欢迎关注WX公众号:【程序员管小亮】

【机器学习】《机器学习实战》读书笔记及代码 总目录

  • https://blog.csdn.net/TeFuirnever/article/details/99701256

GitHub代码地址:

  • https://github.com/TeFuirnever/Machine-Learning-in-Action

——————————————————————————————————————————————————————

目录

  • 欢迎关注WX公众号:【程序员管小亮】
    • 本章内容
      • 1、k-近邻算法概述
      • 2、使用k-近邻算法改进约会网站的配对效果
      • 3、Sklearn构建k-近邻分类器用于手写数字识别
      • 4、sklearn.neighbors.KNeighborsClassifier
      • 5、总结
      • 参考文章

本章内容

  • k-近邻分类算法
  • 从文本文件中解析和导入数据
  • 使用Matplotlib创建扩散图
  • 归一化数值

这一节早在【CS231n】斯坦福大学李飞飞视觉识别课程笔记中就讲过了,感兴趣的同学可以去学一学这个课程,同时还有python的相关课程【Python - 100天从新手到大师】,但是没有具体的实现代码,所以今天来搞一下。

1、k-近邻算法概述

简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类。

k-近邻算法
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。

k-近邻算法(kNN),它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。

一般来说,只选择样本数据集中前k个最相似的数据,这就是 k-近邻 算法中k的出处,通常k是不大于20的整数。

书上举了一个简单但是经典的例子——电影分类,有人曾经统计过很多电影的打斗镜头和接吻镜头,图2-1显示了6部电影的打斗和接吻镜头数。

首先需要知道这个未知电影存在多少个打斗镜头和接吻镜头,图2-1中问号位置是该未知电影出现的镜头数图形化展示,具体数字参见表2-1。

首先计算未知电影与样本集中其他电影的距离,如表2-2所示。

按照距离递增排序,可以找到k个距离最近的电影。假定k=3,则三个最靠近的电影依次是He’s Not Really into Dudes、Beautiful Woman和California Man。k-近邻算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。(当然根据你的经验应该也是认为爱情片的概率更高才是,因为接吻镜头90个,但是打斗镜头才18个,额,不可以开车,谁说的爱情动作片???)

k-近邻算法的一般流程
(1) 收集数据:可以使用任何方法。
(2) 准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3) 分析数据:可以使用任何方法。
(4) 训练算法:此步骤不适用于k-近邻算法。
(5) 测试算法:计算错误率。
(6) 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

  1. 准备:使用Python 导入数据

对于表2.1中的数据,我们可以使用numpy直接创建,代码如下:

import numpy as np"""
Parameters:无
Returns:group - 数据集labels - 分类标签
"""
# 函数说明:创建数据集
def createDataSet():#六组二维特征group = np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])#六组特征的标签labels = ['爱情片','爱情片','爱情片','动作片','动作片','动作片']return group, labelsdef showDataSet(dataMat, labelMat):data_plus = []for i in range(len(group)):data_plus.append(dataMat[i])data_plus_np = np.array(data_plus)# 转换为numpy矩阵plt.scatter(np.transpose(data_plus_np)[0],np.transpose(data_plus_np)[1])#散点图plt.show()if __name__ == '__main__':#创建数据集group, labels = createDataSet()#打印数据集print(group)print(labels)
>>>
[[  3 104][  2 100][  1  81][101  10][ 99   5][ 98   2]]
['爱情片', '爱情片', '爱情片', '动作片', '动作片', '动作片']


这里将数据点左上方定义为类A(也就是爱情片),数据点右下方定义为类B(也就是动作片)。

一共有6组数据,每组数据有两个已知的属性或者特征值。上面的group矩阵每行包含一个不同的数据,我们可以把它想象为某个日志文件中不同的测量点或者入口。由于人类大脑的限制,通常只能可视化处理三维以下的事务。因此为了简单地实现数据可视化,对于每个数据点通常只使用两个特征。向量labels包含了每个数据点的标签信息,labels包含的元素个数等于group矩阵行数。

  1. 实施kNN 算法

对未知类别属性的数据集中的每个点依次执行以下操作:
(1) 计算已知类别数据集中的点与当前点之间的距离;
(2) 按照距离递增次序排序;
(3) 选取与当前点距离最小的k个点;
(4) 确定前k个点所在类别的出现频率;
(5) 返回前k个点出现频率最高的类别作为当前点的预测分类。

根据两点距离公式(欧氏距离公式),计算两个向量点xA和xB之间的距离。

按照步骤,接下来对数据按照从小到大的次序排序。选择距离最小的前k个点,并返回分类结果。

import numpy as np
import operator"""
Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点
Returns:sortedClassCount[0][0] - 分类结果
"""
# 函数说明:kNN算法,分类器
def classify0(inX, dataSet, labels, k):、#numpy函数shape[0]返回dataSet的行数dataSetSize = dataSet.shape[0]#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet#二维特征相减后平方sqDiffMat = diffMat**2#sum()所有元素相加,sum(0)列相加,sum(1)行相加sqDistances = sqDiffMat.sum(axis=1)#开方,计算出距离distances = sqDistances**0.5#返回distances中元素从小到大排序后的索引值sortedDistIndices = distances.argsort()#定一个记录类别次数的字典classCount = {}for i in range(k):#取出前k个元素的类别voteIlabel = labels[sortedDistIndices[i]]#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。#计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#python3中用items()替换python2中的iteritems()#key=operator.itemgetter(1)根据字典的值进行排序#key=operator.itemgetter(0)根据字典的键进行排序#reverse降序排序字典sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]

完整代码:

import numpy as np
import operator"""
Parameters:无
Returns:group - 数据集labels - 分类标签
"""
# 函数说明:创建数据集
def createDataSet():#六组二维特征group = np.array([[3,104],[2,100],[1,81],[101,10],[99,5],[98,2]])#六组特征的标签labels = ['爱情片','爱情片','爱情片','动作片','动作片','动作片']return group, labels"""
Parameters:inX - 用于分类的数据(测试集)dataSet - 用于训练的数据(训练集)labes - 分类标签k - kNN算法参数,选择距离最小的k个点
Returns:sortedClassCount[0][0] - 分类结果
"""
# 函数说明:kNN算法,分类器
def classify0(inX, dataSet, labels, k):#numpy函数shape[0]返回dataSet的行数dataSetSize = dataSet.shape[0]#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet#二维特征相减后平方sqDiffMat = diffMat**2#sum()所有元素相加,sum(0)列相加,sum(1)行相加sqDistances = sqDiffMat.sum(axis=1)#开方,计算出距离distances = sqDistances**0.5#返回distances中元素从小到大排序后的索引值sortedDistIndices = distances.argsort()#定一个记录类别次数的字典classCount = {}for i in range(k):#取出前k个元素的类别voteIlabel = labels[sortedDistIndices[i]]#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。#计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1#python3中用items()替换python2中的iteritems()#key=operator.itemgetter(1)根据字典的值进行排序#key=operator.itemgetter(0)根据字典的键进行排序#reverse降序排序字典sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)#返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]if __name__ == '__main__':#创建数据集group, labels = createDataSet()#测试集test = [101,20]#kNN分类test_class = classify0(test, group, labels, 3)#打印分类结果print(test_class)
>>>
动作片
  1. 如何测试分类器

有点那种我们依据自己的经验进行判断的意思,也就是上面我说的看“接吻动作”和“打斗动作”,然后进行判断的意味。

看到这,你可能会问:“分类器何种情况下会出错?”或者“答案是否总是正确的?”答案是否定的,分类器并不会得到百分百正确的结果,我们可以使用多种方法检测分类器的正确率。此外分类器的性能也会受到多种因素的影响,如分类器设置和数据集等。除此之外,不同的算法在不同数据集上的表现可能完全不同。

为了测试分类器的效果,我们可以使用已知答案的数据,当然答案不能告诉分类器,检验分类器给出的结果是否符合预期结果。通过大量的测试数据,我们可以得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0。同时,我们也不难发现,k-近邻算法没有进行数据的训练,直接使用未知的数据与已知的数据进行比较,得到结果。因此,可以说k-邻近算法不具有显式的学习过程。

2、使用k-近邻算法改进约会网站的配对效果

这里是一个比较有意思的话题产生的例子,也就是婚介网站等等的约会网站帮助你相亲,我的朋友海伦就是这样一个人,她一直使用在线约会网站寻找适合自己的约会对象,但是她发现尽管约会网站会推荐不同的人选,但并不是每一个人她都喜欢。经过一番总结,她发现曾交往过三种类型的人:不喜欢的人、魅力一般的人和极具魅力的人。

她希望我们的分类软件可以更好地帮助她将匹配对象划分到确切的分类中。此外,海伦自己还收集了一些约会网站未曾记录的数据信息,她认为这些数据更有助于匹配对象的归类。

在约会网站上使用k-近邻算法
(1) 收集数据:提供文本文件。
(2) 准备数据:使用Python解析文本文件。
(3) 分析数据:使用Matplotlib画二维扩散图。
(4) 训练算法:此步骤不适用于k-近邻算法。
(5) 测试算法:使用海伦提供的部分数据作为测试样本。测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
(6) 使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

  1. 准备数据:从文本文件中解析数据

海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。海伦的样本主要包含以下3种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所耗时间百分比
  • 每周消费的冰淇淋公升数

观察数据,可以看到有largeDoses、smallDoses、didntLike三类标记。

在将上述特征数据输入到分类器前,必须将待处理的数据的格式改变为分类器可以接收的格式。分类器接收的数据是什么格式的?从前面讲的你已经知道,要将数据分类两部分,即 特征矩阵 和对应的 分类标签 向量。在kNN.py中创建名为file2matrix的函数,以此来处理输入格式问题。该函数的输入为文件名字符串,输出为 训练样本矩阵类标签向量

import numpy as np"""
Parameters:filename - 文件名
Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量
"""
# 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
def file2matrix(filename):#打开文件fr = open(filename)#读取文件所有内容arrayOLines = fr.readlines()#得到文件行数numberOfLines = len(arrayOLines)#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列returnMat = np.zeros((numberOfLines,3))#返回的分类标签向量classLabelVector = []#行的索引值index = 0for line in arrayOLines:#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')line = line.strip()#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。listFromLine = line.split('\t')#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵returnMat[index,:] = listFromLine[0:3]#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力if listFromLine[-1] == 'didntLike':classLabelVector.append(1)elif listFromLine[-1] == 'smallDoses':classLabelVector.append(2)elif listFromLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVectorif __name__ == '__main__':#打开的文件名filename = "datingTestSet.txt"#打开并处理数据datingDataMat, datingLabels = file2matrix(filename)print(datingDataMat)print(datingLabels)
>>>
[[  4.09200000e+04   8.32697600e+00   9.53952000e-01][  1.44880000e+04   7.15346900e+00   1.67390400e+00][  2.60520000e+04   1.44187100e+00   8.05124000e-01]..., [  2.65750000e+04   1.06501020e+01   8.66627000e-01][  4.81110000e+04   9.13452800e+00   7.28045000e-01][  4.37570000e+04   7.88260100e+00   1.33244600e+00]]
[3, 2, 1, 1, 1, 1, 3, 3, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 3, 1, 3, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3, 3, 3, 1, 1, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 1, 3, 1, 1, 3, 3, 1, 2, 3, 1, 3, 1, 2, 2, 1, 1, 3, 3, 1, 2, 1, 3, 3, 2, 1, 1, 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 1, 2, 3, 2, 3, 2, 3, 2, 1, 3, 3, 3, 1, 3, 2, 2, 3, 1, 3, 3, 3, 1, 3, 1, 1, 3, 3, 2, 3, 3, 1, 2, 3, 2, 2, 3, 3, 3, 1, 2, 2, 1, 1, 3, 2, 3, 3, 1, 2, 1, 3, 1, 2, 3, 2, 3, 1, 1, 1, 3, 2, 3, 1, 3, 2, 1, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 1, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 1, 3, 3, 2, 1, 1, 1, 2, 1, 3, 3, 3, 3, 2, 1, 1, 1, 2, 3, 2, 1, 3, 1, 3, 2, 2, 3, 1, 3, 1, 1, 2, 1, 2, 2, 1, 3, 1, 3, 2, 3, 1, 2, 3, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 3, 3, 3, 3, 1, 2, 3, 1, 1, 1, 3, 1, 3, 2, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 3, 1, 3, 2, 1, 1, 3, 3, 2, 3, 3, 2, 3, 1, 3, 1, 3, 3, 1, 3, 2, 1, 3, 1, 3, 2, 1, 2, 2, 1, 3, 1, 1, 3, 3, 2, 2, 3, 1, 2, 3, 3, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 3, 2, 1, 1, 3, 3, 3, 2, 3, 2, 1, 1, 1, 1, 1, 3, 2, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 2, 1, 3, 3, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 1, 3, 1, 1, 2, 3, 1, 1, 2, 3, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 1, 3, 2, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 1, 2, 3, 2, 1, 1, 1, 1, 3, 3, 3, 3, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 2, 3, 2, 1, 3, 2, 3, 2, 3, 2, 1, 1, 2, 3, 1, 3, 3, 3, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 3, 2, 2, 2, 3, 1, 2, 1, 1, 3, 2, 3, 2, 3, 2, 3, 3, 2, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 2, 2, 1, 3, 1, 1, 3, 2, 3, 1, 1, 3, 1, 3, 3, 1, 2, 3, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 2, 3, 2, 2, 1, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 1, 3, 2, 3, 2, 1, 2, 1, 1, 1, 2, 3, 2, 2, 1, 2, 2, 1, 3, 1, 3, 3, 3, 2, 2, 3, 3, 1, 2, 2, 2, 3, 1, 2, 1, 3, 1, 2, 3, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 3, 3, 1, 1, 3, 1, 2, 3, 3, 2, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 1, 3, 2, 1, 3, 3, 1, 2, 3, 2, 1, 3, 3, 3, 1, 2, 2, 2, 3, 2, 3, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 2, 1, 3, 2, 1, 3, 3, 2, 2, 2, 1, 2, 2, 1, 3, 1, 3, 1, 3, 3, 1, 1, 2, 3, 2, 2, 3, 1, 1, 1, 1, 3, 2, 2, 1, 3, 1, 2, 3, 1, 3, 1, 3, 1, 1, 3, 2, 3, 1, 1, 3, 3, 3, 3, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 3, 3, 2, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 1, 1, 3, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 3, 1, 2, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 1, 1, 3, 3, 1, 1, 1, 3, 3, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 2, 3, 2, 2, 1, 3, 1, 2, 3, 1, 2, 2, 2, 2, 3, 2, 3, 3, 1, 2, 1, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 3, 3, 3]

上面是特征矩阵,下面是标签向量。

  1. 分析数据:使用Matplotlib 创建散点图

现在已经从文本文件中导入了数据,并将其格式化为想要的格式,接着我们需要了解数据的真实含义。当然我们可以直接浏览文本文件,但是这种方法非常不友好,一般来说,我们会采用图形化的方式直观地展示数据。下面就用Python工具来图形化展示数据内容,以便辨识出一些数据模式。

from matplotlib.font_manager import FontProperties
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
import numpy as np"""
Parameters:filename - 文件名
Returns:returnMat - 特征矩阵classLabelVector - 分类Label向量
"""
# 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力
def file2matrix(filename):#打开文件fr = open(filename)#读取文件所有内容arrayOLines = fr.readlines()#得到文件行数numberOfLines = len(arrayOLines)#返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列returnMat = np.zeros((numberOfLines,3))#返回的分类标签向量classLabelVector = []#行的索引值index = 0for line in arrayOLines:#s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')line = line.strip()#使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。listFromLine = line.split('\t')#将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵returnMat[index,:] = listFromLine[0:3]#根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力if listFromLine[-1] == 'didntLike':classLabelVector.append(1)elif listFromLine[-1] == 'smallDoses':classLabelVector.append(2)elif listFromLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector"""
Parameters:datingDataMat - 特征矩阵datingLabels - 分类Label
Returns:无
"""
# 函数说明:可视化数据
def showdatas(datingDataMat, datingLabels):#设置汉字格式font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)#将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)#当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8))numberOfLabels = len(datingLabels)LabelsColors = []for i in datingLabels:if i == 1:LabelsColors.append('black')if i == 2:LabelsColors.append('orange')if i == 3:LabelsColors.append('red')#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5)#设置标题,x轴label,y轴labelaxs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比',FontProperties=font)axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占',FontProperties=font)plt.setp(axs0_title_text, size=9, weight='bold', color='red') plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')#画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)#设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数',FontProperties=font)axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数',FontProperties=font)axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)plt.setp(axs1_title_text, size=9, weight='bold', color='red') plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')#画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5)#设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数',FontProperties=font)axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比',FontProperties=font)axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数',FontProperties=font)plt.setp(axs2_title_text, size=9, weight='bold', color='red') plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black') plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')#设置图例didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')#添加图例axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses])axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses])axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses])#显示图片plt.show()if __name__ == '__main__':#打开的文件名filename = "datingTestSet.txt"#打开并处理数据datingDataMat, datingLabels = file2matrix(filename)showdatas(datingDataMat, datingLabels)


通过数据可以很直观的发现数据的规律,比如横纵坐标是玩游戏所消耗时间占比与每年获得的飞行常客里程数,只考虑这二维的特征信息,就会发现,海伦很喜欢生活质量高的男人。为什么这么说呢?

每年获得的飞行常客里程数这一个特征表明,海伦喜欢能享受飞行常客奖励计划的男人,但是不能经常坐飞机,疲于奔波,满世界飞。同时,这个男人也要玩视频游戏,并且占一定时间比例。能到处飞,又能经常玩游戏的男人是什么样的男人?很显然,有生活质量,并且生活悠闲的人。哈哈,兄弟们,姐妹们,是不是发现了什么了不得的事啊

《机器学习实战》学习笔记(二):k-近邻算法相关推荐

  1. 《机器学习实战》——kNN(k近邻算法)

    原作者写的太好了,包括排版都特别整齐(其中有一个错误之处就是在约会网站配对效果判定的时候,列表顺序不对,导致结果有误,这里我已做出修改) 原作者和出处:http://blog.csdn.net/c40 ...

  2. 机器学习实战学习笔记 一 k-近邻算法

    k-近邻算法很简单,这里就不赘述了,主要看一下python实现这个算法的一些细节.下面是书中给出的算法的具体实现. def clssify(inX,dataset,label,k):#计算距离data ...

  3. 机器学习第七章之K近邻算法

    K近邻算法(了解) 7.1 K近邻算法 7.1.1 K近邻算法的原理介绍 7.1.2 K近邻算法的计算步骤及代码实现 7.2 数据预处理之数据归一化 7.2.1 min-max标准化 7.2.2 Z- ...

  4. 吴恩达《机器学习》学习笔记二——单变量线性回归

    吴恩达<机器学习>学习笔记二--单变量线性回归 一. 模型描述 二. 代价函数 1.代价函数和目标函数的引出 2.代价函数的理解(单变量) 3.代价函数的理解(两个参数) 三. 梯度下降- ...

  5. 01. 机器学习笔记01——K近邻算法 , CV_example

    K近邻算法(K-nearest neighbor,KNN算法) 李航博士<统计学习方法> 最近邻(k-Nearest Neighbors,KNN)算法是一种分类算法 应用场景:字符识别.文 ...

  6. 【机器学习】原理与实现k近邻算法

    文章目录 系列文章目录 前言 一.k近邻算法是什么? 二.使用步骤 1.引入库 2.读入数据 总结 前言 随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了 ...

  7. 机器学习入门 | 【01】K近邻算法

    文章目录 1.K近邻算法[通过你的邻居来判断你的类别] 1.简介 2.电影案例分析 3.api的初步使用 3.1 一般的流程: 3.2 sklearn模块介绍 3.3 API的使用 3.4 距离度量 ...

  8. 统计学习方法笔记(一)-k近邻算法原理及python实现

    k近邻法 k近邻算法 算法原理 距离度量 距离度量python实现 k近邻算法实现 案例地址 k近邻算法 kkk近邻法(kkk-NN)是一种基本分类和回归方法. 算法原理 输入:训练集 T={(x1, ...

  9. python的knn算法list_机器学习实战学习笔记1——KNN算法

    一.KNN算法概述: 1.KNN算法的工作原理是: (1)存在一个训练样本集,并且知道样本集中每一数据与所属分类的对应关系,即每个数据都存在分类标签. (2)若此时输入不带标签的新数据之后,将新数据的 ...

  10. 【20210922】【机器/深度学习】KNN (K近邻) 算法详解

    一.算法概念 KNN, K-near neighbor,即最近邻算法.它是一种分类算法,算法思想是:一个样本与数据集中的 k 个样本最相似,如果这 k 个样本中的大多数属于某一个类别,则该样本也属于这 ...

最新文章

  1. 动态加载的html没有js效果,JS利用html5实现loadding动态加载效果代码实例
  2. vue-router 的常见用法
  3. mysql udf禁用_Mysql数据库UDF的安全问题利用
  4. Linux 利用yum源安装php5.6+nginx
  5. CrystalMaker 10.6.2 mac版 CrystalMaker X最新版
  6. 利用,ArrayList,HashMap,洗牌,发牌,看牌。
  7. 5种获取RSS全文输出的方法
  8. Python之抖音快手代码舞--字符舞
  9. poj 3714 Raid
  10. H2GIS读取GPX文件 测试 GPXRead
  11. 现在世界上到底有多少飞机?
  12. STM32驱动0.96寸OLED屏幕
  13. 网站建设运营SEO优化的几个技巧
  14. 【天池、京东算法大赛、Kaggle等机器学习打比赛模板】
  15. android的一些简单配置修改(2)
  16. 直播短视频带货完美运营APP源码 购物直播交友系统源码
  17. Mathtype与word的格式问题
  18. 电力电子矢量输出总结
  19. python networkx.algorithms.approximation.steinertree 介绍
  20. java下载完了放哪里了_JDK安装完成后,主要的命令如Javac、Java等都存放在()文件夹中。...

热门文章

  1. 像素是如何绘制到屏幕上的?
  2. 店铺销量需要怎么样进行提升
  3. 前端H5唤起手机打电话(拨号)和发短信功能
  4. Manjaro-Linux感觉蛮有用的系统问题处理
  5. 怒怼某些自媒体培训机构,吃相不要太难看了!!!
  6. java parcelable list_Android中Serializable和Parcelable序列化对象详解
  7. ABAP使用SE11 search help的方法
  8. VMware忘记账号密码的解决办法
  9. AMD在CES 2023开幕主题演讲中强调高性能和自适应计算的未来
  10. 极客日报:B站就机房服务器故障道歉;罗永浩否认将启动自动驾驶项目;​亚马逊收购 Facebook 卫星互联网团队