试 日常使用分析 结论 开关睿频加速(寻找解决方法的朋友可以直接跳到这里来) 方法1:在电源管理操控是否开启睿频加速(推荐) 解 ...

最新文章

  1. 在ABAP/4中声明表格控制
  2. Matlab归一化函数(mapminmax)
  3. Diango博客--9.归档、分类和标签页
  4. 联想y7000p怎么连接显示器_惠普暗影精灵6和联想拯救者y7000p 2020款如何选?这里详细对比...
  5. STM8单片机ADC连续采样模式
  6. UGUI- 单列列表(VerticalLayoutGroup)
  7. windows知识点
  8. java 重定向和转发的区别
  9. LabVIEW编程LabVIEW开发雷赛SMC6480运动控制模块例程与相关资料
  10. windows配置路由表办公网和外网自动切换
  11. C语言中sprintf函数的用法
  12. html怎么存储历史记录,设置网页在历史记录中保存10天
  13. php页面强制横屏,Css实现手机端页面强制横屏(仅适用与一屏页面)
  14. linux dot命令,linux绘图工具之dot
  15. 不敢相信!那些真实存在的机器人女友们!
  16. 从SSD角度学习NAND Flash(一)
  17. Docker容器已正式支持苹果M1Mac电脑
  18. 国外热度高的域名有哪些类?
  19. Bonree ONE荣获信通院“2022IT新治理年度明星产品”
  20. 帧结构和物理资源(RB,PRB,VRB,REG,RBG)

热门文章

  1. c语言多媒体开发平台,C语言程序设计多媒体教学开发和应用.doc
  2. 安全面试之WEB安全(三)
  3. 别再提贵公司在头脑风暴了,调研表明都是骗人的
  4. linux-linux常用命令总结四linux压缩、打包、解压命令软件安装管理rpm及yum的使用
  5. 摄像头漏洞可窥探用户隐私,遭谷歌下架,“智慧”生活的信息安全国际标准是什么?
  6. 【悟空云课堂】第二十三期:对XML外部实体引用的不当限制(CWE-611 :Improper Restriction of XML External Entity Reference)
  7. RTD1296PB与RK3568性能对比分析
  8. 2023年度“楚怡杯”湖南省职业院校技能竞赛隆回县职业中等专业学校赛点工作方案赛项:中职组信息技术类网络安全赛项
  9. 全能修图工具:Pixelmator Pro for Mac的常见问答
  10. mysql宿舍水电管理系统_金山宿舍水电管理系统