我已经忘了这个概念中文如何翻译,但是其本质就是在Row-reduced的基础上,作行的对调,使得所有非零行在上面且每一行开头的1以从左至右自上而下的方式排列、所有零行在下面。这也是Theorem 5的结论,即任何 m × n m\times n m×n矩阵都和一个row-reduced echelon matrix是行等价的。
前两节讨论了如此多的row-reduced问题,目的是为了解方程组,因为row-reduced的形式使得解方程非常方便,并且如果非零行数比未知数的个数少,那么一定有非退化解(non-trivial solution),即不是0向量的解。Theorem 6是一个更强的假设和更弱一些的结论:如果 A A A是 m × n m\times n m×n矩阵且 m < n m<n m<n,那么 A X = 0 AX=0 AX=0一定有non-trivial solution。Theorem 7是一个特殊一点的结论: n × n n\times n n×n方阵行等价于单位矩阵的充要条件是 A X = 0 AX=0 AX=0只有0解。
以上已经讨论了足够多的关于homogeneous system的结论。如果将条件放松,即 A X = 0 AX=0 AX=0变为 A X = Y AX=Y AX=Y,那么需要考虑augmented matrix [ A Y ] \begin{bmatrix}A&Y\end{bmatrix} [A​Y​], 在inhomogeneous system中,首先要考虑的是有没有解(不像homogeneous system里一定有0解),按照Theorem 4Theorem 5可以将 A A A变为一个row-reduced echelon matrix A ′ A' A′,对应的会把 Y Y Y变成一个新的列向量 Z Z Z, 那么这个system有解的充要条件是 A ′ A' A′里全为零的最后几行对应的 Z Z Z的最后几个分量也都是0。
最后有一个看似很奇怪但确实正确的结论: A X = Y AX=Y AX=Y如果 A , Y A,Y A,Y都是在 F F F的一个subfield F 1 F_1 F1​上,那么其在 F F F中有解可以推出其在 F 1 F_1 F1​中有解。

Exercises

1.Find all solutions to the following systems of equations by row-reducing the coefficient matrix:

1 3 x 1 + 2 x 2 − 6 x 3 = 0 − 4 x 1 + 5 x 3 = 0 − 3 x 1 + 6 x 2 − 13 x 3 = 0 − 7 3 x 1 + 2 x 2 − 8 3 x 3 = 0 \begin{aligned}\frac{1}{3}&x_1+2x_2&-6x_3=0\\-4&x_1&+5x_3=0\\-3&x_1+6x_2&-13x_3=0\\-\frac{7}{3}&x_1+2x_2&-\frac{8}{3}x_3=0\end{aligned} 31​−4−3−37​​x1​+2x2​x1​x1​+6x2​x1​+2x2​​−6x3​=0+5x3​=0−13x3​=0−38​x3​=0​
Solution: We have
[ 1 / 3 2 − 6 − 4 0 5 − 3 6 − 13 − 7 / 3 2 − 8 / 3 ] → [ 1 6 − 18 0 24 − 67 0 24 − 67 − 7 6 − 8 ] → [ 1 6 − 18 0 24 − 67 0 0 0 0 48 − 134 ] → [ 1 6 − 18 0 24 − 67 0 0 0 0 0 0 ] \begin{bmatrix}1/3&2&-6\\-4&0&5\\-3&6&-13\\-7/3&2&-8/3\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&24&-67\\-7&6&-8\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&0&0\\0&48&-134\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&0&0\\0&0&0\end{bmatrix} ⎣⎢⎢⎡​1/3−4−3−7/3​2062​−65−13−8/3​⎦⎥⎥⎤​→⎣⎢⎢⎡​100−7​624246​−18−67−67−8​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​624048​−18−670−134​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​62400​−18−6700​⎦⎥⎥⎤​
let x 3 = c x_3=c x3​=c, then all solutions is of the form:
x 1 = 1062 67 c , x 2 = 24 67 c , x 3 = c , c ∈ R x_1=\dfrac{1062}{67} c,\quad x_2=\dfrac{24}{67} c,\quad x_3=c,\quad c\in R x1​=671062​c,x2​=6724​c,x3​=c,c∈R

2. Find a row-reduced echelon matrix which is row-equivalent to

A = [ 1 − i 2 2 i 1 + i ] A=\begin{bmatrix}1&-i\\2&2\\i&1+i\end{bmatrix} A=⎣⎡​12i​−i21+i​⎦⎤​

What are the solutions of A X = 0 AX=0 AX=0?

Solution: We have
A = [ 1 − i 2 2 i 1 + i ] → [ 1 1 0 − i − 1 i 1 + i ] → [ 1 1 0 1 0 − i ] → [ 1 0 0 1 0 0 ] A=\begin{bmatrix}1&-i\\2&2\\i&1+i\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&-i-1\\i&1+i\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&1\\0&-i\end{bmatrix}\rightarrow\begin{bmatrix}1&0\\0&1\\0&0\end{bmatrix} A=⎣⎡​12i​−i21+i​⎦⎤​→⎣⎡​10i​1−i−11+i​⎦⎤​→⎣⎡​100​11−i​⎦⎤​→⎣⎡​100​010​⎦⎤​
the solutions of A X = 0 AX=0 AX=0 are trivial solutions.

3.Describe explicitly all 2 × 2 2\times 2 2×2 row-reduced echelon matrices.

Solution: They are (due to the nonzero entries of the matrix)
[ 0 0 0 0 ] , [ 1 0 0 0 ] , [ 1 b 0 0 ] , [ 1 0 0 1 ] \begin{bmatrix}0&0\\0&0\end{bmatrix},\quad\begin{bmatrix}1&0\\0&0\end{bmatrix},\quad\begin{bmatrix}1&b\\0&0\end{bmatrix},\quad\begin{bmatrix}1&0\\0&1\end{bmatrix} [00​00​],[10​00​],[10​b0​],[10​01​]

4.Consider the system of equations

x 1 − x 2 + 2 x 3 = 1 2 x 1 + 2 x 3 = 1 x 1 − 3 x 2 + 4 x 3 = 2 \begin{aligned}&x_1-x_2+&2x_3=1\\2&x_1&+2x_3=1\\&x_1-3x_2&+4x_3=2\end{aligned} 2​x1​−x2​+x1​x1​−3x2​​2x3​=1+2x3​=1+4x3​=2​

Does this system have a solution? If so, describe explicitly all solutions.

Solution: We have
[ 1 − 1 2 1 2 0 2 1 1 − 3 4 2 ] → [ 1 − 1 2 1 0 2 − 2 − 1 0 − 2 2 1 ] → [ 1 − 1 2 1 0 1 − 1 − 1 2 0 0 0 0 ] → [ 1 0 1 1 2 0 1 − 1 − 1 2 0 0 0 0 ] \begin{bmatrix}1&-1&2&1\\2&0&2&1\\1&-3&4&2\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&2&1\\0&2&-2&-1\\0&-2&2&1\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&2&1\\0&1&-1&-\frac{1}{2}\\0&0&0&0\end{bmatrix}\rightarrow\begin{bmatrix}1&0&1&\frac{1}{2}\\0&1&-1&-\frac{1}{2}\\0&0&0&0\end{bmatrix} ⎣⎡​121​−10−3​224​112​⎦⎤​→⎣⎡​100​−12−2​2−22​1−11​⎦⎤​→⎣⎡​100​−110​2−10​1−21​0​⎦⎤​→⎣⎡​100​010​1−10​21​−21​0​⎦⎤​
this system has a solution, let x 3 = c x_3=c x3​=c, then all solutions of the system is
( 1 2 − c , c − 1 2 , c ) \left(\dfrac{1}{2}-c,c-\dfrac{1}{2},c\right) (21​−c,c−21​,c)

5. Give an example of a system of two linear equations in two unknowns which has no solution.

Solution: An example may be
{ x 1 + x 2 = 1 2 x 1 + 2 x 2 = 3 \begin{cases}x_1+x_2&=1\\2x_1+2x_2&=3\end{cases} {x1​+x2​2x1​+2x2​​=1=3​

6.Show that the system

x 1 − 2 x 2 + x 3 + 2 x 4 = 1 x 1 + x 2 − x 3 + x 4 = 2 x 1 + 7 x 2 − 5 x 3 − x 4 = 3 \begin{array}{r}x_1-2x_2+x_3+2x_4=1\\x_1+x_2-x_3+x_4=2\\x_1+7x_2-5x_3-x_4=3\end{array} x1​−2x2​+x3​+2x4​=1x1​+x2​−x3​+x4​=2x1​+7x2​−5x3​−x4​=3​

has no solution.

Solution: Use row operation on the augmented matrix of the system we get
[ 1 − 2 1 2 1 1 1 − 1 1 2 1 7 − 5 − 1 3 ] → [ 1 − 2 1 2 1 0 3 − 2 − 1 1 0 9 − 6 − 3 2 ] → [ 1 − 2 1 2 1 0 3 − 2 − 1 1 0 0 0 0 − 1 ] \begin{bmatrix}1&-2&1&2&1\\1&1&-1&1&2\\1&7&-5&-1&3\end{bmatrix}\rightarrow\begin{bmatrix}1&-2&1&2&1\\0&3&-2&-1&1\\0&9&-6&-3&2\end{bmatrix}\rightarrow\begin{bmatrix}1&-2&1&2&1\\0&3&-2&-1&1\\0&0&0&0&-1 \end{bmatrix} ⎣⎡​111​−217​1−1−5​21−1​123​⎦⎤​→⎣⎡​100​−239​1−2−6​2−1−3​112​⎦⎤​→⎣⎡​100​−230​1−20​2−10​11−1​⎦⎤​
thus the system has no solution

7.Find all solutions of

2 x 1 − 3 x 2 − 7 x 3 + 5 x 4 + 2 x 5 = − 2 x 1 − 2 x 2 − 4 x 3 + 3 x 4 + x 5 = − 2 2 x 1 − 4 x 3 + 2 x 4 + x 5 = 3 x 1 − 5 x 2 − 7 x 3 + 6 x 4 + 2 x 5 = − 7 \begin{aligned}2x_1-3x_2-7x_3+5x_4+2x_5&=-2\\x_1-2x_2-4x_3+3x_4+x_5&=-2\\2x_1-4x_3+2x_4+x_5&=3\\x_1-5x_2-7x_3+6x_4+2x_5&=-7\end{aligned} 2x1​−3x2​−7x3​+5x4​+2x5​x1​−2x2​−4x3​+3x4​+x5​2x1​−4x3​+2x4​+x5​x1​−5x2​−7x3​+6x4​+2x5​​=−2=−2=3=−7​
Solution: We have
[ 2 − 3 − 7 5 2 − 2 1 − 2 − 4 3 1 − 2 2 0 − 4 2 1 3 1 − 5 − 7 6 2 − 7 ] → [ 1 − 2 − 4 3 1 − 2 0 1 1 − 1 0 2 0 4 4 − 4 − 1 7 0 − 3 − 3 3 1 − 5 ] → [ 1 − 2 − 4 3 1 − 2 0 1 1 − 1 0 2 0 0 0 0 − 1 − 1 0 0 0 0 1 1 ] → [ 1 0 − 2 1 1 2 0 1 1 − 1 0 2 0 0 0 0 1 1 0 0 0 0 0 0 ] \begin{bmatrix}2&-3&-7&5&2&-2\\1&-2&-4&3&1&-2\\2&0&-4&2&1&3\\1&-5&-7&6&2&-7\end{bmatrix}\rightarrow\begin{bmatrix}1&-2&-4&3&1&-2\\0&1&1&-1&0&2\\0&4&4&-4&-1&7\\0&-3&-3&3&1&-5\end{bmatrix}\\\rightarrow\begin{bmatrix}1&-2&-4&3&1&-2\\0&1&1&-1&0&2\\0&0&0&0&-1&-1\\0&0&0&0&1&1\end{bmatrix}\rightarrow\begin{bmatrix}1&0&-2&1&1&2\\0&1&1&-1&0&2\\0&0&0&0&1&1\\0&0&0&0&0&0\end{bmatrix} ⎣⎢⎢⎡​2121​−3−20−5​−7−4−4−7​5326​2112​−2−23−7​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​−214−3​−414−3​3−1−43​10−11​−227−5​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​−2100​−4100​3−100​10−11​−22−11​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​0100​−2100​1−100​1010​2210​⎦⎥⎥⎤​
thus x 5 = 1 x_5=1 x5​=1, if we let x 3 = c 1 , x 4 = c 2 x_3=c_1,x_4=c_2 x3​=c1​,x4​=c2​, then all solutions of the system is
x 1 = 1 + 2 c 1 − c 2 , x 2 = 2 − c 1 + c 2 , x 3 = c 1 , x 4 = c 2 , x 5 = 1 x_1=1+2c_1-c_2,x_2=2-c_1+c_2,x_3=c_1,x_4=c_2,x_5=1 x1​=1+2c1​−c2​,x2​=2−c1​+c2​,x3​=c1​,x4​=c2​,x5​=1

8.Let

A = [ 3 − 1 2 2 1 1 1 − 3 0 ] A=\begin{bmatrix}3&-1&2\\2&1&1\\1&-3&0\end{bmatrix} A=⎣⎡​321​−11−3​210​⎦⎤​

For which triples ( y 1 , y 2 , y 3 ) (y_1,y_2,y_3) (y1​,y2​,y3​) does the system A X = Y AX=Y AX=Y have a solution?

Solution:
[ 3 − 1 2 y 1 2 1 1 y 2 1 − 3 0 y 3 ] → [ 1 − 3 0 y 3 0 7 1 y 2 − 2 y 3 0 8 2 y 1 − 3 y 3 ] → [ 1 − 3 0 y 3 0 7 1 y 2 − 2 y 3 0 8 2 y 1 − 3 y 3 ] → [ 1 − 3 0 y 3 0 7 1 y 2 − 2 y 3 0 1 1 y 1 − y 2 − y 3 ] \begin{bmatrix}3&-1&2&y_1\\2&1&1&y_2\\1&-3&0&y_3 \end{bmatrix}→\begin{bmatrix}1&-3&0&y_3\\0&7&1&y_2-2y_3\\0&8&2&y_1-3y_3 \end{bmatrix}→\begin{bmatrix}1&-3&0&y_3\\0&7&1&y_2-2y_3\\0&8&2&y_1-3y_3 \end{bmatrix}→\begin{bmatrix}1&-3&0&y_3\\0&7&1&y_2-2y_3\\0&1&1&y_1-y_2-y_3\end{bmatrix} ⎣⎡​321​−11−3​210​y1​y2​y3​​⎦⎤​→⎣⎡​100​−378​012​y3​y2​−2y3​y1​−3y3​​⎦⎤​→⎣⎡​100​−378​012​y3​y2​−2y3​y1​−3y3​​⎦⎤​→⎣⎡​100​−371​011​y3​y2​−2y3​y1​−y2​−y3​​⎦⎤​
Since A A A is row equivalent to the identity matrix, A X = Y AX=Y AX=Y has a solution for all ( y 1 , y 2 , y 3 ) (y_1,y_2,y_3 ) (y1​,y2​,y3​).

9.Let

A = [ 3 − 6 2 − 1 − 2 4 1 3 0 0 1 1 1 − 2 1 0 ] A=\begin{bmatrix}3&-6&2&-1\\-2&4&1&3\\0&0&1&1\\1&-2&1&0\end{bmatrix} A=⎣⎢⎢⎡​3−201​−640−2​2111​−1310​⎦⎥⎥⎤​

For which ( y 1 , y 2 , y 3 , y 4 ) (y_1,y_2,y_3,y_4) (y1​,y2​,y3​,y4​) does the system A X = Y AX=Y AX=Y have a solution?

Solution:
[ 3 − 6 2 − 1 y 1 − 2 4 1 3 y 2 0 0 1 1 y 3 1 − 2 1 0 y 4 ] → [ 1 − 2 1 0 y 4 0 0 1 1 y 3 0 0 − 1 3 y 2 − 2 y 4 0 0 − 1 − 1 y 1 − 3 y 4 ] → [ 1 − 2 1 0 y 4 0 0 1 1 y 3 0 0 0 4 ∗ 0 0 0 0 y 1 − 3 y 4 + y 3 ] \begin{bmatrix}3&-6&2&-1&y_1\\-2&4&1&3&y_2\\0&0&1&1&y_3\\1&-2&1&0&y_4\end{bmatrix}→\begin{bmatrix}1&-2&1&0&y_4\\0&0&1&1&y_3\\0&0&-1&3&y_2-2y_4\\0&0&-1&-1&y_1-3y_4 \end{bmatrix}→\begin{bmatrix}1&-2&1&0&y_4\\0&0&1&1&y_3\\0&0&0&4&*\\0&0&0&0&y_1-3y_4+y_3\end{bmatrix} ⎣⎢⎢⎡​3−201​−640−2​2111​−1310​y1​y2​y3​y4​​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​−2000​11−1−1​013−1​y4​y3​y2​−2y4​y1​−3y4​​⎦⎥⎥⎤​→⎣⎢⎢⎡​1000​−2000​1100​0140​y4​y3​∗y1​−3y4​+y3​​⎦⎥⎥⎤​
so for triples ( y 1 , y 2 , y 3 , y 4 ) (y_1,y_2,y_3,y_4 ) (y1​,y2​,y3​,y4​) which satisfies y 1 = 3 y 4 − y 3 y_1=3y_4-y_3 y1​=3y4​−y3​ does the system have a solution

10. Suppose R R R and R ′ R' R′ are 2 × 3 2\times 3 2×3 row-reduced echelon matrices and that the systems R X = 0 RX=0 RX=0 and R ′ X = 0 R'X=0 R′X=0 have exactly the same solutions. Prove that R = R ′ R=R' R=R′.

Solution: If R R R and R ′ R' R′ are zero matrix then there’s nothing to prove.
If both are nonzero and assume they have different number of rows, let
R = [ 1 0 a 0 1 b ] , R ′ = [ 1 c d 0 0 0 ] R=\begin{bmatrix}1&0&a\\0&1&b\end{bmatrix},\quad R'=\begin{bmatrix}1&c&d\\0&0&0\end{bmatrix} R=[10​01​ab​],R′=[10​c0​d0​]
then ( c , − 1 , 0 ) (c,-1,0) (c,−1,0) is a solution for the system of R ′ R' R′, but not a solution for the system of R R R, a contradiction, thus R R R and R ′ R' R′ must have the same number of rows.
If both R R R and R R R have one row, let
R = [ 1 a b 0 0 0 ] , R ′ = [ 1 c d 0 0 0 ] R=\begin{bmatrix}1&a&b\\0&0&0\end{bmatrix},\quad R'=\begin{bmatrix}1&c&d\\0&0&0\end{bmatrix} R=[10​a0​b0​],R′=[10​c0​d0​]
then ( c , − 1 , 0 ) (c,-1,0) (c,−1,0) is a solution for the system of R ′ R' R′, thus a solution for the system of R R R, so
c − a + 0 ⋅ b = 0 ⇒ c = a c-a+0⋅b=0 \Rightarrow c=a c−a+0⋅b=0⇒c=a
similarly use the solution ( d , 0 , − 1 ) (d,0,-1) (d,0,−1) we get b = d b=d b=d, thus R = R ′ R=R' R=R′ in this case.
If both R R R and R R R have two rows, let
R = [ 1 0 a 0 1 b ] , R ′ = [ 1 0 c 0 1 d ] R=\begin{bmatrix}1&0&a\\0&1&b\end{bmatrix},\quad R'=\begin{bmatrix}1&0&c\\0&1&d\end{bmatrix} R=[10​01​ab​],R′=[10​01​cd​]
then it’s easy to see b = d b=d b=d, otherwise ( 0 , b , − 1 ) (0,b,-1) (0,b,−1) can’t be a solution for the system of R ′ R' R′, also a = c a=c a=c, since ( a , 0 , − 1 ) (a,0,-1) (a,0,−1) is a solution for the system of R ′ R' R′ and we have a − c = 0 a-c=0 a−c=0. The proof is complete.

1.4 Row-Reduced Echelon Matrices相关推荐

  1. 说一说美国大学常用的课本吧,各位想自学的可以参考

    电驴上看到的,拿过来方便自己以后看,o(∩_∩)o... 原帖看http://board.verycd.com/t271462.html 我来说一些美国college比较流行的课本,因为本人是理工科, ...

  2. Chapter 1 (Linear Equations in Linear Algebra): Row reduction and echelon forms (行化简与阶梯式矩阵)

    本文为<Linear algebra and its applications>的读书笔记 目录 Definition Uniqueness of the Reduced Echelon ...

  3. 线性代数提纲整理(大一上)

            各位西交利物浦的同学们大家好啊!期末在即,为了不挂科,我费了好大力气,尽自己所能的整理了这些提纲.内容粗浅,如果大家能看到,并且为大家的学习提供了一点点的帮助,那真的再好不过了.哦还有 ...

  4. Comprehensive Guide to build a Recommendation Engine from scratch (in Python) / 从0开始搭建推荐系统...

    https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-recommendation-engine-python/, 一篇详细 ...

  5. LinearAlgebra_2

    列空间和零空间 回顾 主题 例子 AXb 求解AX0 回顾 主题 AX0求解的总体思路 例子 形式化的求解 AXb 什么时候有解 有解的话求解 特解 求出通解 big picture 列满秩 行满秩 ...

  6. Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍

    xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...

  7. 线性代数《Linear Algebra and Its Application》学习总结

    此文仅为学习记录,内容会包括一些数学概念,定义,个人理解的摘要.希望能够分享一些学习内容. 第一节:Row Reduction and Echelon Forms Echelon form: 行消元后 ...

  8. 线性代数常用名词详解1

    线性代数常用名词详解 vector 向量 对于x,y,z是向量,c,d为常数 x+y=y+x x+(y+z)=(x+y)+z x+0=x c(x+y)=(cx)+(cy) c(dy)=(cd)y xy ...

  9. Chapter 4 (Vector Spaces): Linearly independent sets; Bases (基)

    本文为<Linear algebra and its applications>的读书笔记 目录 Linearly independent sets 基 / 极大线性无关组 / 极小生成集 ...

最新文章

  1. LeetCode 709 To Lower Case -- java,python解法
  2. Learning by doing 系列文章(之一)如何在 Python 中使用 epoll ?
  3. IPNC RDK5.0 make sysall 无法通过问题
  4. hadoop win环境依赖winutils.exe等的gitee下载地址
  5. css 选择一列表菜单,css实现菜单列表随滚动条指定到对应内容
  6. nginx停止,平滑重启命令
  7. html 文本框数量加减,收藏!js实现input加减
  8. 天下为公:TCP堵塞控制
  9. 分布式缓存系统 Memcached 【转载】
  10. 利用sender的Parent获取GridView中的当前行
  11. Linux进程管理及作业控制(转)
  12. iOS ipa包进行重新签名
  13. python进阶 pdf_Python进阶(Intermediate_Python)_中文PDF彩色版.pdf
  14. rtl 8111 linux 驱动,【驱动】在LINUX(ubuntu)系统下安装RTL8111/8168网卡驱动程序(技嘉H61主板)...
  15. toc如何判断 word_在WORD为什么点插入目录显示{TOC\o1
  16. 第七十五章 SQL命令 START TRANSACTION
  17. apns java 证书_GitHub - linyu19872008/apns-http2-java: 苹果推送apns的http2解决方案
  18. 2021 IT运维调查报告
  19. php 百度第三方登录接口开发,PHP:通过MVC,实现第三方登录(百度)
  20. php implode explode,PHP函数implode()与explode()的区别及数组与字符串互转的用法讲解...

热门文章

  1. 寻仙手游维护公告服务器停服更新,寻仙手游12月21日停服更新公告 海量新内容...
  2. c语言用异或清零,C语言异或操作的妙用
  3. 影视后期制作学习第五天(AE)
  4. 2015年阿里巴巴校招研发工程师在线笔试题汇总
  5. 如何在SQLServer中处理每天四亿三千万记录的
  6. 7-65 字符串替换
  7. DICOM文件读取及PNG格式图片展示
  8. Linux系统安装Java和mysql并关联DBeaver,上传Springboot jar包,数据库如何防止黑客攻击
  9. 使用makecert.exe创建数字证书
  10. mySql中count带条件查询