TI高精度实验室-运算放大器-第十节-运放稳定性问题

在本系列的视频当中 将会讨论到波特图 Bode plot 基本的稳定性理论 以及如何在 SPICE 当中 进行稳定性仿真 在这个视频中 我们会讨论到各种补偿技术 而且会进行细节的分析 在开始运放稳定性分析的课程学习之前 建议先完成 运放带宽 1 到 3 系列的课程 因为其中涉及到 本课程需要用到的一些基本概念

在这里举例说明 在量产之前没有评估 电路稳定性将会发生什么问题 一个不稳定的运放电路 将会得到失真的瞬态响应 输出波形不是预期的结果 当输入或者负载变化时 这就会引起输出较大的过冲和失调 甚至导致持续的振荡波形 通常稳定性问题产生 源于在运放输出 或者反相输入端连接了电容 此分压缓冲电路 用于将 2.5 伏直流作为参考电压输出 但是不稳定的设计 使得直流参考信号变成了一个正弦波 虽然此电路原本工作于直流输入和输出 但在输入电源输出的一个扰动 都会使运放电路产生振荡 因此不论电路工作的频率如何 我们都推荐对电路进行稳定性分析

运放输出信号 与反馈信号之间的延迟过大 是一种直观的方式来看待振荡问题 通过观察运放输出的信号 Vopa 和反相端的输入信号 Vfb 可以直观的看出反馈延迟带来的后果 当提供一个阶跃信号给输入端 Vin Vin 改变时基于 Virtual short 虚短理论 Vopa 会使 Vfb 与 Vin 相等 然而反馈产生的延时 使得 Vopa 端得到一个错误的电压 结果 Vfb 持续向上升 输入的电压向上增加 导致 Vopa 也向相反的方相增长 依据延迟的程度 输出会建立起持续的振荡 虽然反馈环节上带有 RC 延时元件 看起来奇怪 并且不切实际 实际上很多标准的运算放大电路 由于运放的不理想性 再加上外围元件的影响 会产生同样的情况

例如运放的开环输出阻抗Ro 与电路的容性负载 Cload 作用形成了延迟电路 另一个延时环节是由反馈电阻 Feedback resistance Rf 与运放的并联输入电容 input capacitors Cin 和实际 pcb 布局的寄生电容产生作用 形成延迟电路 由任何一个原因导致的延迟 如果不采取必要的措施 都可能导致稳定性的问题

以下是常见的有稳定性问题的电路 这些电路的共同点 都是输出到反馈端 形成了不需要的延时 根据对运放环路造成的问题 这些延时可以分为两种 第一种在运放输出端有容性负载 或者因寄生电容的负载 影响运放的开环增益 这种类型的电路 包括参考电压缓冲电路 线缆驱动电路 MOSFET 栅极驱动电路等等 第二种在输入端 通过运放输入电容 和大反馈电阻的作用 影响反馈网络 这种类型的电路包括跨阻放大器 低功耗电路 在输入端引入瞬态抑制元件的电路等等

如图所示的电路 为两种容易重现振荡的例子 尝试在反相端接滤波 或者直接在输入端节点加电容 会直接导致稳定性问题 这种设计经常会表现得像一个振荡器 而不是它们原先应有的功能 如果见到这两种电路 在量产之前 确保它们经过稳定性分析 并且没有问题

这里展示了通过示波器 看到的不稳定电路的输出信号 一个处理直流信号的电流 用示波器观察时看似稳定 但一旦环路中输出了一个小的阶跃 或者方波信号 不稳定的输出会反复反馈到输入信号 直到输出建立稳定的振荡 过冲的幅度和持续性 与输出振荡信号有关 有较小稳定问题的电路 会输出少量的振荡和过冲 更严重的稳定性问题 会导致过冲与输入信号相当 会导致过冲与输入信号相当 或者比输入信号更大 从而出现如图例所示的 显著的振荡现象 最严重的稳定性问题 会导致尽管没有输入信号 仍然会输出持续的振荡信号 电路的不稳定输出 不一定表现为我们所期望的正弦波 有可能会输出一些看似很奇怪的信号 虽然在这里没有显示出来 不稳定的直流输出 或者出乎意料的失真 也会是稳定性问题的一种表现

除了示波器之外 由于频谱分析仪可用于测量信号 和幅频特性 我们也可以用它来诊断不稳定性问题 图示将电路仿真的幅频相频响应结果 与实际电路的测试结果进行对比 增益的峰值相移的剧烈变化 或者出乎意料的增益 都是不稳定性问题的标志 当尝试测量一个不稳定电路的幅频 或者相移时 常见的测量响应 是跳动或是不清楚的 且在全频率范围内难以测量 这些微小的信号同样是不稳定的标志

这一系列课程 旨在理解运放稳定性补偿技术 如何针对既定的应用选定补偿的方案 以及在设计电路中如何优化参数值 以及在设计电路中如何优化参数值 如图所示 电压缓冲电路可以通过多种方法来进行补偿 根据不同的应用而定 如下面举的两个例子 第一种补偿技术 使用了一个隔离电阻 Riso 由于在 Riso 上有压降 因而是通过牺牲直流的 精确度来实现的补偿 第二种技术在反馈回路中引入 Riso 它不会在 Riso 上 造成压降的问题 但是牺牲了电路的建立时间 我们会先温习必要的理论 以理解仿真和反馈网络等等 然后介绍更多的补偿方法

第二部分:
在之前的视频中 我们讨论了运放稳定性问题的产生原因 以及如何使用常见的仪器 来识别稳定性的问题 在本节的视频中 我们将会结合相位裕度和闭合速率 分析回顾波特图和基本的稳定性理论 深入理解这些内容 对于学习接下来的视频是非常重要的 在开始此视频的学习前 请确保您已经学习了 运放带宽 1 到 3 系列的视频 并且完成了其中的测试

本张图片所示 来源于运放带宽分析的视频 1 当中讲到了极点相关的公式 以及极点在波特图上的振幅 和相位的响应 极点使得在幅频响应中 在截止频率 fp 之后 以 -20dB/dec 的速率下降 极点也使得在截止频点 fp 的前后 都出现了相移 最大造成 -90 度的相移 在截止频率 fp 处 幅度会衰减 3dB 相位会偏移 -45 度 总的来说 极点在大约 2.5 个十倍频处 造成了 -90 度的偏移 在 fp 前十倍频程相移 -5.7 度 在 fp 后十倍频程相移 -84.3 度

本页的图片来源于运放带宽分析视频一 当中讲到了零点相关的公式 以及零点在波特图上的 振幅和相位的响应 零点使得在幅频响应中 在截止频率 fc 之后 以 +20dB/dec 的速率上升 零点也使得在截止频点 fc 的前后 都出现相移 最大造成 +90 度的相移 是在截止频率 fc 处 幅度会提升 3dB 相位会偏移 +45 度 总的来说 极点在 2.5 个十倍频程处 造成了 +90 度的偏移 在 fc 前十倍频程相移 +5.7 度 在 fc 后十倍频程相移 +84.3 度

由于运放的模型比较复杂 用一种直观的模型 对于进行交流稳定性分析是有效的 在这个简化的稳定的模型中 给到运放的差分输入 经过开环增益传输到运放的输出端 然后接着通过运放的输出电阻 到达相外的输出节点 open loop gain 开环增益 AOL 表示运放能给差分输入信号 提供的最大增益 对于理想运放来说 AOL 是无限大且不受频率限制的 现在的运放的开环增益 低频段可以做到 100 万或者 120dB 而带宽增益积 unit gain bandwidth 可以做到从几十 k 赫兹到上 G 赫兹 Open loop output impedance 开环输出阻抗 Zo 是指开环情况下 从运放输出端测试所得 Zo 与运放工作在闭环模式下的 输出阻抗 Zout 不能混淆 Zout 是由 Zo Alo 以及电路的设计决定的 在本视频中 为了集中讨论稳定性的相关问题 Zo 在全频段内看做成纯阻性 实际上对于部分新的轨至轨运放 Zo 会随着频率的变化而变化 从而使得稳定性的分析变得更加复杂 在深入理解针对纯阻性的 Zo 的稳定性分析之后 对于更加复杂的 Zo 在本系列视频的最后会加以探讨

为了控制运放的开环增益 需要在输出与反相端引入负反馈 在这被称为闭环 在这个闭合环路中 Rf 和 R1 形成了一个分压器 因而在输出与反相输入端 形成一个衰减 这两个电阻的比例 决定了从输出反馈到输入的量 我们定义为 Feedback factor 反馈系数或者 β 闭合环路后产生了 closed loop gain 闭环增益 ACL 等于 AOL 除以 1 加上 AOL 乘以 β 的和 AOL 乘以 β 被称为 loop gain 环路增益 当开环增益足够大 闭环增益的公式 可以简化为 β 的倒数 在此例中 1/β=1+Rf/R1 这可以认为是同相放大器的增益 在运放电路中需要深入理解这项 通过引入负反馈而引入的闭环增益 放大器会调整其输出 使得两个输入端相等 即建立虚短 因此 β 决定了输出到输入的衰减 使得输出是输入的 1/β 倍 这正是闭环电路中反馈电阻 设置闭环增益的原理 让我们通过数学与图解法 定义稳定性分析的条件 首先我们需要定义 运放在什么情况下是不稳定的

首先我们需要定义 运放在什么情况下是不稳定的 回顾环路的增益公式 Acl=Aol/(1+Aolβ) 进一步的分析 Aolβ 又称为环路增益 它等于 -1 时分母就为零 从而 Acl 无法定义 这是数学上对不稳定的定义 在实际电路中 它又是怎么发生的呢 在某些频点上 Aolβ 会等于 0dB 即 1V/V 如果反馈回路引入了足够的延迟 相比于 Vin 信号 反馈信号的相位会移动 180 度 180 度的相移正好等价于反相或者 -1 因此 Aolβ 等于 0dB 相移为 180 度 结果就是 Aolβ=-1 相位裕量的概念 用于定义电路的相移 与这种情况相接近的程度 相位裕量就是 Aolβ=0dB 对应频点处的相移 例如十度的相位裕量 就意味着相位在 Aolβ 等于 0dB 时 对应的频点处移动了 170 度 可见环路增益 Aolβ 是稳定性分析的关键元素 那么我们如何得到环路增益呢

我们可以用波特图 分析环路增益的幅频响应 使用同样的电路可以得到增益 为 10V/V 或者 20dB 在这里 1/β 是一个值为 20dB 的常量 图示中还有 Aol 曲线 我们可以通过 Aol 曲线减去 1/β 得到 Aolβ 的值 这样虽然不算直观 但从右边的公式可见 这是利用了对数函数的属性 在上一页中 我们讲到相位裕量 是在 Aolβ=0 时的频点处 该频率被称为 fc 且定义了环路的闭合点 同时此频点也是 Aol 曲线 与 1/β 曲线的相交点

要得知相位裕量 我们需要知道环路增益的相移曲线 即 Aolβ 对频率的相移 使用之前的结论 也可以通过 Aol-1/β 来得到 在本例中 虽然在运算放大器电路的反馈回路中 加入了一个电容 但是对直流分量可以视做开路 因而环路增益跟之前的电路一样 仍然为 10V/V 在高频的时候 电容导致 R1 与 C1 形成复合阻抗降低 电路增益响应会以 +20dB/dec 增加 这一点我们可以从 1/β 曲线 在零点过后的区域看到 相位上 1/β 曲线的 90度 相位增加 导致了 Aolβ 曲线相位减少了 90 度 因而相位裕量低于 5 度 非常的小

我们知道了如何观察相位裕量 现在回到最开始我们想要做的 即如何避免出现 Aolβ=-1 要记住在这种情况下 意味着在 fc 处的相移为 180 度 或者说零度的相位裕量 因此为保证裕量我们认定相位裕量 在 45 度或以上时为稳定度的最佳化 然而电路仍然有可能 在低于 45 度的相位裕量下工作 但是这被认为是临界稳定 而且会有明显的过冲和震荡 另外我们必须牢记 由于芯片生产工艺的变化 温度 元件的差异性及其它的影响 器件会有不同的特性 因而我们把 45 度 作为稳定电路的最低要求 我们不必直接测量 每个电路的相位裕量来判断其是否稳定 我们另外有一种更加简单的办法可以判断 并且这种方法会告诉我们更多的信息

这种方法被称为闭合速率分析法 使用这个方法时 我们只需要考察 Aol 与 1/β 由于传递函数中的零极点曲线 会有很规律的斜率 通过分析 Aol 与 1/β 相交的速率 我们可以快速的判定电路是否稳定 我们的法则为闭合速率为 20dB 才满足稳定的要求 在之前的电路中 其运放反相输入端接入了一个电容 我们使用同一个电路来进行分析 电容造成了 1/β 的一个零点 使得 1/β 曲线的速率为 +20dB/dec Aol 曲线在运放的主极点后 以 -20dB/dec 的速率降低 当两者在 fc 处相交 闭合速率等于 Aol 的速率 与 1/β 速率之差 得出 40dB 的结果 因为结果大于 20dB 所以得出结论电路是不稳定的 与之前采用相位裕量分析的结果一致 除了快速得出结论 闭合速率还能揭示出 导致电路不稳定的因素 在电路中 Aol 的斜率表示的 运放主极点的效果 正如我们所期望的一样 然后对于 1/β 曲线 +20 意味着反馈网络中形成了一个零点 所以我们可以采取措施去补偿它 而直接得到相位裕量的分析方法 却不能得到类似的结论 闭合速率的方法之所以奏效 是因为 Aol 与 1/β 分别与电路中的极点与零点相对应 20dB 的闭合速率 意味着电路只受到一个极点的影响 对应的相位裕量为 45 度 符合稳定的判断

我们也可以用这个方法 分析同相放大器的稳定性 在这个电路中 1/β 是平坦的 没有像之前例子中的零点 Aol 仍然是以 -20dB/dec 下降 闭合速率是 -20dB 因此结论为电路是稳定的

如之前所述 闭合速率与相位裕度是互相关联的 这里给出了三个例子 说明不同的闭合速率 和它们所对应的相位裕度 在第一个例子中 闭合速率为 20dB 电路是稳定的 相位裕量在 45 度到 90 度之间 这是最佳的电路设计 在第二个例子中 1/β 曲线在 fc 处有一个零点 在 fc 处 闭合速率开始改变 并且将在 20 与 40 之间 这个例子符合 45 度相位裕量 要注意零点会导致最大 90 度的相移 在零点处为 45 度相移 因而 Aolβ 的整体相移构成为 Aol 主极点处 90 度相移 fc 处 45 度相移 还有 45 度的相位裕量 在最后的区域中 在 1/β 曲线中 在 fc 之前有一个零点 闭合速率为 40dB/dec 相位裕量对应为 0 到 45 度之间 它意味着一个不稳定的电路

第三部分:
本次视频将会解释 如何用开环 SPICE 仿真 来得到放大电路的闭合速率与相位裕量 在开始运放稳定性分析的课程学习之前 我们建议您 先完成运放带宽 1 到 3 系列的课程

是为了获得闭合速率与相位裕量 我们需要 Aol 1/β 以及 Aolβ 曲线 但是这些曲线 无法从一个标准的闭合回路架构中得到 为了获得这几组曲线 电路的反馈回路需要断开 然后用一个小信号在断开处进行激励 然后在运放的反相端得到 Vfb 在输出端得到 Vo 通过这两项我们可以推导得出 我们所需要的曲线

然而单纯的断开反馈回路 是无法得到正确的仿真结果的 没有合适的直流偏置 输出会直接饱和到任意一个电源轨 导致不正确的输出 如图所示 运放输出接近正相电源 得到错误的 Aol 与 Aolβ 曲线

为了在 SPICE 中得到正确的开环曲线 电路必须要对直流建立反馈 但对交流是开路的 在左上角的图中 通过 L1 开关 对直流闭合 C1 开关 对直流断开 直流的闭合使得输出正确的偏置 直流的闭合使得输出正确的偏置 通常是在供电的中心点 左下角的电路是通过 L1 对交流信号开路 C1 对交流信号短路 环路对交流信号是断开的 因而交流 AC 仿真可以得到开环曲线 幸好通过 SPICE 的理想模型这种方法可以同时满足直流和交流的要求 L1 是 1T 的电感 C1 是 1T 的电容 对于直流信号 L1 为短路而 C1 为开路 提供合适的直流偏置 对于交流信号 L1 为开路而 C1 为短路 从而提供了合适的交流通路

因而此处我们推荐使用 标准的开环 SPICE 电路设置 反馈环路在运放的输出 与反馈网络之间断开 交流信号从反馈网络中注入 在运放的输出端接测量得到 Vo 在反馈点测量得到 Vfb 由于断开了回路 可以得到所需要的曲线 Aol_loaded=Vo/Vfb 1/β=1/Vfb Aolβ=Vo

很多电路可以运用开环 SPICE 电路仿真 在实际电路中 不知在何处断开环路而感到困惑时 可以用这些例子作为参考 注意为了得到正确的稳定性分析结论 运放输出端所接的负载 必须直接体现在电路中 而不应该放置在电感的另外一端 否则就体现出不同的负载效应

在分析交流响应之前 应该快速地检查一下 直流的静态工作点 点击分析 Analysis 点击直流分析 DC Analysis 计算节点电压 Calculate nodal voltage Vfb 会显示出输入失调电压 Vos 输出电压 Vo 会显示为 Vos 和闭环增益之积

第四部分:
本此课程会介绍 如何采用一种间接相位裕量测量的方法 在 SPICE 和实际电路中 进行时域和交流频域的测量

虽然我们在先前课程中 讨论了如何在 SPICE 中 测量相位裕量和闭合速率 然而对于实际的电路 却很难在实验室中进行开环测试

幸运的是 有两种对电路间接测量相位裕量的方法 第一种是测试阶跃响应 或者方波响应输出信号的过冲百分比 这样的测试 可以通过信号发生器与示波器完成 第二种是测试增益曲线的峰值 这个测试同样需要使用示波器 但还需要一个增益/相位分析仪

和 SPICE 仿真所得结果一样 过冲百分比的幅度 交流响应增益曲线的峰值 和电路的相位裕量是互相关联的 相位裕量小的电路 与输入的阶跃信号相比 输出会出现欠阻尼过冲输出 相位裕量小的电路 在交流响应中有很明显的增益峰值

在间接测量相位裕量前 电路需要简单地修正 首先间接相位裕量测量 需要在运放输出端测量 不能在任何输出滤波器之后 然而需要保证所有的负载 都连接在运放输出端 看其对稳定性的影响 输入滤波电路必须去掉 以保证输入的阶跃信号 或者交流扫描信号 是直接加在运放的同相端 在 SPICE 中 只需断开输入滤波器 将输入信号接到同相端即可 在实际测量时 也只需要在 PCB 上移除滤波电路 然后将信号直接接在同相输入端

这里将介绍如何在 SPICE 中 仿真过冲百分比和交流幅频响应的峰值 我们也可以在实际测试中 使用同样的基本原理 在仿真时 首先要将输入信号源设置为单位阶跃 选择输入振幅使得输出信号 只变化 10 到 20mV 如果运放的输出是驱动一个容性负载 则大于 10 到 20mV 的信号 会形成大信号响应 而掩盖小信号稳定性问题 因此通过电路的增益 来计算输入信号的幅度 使得输出只变化 10 到 20mV 在阶跃开始前加一个小延时 使得整个过程能够被观察到 点击 OK 保存输入信号配置

输入信号正确设置之后 点击 Analysis 菜单 选择瞬态响应 设置开始与结束时间 然后点击 OK 启动仿真

不用任何测试 通过观察阶跃响应是否有过阻尼 临界阻尼或者欠阻尼 就可以直接判断电路是否有稳定性问题 如果需要的话 曲线可以分开看 或者可以删除输入曲线 在测量过冲百分比前 先检查得到的输出阶跃信号的值 将 A 光标放在输出信号的初始值上 B 光标放在输出稳定后的值 看两者在纵轴上的差值 确保输出是正确的幅度 在此电路中 输出信号是 10mV 符合稳定性分析所需的小信号阶跃输出 为得到过冲百分比 将 A 光标放在过冲的峰值上 将 B 光标放在稳定值上 两者的差值为过冲的值 用右边的公式进行计算 在这个电路中 过冲百分比为 22.16% 我们可以用此值来计算相位裕量

图中曲线表示相位裕量 与过冲百分比的关系 它是基于两者间以阻尼因子 表示的数学关系所生成的 在横轴上找到 22.2% 的值 然后画一条与之垂直的直线 与曲线相交对应的纵坐标 即为相位裕量 22.2% 的过冲值对应 46 度的相位裕量 这个值高出我们推荐的 45 度标准值

第五部分:
本次课程将会讨论 为什么 capacitive loads(容性负载) 会导致稳定性问题 并且将会给出一种 使用 isolation resistor(隔离电阻) 来补偿容性负载的方法

稳定性系列课程的第一部分 讨论到导致运放稳定性问题的 最常见原因是输出端的电容 一些经常有大电容负载的电路包括有 参考电压缓冲电路 voltage reference buffers 线路/屏蔽层驱动电路 cable/shield drive circuits 以及 MOSFET 驱动电路 MOSFET drive circuits 在 MOSFET 驱动电路和 线路/屏蔽层驱动电路上 容性负载不能马上能看到 所以一定要检查运放输出端 是否有连接任何寄生电容

我们已经知道 如何生成一个运放电路的开环曲线 现在可以仿真容性负载的影响 从而确定问题 如结果所示 10nF 的容性负载 在 Aol 曲线上生成一个极点 使在 fc 频率处的 Aol*β 曲线的相位降低到只有 4 度 让我们检查一下这里的原因

如果我们检查这个开环电路的简化图 可以看到输入信号通过 开环增益模块 Aol gain block 然后进入串联的开环输出阻抗 Ro 最后到达运放输出 Vo 由于在运放输出端 与地之间的电容 Cload 运放的 Aol 曲线上就会有由 Ro 和 Cload 组成的 RC 分压器负载

为了理解输出负载的效果 这里画出 Ro 和 Cload 的 等效电路的 AC 传递函数 极点位置可以通过传递函数计算 并在图片的下方给出

如果将原始运放的 Aol 曲线 以及 Aol 负载曲线叠加起来 结果就得到底部所示的负载 Aol 曲线 可以看到由 Ro 和 Cload 相互作用产生的 Aol 极点 导致 Aol 曲线变成 -40dB/dec 的斜率 并减少了单位增益相位裕量

在理解了容性负载 如何导致电路不稳定之后 我们开始介绍第一种补偿技术 叫做 Riso 方法 Riso 方法通过加入一个零点 去抵消由输出阻抗 和容性负载产生的极点 从而补偿电路

看一下使用 Riso 补偿方法后的开环曲线 可以看到一个零点抵消了 由 Riso 和 Cload 组成的极点 这使得 Aol 的斜率回到 20dB/dec 并显著改进了相位裕量

我们可以使用检查 带容性负载的电路的方法 来检查开环 Riso 电路 同样地这里的 Aol 是带着阻抗分压器负载的曲线 但这次 Riso 和 Cload 都在分压器的下端 只有 Ro 在分压器的上端

类比为典型的电阻分压器 记住分压器的传递函数 等于下端的阻抗 除以上下端的阻抗之和 同样的原理应用到 Ro Riso 和 Cload 上 如右图所示 Ro 组成 Z1 上端的阻抗 同时 Riso 和 Cload 的串联 组成 Z2 下端的阻抗 传递函数可以简化成 右下角所示的表达式 分子上有一个仅依赖于 Riso 和 Cload 的零点 均为外部器件 同时分母上 有一个依赖于 Ro Riso 和 Cload 的极点

这里展示了这个拉普拉斯 Laplace 传递函数计算结果 注意到在分子和分母中 都有一个 s 项 可清楚地知道 在传递函数中 有一个零点和一个极点 极点和零点频率的计算公式 可以从传递函数中得到 画出 AC 传递函数 您可以看到由零点产生的正相移 抵消了由极点产生的负相移 使净相移为 0 度


如前面一样 将 Aol 曲线和 Aol 负载曲线加在一起 我们可以再一次看到 由 Riso 加入的零点 抵消了 Aol 曲线上的极点 并且恢复了单位增益相位裕量 到可接受的一个稳定范围

为了设计使相位裕量 大于 60 度的 Riso 电路 首先要找到负载 Aol 曲线等于 20dB 时对应的频率 fzero 然后使用左边展示的公式 以及 Cload 和 fzero 的值 来计算 Riso 的值 在此例子中 Riso 的值为 108ohm 根据运放单位增益相位裕量 以及 Aol 极点的位置 相位裕量会介于在 60 度 和 90 度之间

综上所述 找到负载 Aol 曲线等于 20dB 时的频率 并通过计算合适的 Riso 值 把零点设置到这个频率上 虽然我们这里 不会对背后的原理多做介绍 但是大家可以记住 如果零点频率比极点 高大约 1.5 个十倍频 Riso 值应该增加 以阻止环路中 Aol*β 的相位下降太多 如果 Riso 至少等于 Ro/34 那么零点就会在极点的 1.5 个十倍频范围内 如果电路不要求提供大电流输出 那么考虑增加 Riso 到等于或大于 Ro 电路基本上会在所有容性负载下稳定

对比有和没有 Riso 的电路的瞬态响应 我们可以看到使用 Riso 的明显改善 没有 Riso 电路的输出会有严重的过冲和振铃

虽然 Riso 电路易于实施和设计 它在精密电路里有一个不足之处 Riso 上的压降 依赖于输出电流和输出负载 并且与所需信号相比可能十分显著 如这里给出的 由于 250Ω的输出负载 一个 10mV 的信号会有超过 3mV 也就是 30% 的误差

第六部分:
这个课程会讲述 双反馈 Riso 稳定性补偿方法 Riso with dual feedback stability compensation method

在前面的视频中我们讨论了 第一种使用隔离电阻 isolation resistor 来补偿容性负载的方法 虽然 Riso 电路设计和使用都较简单 但它在精密电路里有一大缺点 Riso 上的压降与输出电流或输出负载有关 并且 Riso 造成的压降 可能影响输出信号的准确度 如右图所示 对于一个 10mV 的输出信号 由于 250Ω 的输出负载 而产生超过 3mV 的压降 也就是会带来 30% 的误差

为了解決 Riso 产生压降的问题 我们可以使用这里所展示的 Riso+双反馈的电路

Riso+双反馈的工作原理 可以用 DC 和 AC 等效电路来分析 在 DC 时 反馈电容 Cf 是开路的 并且 Rf 闭合了包含 Riso 的反馈环路 因为现在 Riso 是 在运放的反馈环路里面的 运放输出会增大来补偿 Riso 的压降 所以负载电压 Vload 会等于 Vin 在 AC 频率时 Cf 是短路的 当这个发生时 Rf 可以被认为是开路的 因为 Cf 的阻抗 Zcf 会远远小于 Rf 的阻抗 因此在 AC 时 这个电路看起来 会和标准的 Riso 电路一样

这个电路的第一个设计步骤 是选择 Riso 是选择 Riso 选择方法与我们之前所说的方法 1 Riso 中选择 Riso 的方法相同 使得 Aol 曲线上 等于 20dB 的频率点上产生一个零点 然后 Rf 可以选择为 任意一个大于 100*Riso 的值 以防止其与 Riso 相互作用 最后一步是在图片左下方所示的 范围内选择 Cf 的值 使用这个范围内的值 可以保证两个反馈路径 Rf 和 Cf 永远不会产生谐振而导致不稳定 更小的 Cf 值 会有更快的建立时间 settling time 但以一定负载范围内的过冲为代价

从结果可见 运放输出和负载电压到达稳定值 而没有过大的过冲与振铃 说明这是一个稳定的系统 为克服 Riso 压降而增大的 Vo 在这里也可以清楚地看到

当 Riso+双反馈电路 解决 Riso 电路 DC 精度问题的同时 它也带来一些缺点 如这里所示 一个 Riso 电路 在合理的大范围容性负载的 瞬态响应变化下通常会保持稳定 Riso+双反馈电路 对输出电容的变化容忍度没有那么大 电路易受到容性负载的变化 而变得不稳定 因此 Riso+双反馈电路 适用于输出电容确定 并且不会显著变化的场合 Riso+双反馈方法 通常会导致建立时间比 Riso 电路更慢

稳定性第三部分课程 展示了在多种常见的运放电路上 如何进行开环分析 然而这些电路都是只有一条反馈路径的 如果我们想在多反馈电路上 进行开环分析仿真 像 Riso+双反馈补偿电路那样 我们需要一个不同的方法 我们将会在这里进行讨论

断开任意一条反馈路径 另一条路径都会是闭回路的 维持电路闭回路的特性 如果 FB1 断开 FB2 作为闭环反馈路径保持闭合 如果 FB2 断开 FB1 作为闭环反馈路径保持闭合 这个电路不会正确反映开环线路 除非两条反馈环路都断开

在输出端直接断开环路将会去除 输出与两条反馈环路之间的连接 而形成一个开环电路 然而在这个位置断开环路 也从运放输出端断开了 输出负载电容 CL 因此 CL 将不会 与开环输出阻抗 Ro 相互作用 这样一来就无法仿真出 之前视频讨论到的容性负载 可能造成的不稳定问题

对于这个电路和其他类似的 多反馈环路电路的稳定性分析 推荐方法是在运放的反相输入端 直接断开环路 在这个位置断开环路 也断开了两条反馈环路 但是现在运放的输出阻抗 可以与输入负载以及反馈网络相互作用 然而通过在输入端断开环路 运放固有的输入电容 不能再与反馈网络相互作用 因此在电感的另一端 要求放置一个 代表运放输入电容的 CIN 以匹配运放的输入电容

差分和共模输入电容 通常会在运放的手册中给出 这个信息可用于设计一个 运放输入电容的简单模型 如图所示 在这个电路中 同相输入端接地 所以正共模电容被短路 负共模电容与差分输入电容 并联在一起 两个电容并联和是 8pF 可以加在图中电路的电感上方

由于是在输入端断开环路 我们需要不同的公式来获得开环结果 生成所需曲线的公式如下所示: Aol_loaded = Vo 1/β = Vo/Vfb Aol*β = Vfb 决定闭合速率和测量相位裕度的 步骤和之前课程展示的一样

综上所述 本视频讲述了用于稳定性补偿的 Riso+双反馈方法 并展示了它比 Riso 方法 在 DC 精度上的优势 也展示了一个 在多反馈电路上 进行开环仿真分析的新方法 Riso 和 Riso+双反馈补偿方法 都是有效的 除了这两种方法 另外还有很多 其他办法可以用于补偿稳定性的问题 在未来的课程中 我们会详细地介绍更多 更适合特定应用的补偿方法

TI高精度实验室-运算放大器-第十节-运放稳定性问题相关推荐

  1. TI高精度实验室-运算放大器-第十六节-全差分放大器

    TI高精度实验室-运算放大器-第十六节-全差分放大器 现在看到的图中显示了全差分放大器 或者称为 FDA 上的标准的引脚连接 我们有两个电源引脚 和两个输入引脚 就和标准的单端运算放大器一样 FDA ...

  2. TI高精度实验室-运算放大器-第七节-共模抑制和电源抑制

    TI高精度实验室-运算放大器-第七节-共模抑制和电源抑制 抑制可能是一件好事,特别是在共模或电源电压错误的情况下. 本系列视频介绍了如何改变运算放大器的共模电压或电源电压,从而在交流和直流两端引入误差 ...

  3. TI高精度实验室-运算放大器-第五节-带宽

    TI高精度实验室-运算放大器-第五节-带宽 我们将会探讨 Gain 增益 以及如何用线性或者是分贝来表示增益 同时也会探讨 pulse 极点 zeros 零点 Bode plots 波特图 Cutof ...

  4. TI高精度实验室-运算放大器-第九节-低失真运算放大器的设计

    TI高精度实验室-运算放大器-第九节-低失真运算放大器的设计 本课程第一部分讲解THD+N的测量方法,第二部分讲解运放输入级失真,第三部分讲解运放输出级失真,第四部分讲解外部失真源头,例如供电.Hig ...

  5. TI高精度实验室-运算放大器-第八节-噪声

    TI高精度实验室-运算放大器-第八节-噪声 噪声可以定义为一个不希望出现的信号 它掺杂在想要的信号中 从而引起误差 举个例子 在音频中噪声可以表现为丝丝声或者是爆破声 在一个传感器系统中 噪声可以表现 ...

  6. TI高精度实验室-运算放大器-第十二节-电气过应力

    ** TI高精度实验室-运算放大器-第十二节-电气过应力 ** 本次课程开始 我们将讨论电气过应力 Electrical Overstress 在本次课程中 我们将讨论电气过应力的成因 并介绍几种可以 ...

  7. TI 高精度实验室《运算放大器系列--稳定性分析》

    TI 高精度实验室<运算放大器系列–稳定性分析> 10.1 一个不稳定的运放电路将会得到失真的瞬态响应,输出波形不是预期的结果.当输入或者负载变化时,这就会引起输出较大的过冲和失调,甚至导 ...

  8. TI 高精度实验室《运算放大器系列--带宽》

    TI 高精度实验室系列课程 - 运算放大器 5.1 电子领域我们经常需要表达数值,如 Operational gain 运算放大器的增益. Signal to noise ratio 信号与噪声比.C ...

  9. TI高精度实验室ADC系列培训视频 第3章和第4章 ADC噪声分析

    TI高精度实验室ADC系列培训视频(B站) TI高精度实验室ADC系列培训视频(21ic) 3.1误差分析背后统计学知识 对于一个均值为0的指标,典型值就是在高斯分布的均值上叠加±1个标准差之后的绝对 ...

最新文章

  1. viewpager初始化fragment没有绘制_Fragment在ViewPager中的正确应用(3)FragmentStatePagerAdapter优化了什么...
  2. xcode armv6 armv7 armv7s arm64
  3. testng.xml 配置大全
  4. 创建即时通信服务器的工具 openfire 简介
  5. 微软:PowerShell 命令行工具存在 RCE 漏洞,请尽快修复
  6. django后台管理--添加自定义action
  7. Java-XML解析第一篇主流开源类库解析XML
  8. tomcat优化问题
  9. matlab数字信号处理程序,MATLAB数字信号处理 85个案例分析 全书程序
  10. 微信支付成功后发送短信通知
  11. wxpython使用_wxpython的demo使用
  12. 软件编程语言培训师张孝祥
  13. Python中form的使用
  14. 【个人代码及思路】2018年9月CSP第一题:卖菜
  15. 从0开始学AI-DAY1
  16. 数据湖 数据孤岛 数据沼泽
  17. Fabric 1.0源代码分析(22)Ledger #blkstorage(block文件存储)
  18. 封头名义厚度如何圆整_封头规格
  19. CPU 使用率低 负载高的原因
  20. Android进阶之路 - WebView的使用与后退键处理

热门文章

  1. Elasticsearch:Aggregation 简介
  2. 小米造车,雷军赌上个人声誉的一战
  3. html调用wrl,如何实现在网页里嵌入wrl文件
  4. 作为一名设计师我们应该如何设计好一个品牌LOGO
  5. gta5在线模式连接不到服务器,gta5线上模式进不去怎么办
  6. 【案例12】NC65一直在登录页面转圈,耗时30min以上
  7. 对脏写、脏读、不可重复度、幻读的理解笔记
  8. GitHub也能CI/CD了 如何使用GitHub的Action?
  9. php MySQL忘记密码了_Mysql 忘密码 + Phpadmin 修改密码无法登陆
  10. Green Plum 备份恢复集成方案