TCP(Transmission Control Protocol 传输控制协议)是一种面向连接(连接导向)的、可靠的基于IP的传输层协议。

来看下网络协议

在计算机网络中进行通讯,就必须遵守一些事先约定好的规则,比如交换数据的格式、是否需要发送一个应答信息。这些规则被称为网络协议。

协议的分层

比较经典的有OSI网络七层协议,TCP/IP四层协议,五层协议。

OSI的七层协议体系结构的概念清楚,理论也较完整,但它既复杂又不使用,TCP/IP体系结构则不同,在实际中得到了非常广泛的应用。TCP/IP是一个四层体系结构,它包含应用层,运输层,网际层和网络接口层(用网际层这个名字是强调这一层是为了解决不同网络的互连问题),不过从实质上讲,TCP/IP 只有最上面的三层,因为最下面的网络接口层并没有什么具体内容,因此在学习计算机网络的原理时往往采用折中的办法,即综合 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构,这样既简洁又能将概念阐述清楚,有时为了方便,也可把最底下两层称为网络接口层。

关系如下:

  • TCP/IP四层体系结构,主要包括:应用层、运输层、网际层和网络接口层。
  • 五层协议的体系结构主要包括:应用层、运输层、网络层、数据链路层和物理层。
  • OSI七层协议模型主要包括:应用层(Application)、表示层(Presentation)、会话层(Session)、运输层(Transport)、网络层(Network)、数据链路层(Data Link)、物理层(Physical).

    注:五层协议的体系结构只是为了介绍网络原理而设计的,实际应用还是TCP/IP四层体系结构

TCP/IP协议族

应用层

应用层(application-layer)的任务是通过应用进程间的交互来完成特定网络应用。应用层协议定义的是应用进程(进程:主机中正在运行的程序)间的通信和交互规则。

对于不同的网络应用需要不同的应用协议。在互联网中应用层协议很多,如域名系统DNS,支持万维网的HTTP协议,支持电子邮件的SMTP协议等等。

运输层

运输层(transport layer) 的主要任务就是负责向两条主机进程之间的通信提供通用的数据传输服务。应用进程利用该服务传送应用层报文。

运输层主要使用以下两种协议
1.传输控制协议-TCP:提供面向连接的,可靠的数据传输服务。
2.用户数据协议-UDP:提供无连接的,尽最大努力的数据传输服务(不保证数据传输的可靠性)。

UDP TCP
是否连接 无连接 面向连接
是否可靠 不可靠传输,不使用流量控制和拥塞控制 可靠传输,使用流量控制和拥塞控制
连接对象个数 支持一对一,一对多,多对一和多对多交互通信 只能是一对一通信
传输方式 面向报文 面向字节流
首部开销 首部开销小,仅8字节 首部最小20字节,最大60字节
场景 适用于实时应用(IP电话、视频会议、直播等) 适用于要求可靠传输的应用,例如文件传输

每一个应用层(TCP/IP参考模型的最高层)协议一般都会使用到两个传输层协议之一:

运行在TCP协议上的协议:

  • HTTP(Hypertext Transfer Protocol,超文本传输协议),主要用于普通浏览。

  • HTTPS(HTTP over SSL,安全超文本传输协议),HTTP协议的安全版本。

  • FTP(File Transfer Protocol,文件传输协议),用于文件传输。

  • POP3(Post Office Protocol, version 3,邮局协议),收邮件用。

  • SMTP(Simple Mail Transfer Protocol,简单邮件传输协议),用来发送电子邮件。

  • TELNET(Teletype over the Network,网络电传),通过一个终端(terminal)登陆到网络。

  • SSH(Secure Shell,用于替代安全性差的TELNET),用于加密安全登陆用。
    运行在UDP协议上的协议:

  • BOOTP(Boot Protocol,启动协议),应用于无盘设备。

  • NTP(Network Time Protocol,网络时间协议),用于网络同步。

  • DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),动态配置IP地址。
    运行在TCP和UDP协议上:

  • DNS(Domain Name Service,域名服务),用于完成地址查找,邮件转发等工作。

网络层

网络层的任务就是选择合适的网间路由和交换结点,确保计算机通信的数据及时传送。在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组和包进行传送。在 TCP/IP 体系结构中,由于网络层使用 IP 协议,因此分组也叫 IP 数据报 ,简称数据报。

互联网是由大量的异构(heterogeneous)网络通过路由器(router)相互连接起来的。互联网使用的网络层协议是无连接的网际协议(Intert Prococol)和许多路由选择协议,因此互联网的网络层也叫做网际层或 IP 层。

数据链路层

数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。

在两个相邻节点之间传送数据时,数据链路层将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如同步信息,地址信息,差错控制等)。

在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。

一般的web应用的通信传输流是这样的:

发送端在层与层之间传输数据时,每经过一层时会被打上一个该层所属的首部信息。反之,接受端在层与层之间传输数据时,每经过一层时会把对应的首部信息去除。

物理层

在物理层上所传送的数据单位时比特。物理层(phsical layer)的作用时实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传送介质和屋里设备的差异。使其上面的数据链路层不必考虑网络的具体传输介质时什么“透明传送比特流"表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像时看不见的。

TCP/IP协议族

在互联网使用的各种协议中最重要和最著名的就是TCP/IP两个协议。仙子啊人们经常提到的TCP/IP并不一定单指TCP/IP这两个具体的协议,而往往时表示互联网所使用的整个TCP/IP协议族。
TCP(传输控制协议)和IP(网际协议)是最先定义的两个核心协议,所以才统称为TCP/IP协议族

TCP的三次握手四次挥手

TCP是一种面向连接的、可靠的、基于字节流的传输层通信下而已,在发送数据前,通信双发必须在彼此间建立一条连接。所谓的”连接“,其实是客户端和服务端保存的一份关于对方的信息,如ip地址、端口号等。

TCP可以看成是一种字节流,它会处理IP层以下的层的丢包、重复以及错误问题。在连接建立过程中,双方需要交换一些连接的参数。这些参数可以放在TCP头部。

一个TCP连接由一个4元组构成,分别是两个IP地址和两个端口号,一个TCP连接通常分为三个阶段:连接、数据传输、退出(关闭)。通过三次握手建立一个链接,通过四次挥手来关闭一个连接

当一个连接被建立或被终止时,交换的报文段只包含TCP头部,而没有数据。

TCP报文的头部结构


序列号seq:占4个字节(一个字节=8bit即32bit),用来标记数据段的顺序,TCP把连接中发送的所有数据字节都编上一个序号,第一个字节的编号由本地随机产生;给字节编上序号后,就给每一个报文段指派一个序号;序列号seq就是这个报文段中的第一个字节的数据编号。

确认号ack:占4个字节,期待收到对方下一个报文段的第一个数据字节的序号;序列号表示报文段携带数据的第一个字节编号;而确认号指的是期望接收到下一个字节的编号;因此当前报文段最后一个字节的编号+1即为确认号。

确认ACK:占1位,仅当ACK=1时,确认号字段才有效。ACK=0时,确认号无效

同步SYN:连接建立时用于同步序号。当SYN=1,ACK=0时表示:这是一个连接请求报文段。若同意连接,则在响应报文段中使得SYN=1,ACK=1。因此,SYN=1表示这是一个连接请求,或连接接收报文。SYN这个标志位之有在TCP建成连接时才会被置为1,握手完成后SYN标志位被置为0.

终止FIN:用来释放一个连接。FIN=1表示:此报文段的发送方的数据已经发送完毕,并要求释放运输连接

注:ACK、SYN、和FIN这些大写的单词表示标志位,其值要么时1,要么时0;ack、seq小写的单词表示序号。

字段 含义
URG 紧急指针是否有效。为1,表示某一位需要被优先处理
ACK 确认号是否有效,一般置为1。
PSH 提示接收端应用程序立即从TCP缓冲区把数据读走。
RST 对方要求重新建立连接,复位
SYN 请求建立连接,并在其序列号的字段进行序列号的初始值设定。建立连接,设置为1
FIN 希望断开连接

三次握手过程


第一次握手:建立连接时,客户端发送syn包(syn=x)到服务器,并进入SYN_SENT状态,等待服务器确认;SYN:同步序列编号(Synchronize Sequence Numbers)。

第二次握手:服务器收到syn包,必须确认客户的SYN(ack=x+1),同时自己也发送一个SYN包(syn=y),即SYN+ACK包,此时服务器进入SYN_RECV状态;

第三次握手:客户端收到服务器SYN+ACK包,面向服务器发送确认包ACK(ack=y+1),此包发送完毕,客户端和服务器进入ESTABLISHED(TCP连接成功)状态,完成三次握手。

四次挥手过程


1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAT-1(终止等待1)状态。TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。

2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接收。这个状态还要持续一段时间,也就是争锋CLOSE-WAIT状态持续时间。

3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发哦是那个连接释放报文(在这之前还需要接受服务器发送的最后的数据)。

4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能有发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。

5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号时seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。

6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间哟啊比客户端早一些。

常见面试题

为什么不能用两次握手进行连接?

因为要考虑连接时丢包的问题,如果只我数2次,第二次握手时如果服务端发给客户端的确认报文段丢失,此时服务端已经准备好了收发数(可以理解服务端已经连接成功)据,而客户端一直没有收到服务端的确认报文,所以客户端就不知道服务端是否已经准备好了(可以理解为客户端未连接成功),这种情况下客户端不会给服务端发送数据,也会忽略服务端发过来的数据。

如果是三次握手,即便发生丢包也不会有问题,如果第三次握手客户端发的确认ack报文丢失,服务端在一段时间内没有收到确认ack报文的话就会重新进行第二次握手,也就是服务端会重发SYN报文段,客户端收到重发的报文段后会再次给服务端发送确认ack报文。

为什么连接的时候是三次握手,关闭的时候确实四次握手?

因为当Server段收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答额,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,“你发的FIN报文我收到了”。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。

为什么TIME_WAIT状态需要经过2MSL(最大报文段生存时间)才能返回到CLOSE状态?

虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络时不可靠的,有可以最后一个ACK丢失。Server如果没有收到ACK,将不断重复发送FIN片段。所以Client会设置一个计时器,等待2MSL的时间,如果在该时间内再次收到FIN,那么Client会重发ACK并再次等待2MSL。所谓的2MSL就是两倍的MSL(Maximum Segment Lifetime).MSL指一个片段在网络中最大的存活时间,2MSL就是一个发送和一个回复所需的最大时间。如果知道2MSL,Client都没有再次收到FIN,那么Client推断ACK已经被成功接收,则结束TCP连接。

如果已经建立了连接,但是客户端突然出现故障了该怎么办?

TCP还有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,拜拜浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

TCP协议之三次握手四次挥手相关推荐

  1. 软件开发架构介绍||OSI七层协议之物理层、数据链路层、网络层、传输层(mac地址、ip协议、断开协议、tcp协议之三次握手四次挥手)

    阅读目录 一.网络编程 一.网络编程 软件开发架构 C/S架构 C:客户端 想体验服务的时候才会去找服务端体验服务 S:服务端 24小时不间断的提供服务,即时监听,随时待命 B/S架构 B:浏览器 想 ...

  2. 计算机网络之UDP与TCP协议(三次握手, 四次挥手)

    ⭐️前面的话⭐️ 本文介绍计算机网络中有关传输层协议的知识--UDP与TCP协议,在TCP协议中,为了保证数据的可靠传输,引入了十大保证可靠性的机制,即确认应答,超时重传,连接管理(三次握手,四次挥手 ...

  3. 详解TCP协议三次握手四次挥手

    三次握手: 三次握手表示建立通信阶段,在TCP协议中,在发送数据的准备阶段,客户端与服务器之间的三次交互,以保证连接的可靠,由于这种面向连接的特性, TCP协议可以保证传输数据的安全,所以应用十分广泛 ...

  4. TCP协议三次握手/四次挥手

    TCP是传输控制协议,需要建立链接,通过三次握手和四次挥手保证数据传输的可靠性 三次握手过程 三次握手的目的在于,确认双方的通信能力是否正常 第一次握手,客户端发送连接请求的报文给服务端 第二次握手, ...

  5. TCP协议之三次握手与四次挥手

    TCP协议是TCP/IP体系中核心一个协议,该协议比起IP协议,ICMP协议,UDP协议都更复杂,因此这篇文章主要分析TCP协议在建立连接和断开连接的时候,状态转移以及报文段的内容. 下面,先放一张T ...

  6. Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手)...

    Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手) 一丶CS/BS 架构 C/S: 客户端/服务器 定义:       这里 ...

  7. python网络通信效率_Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手)...

    Python进阶----网络通信基础 ,OSI七层协议() ,UDP和TCP的区别 , TCP/IP协议(三次握手,四次挥手) 一丶CS/BS 架构 C/S: 客户端/服务器 定义: 这里的客户端一般 ...

  8. 在深谈TCP/IP三步握手四步挥手原理及衍生问题—长文解剖IP

    如果对网络工程基础不牢,建议通读<细说OSI七层协议模型及OSI参考模型中的数据封装过程?> 下面就是TCP/IP(Transmission Control Protoco/Interne ...

  9. 再深谈TCP/IP三步握手四步挥手原理及衍生问题—长文解剖IP

    转载地址: https://www.zhoulujun.cn/html/theory/ComputerScienceTechnology/network/2015_0708_65.html 如果对网络 ...

最新文章

  1. JDK动态代理和Cglib的动态代理
  2. Android开发之自动登录功能的实现
  3. 打开新窗口的js代码
  4. 用DataTable.Merge()解决了一个排序问题
  5. LeetCode【11--盛水最多的容器】LeetCode【12 -- 整数转罗马数字】
  6. kali linux 截图 软件,Kali-Linux-Tools-Interface:针对Kali Linux的图形化Web接口
  7. python代码去马赛克_十行python代码教你如何去除万恶的,如s一样的马赛克
  8. 自动化运维工具Ansible连续剧之--介绍安装与连接
  9. 【JAVA】接口中的default和static方法
  10. (转)C#对FTP的操作(上传,下载,重命名文件,删除文件,文件存在检查)
  11. c语言用凹入表法输出学生成绩,《数据结构课程设计方案》指导书9.doc
  12. 中国互金协会李东荣:力争在法定数字货币等领域深度参与国际标准规则制定
  13. sql隐式转换_SQL Server中的隐式转换
  14. 为何python不好找工作-学完Python,为什么还找不到工作?现实很残酷!
  15. 智能驾驶LQR横向控制算法
  16. 极化码理论及算法研究3-Arikan原版论文学习总结
  17. xpose使用教程 hook java层的代码 (一 公司取名.apk)
  18. polygraph初体验
  19. 中国游客是否可以持中国驾照在美国自驾游?_游侠_新浪博客
  20. FZU 1275和UVA11624

热门文章

  1. 写乐100道练习题_计算题100道
  2. python异常处理关键字if_下列哪个选项不是Python异常处理可能用到的关键字( )。...
  3. web 调试神器 eruda
  4. [Python基础08]列表和循环操作
  5. [转]Photoshop调出室内人物照片温馨的暖色调
  6. 如何向合约中质押bnb
  7. html两日学习总结
  8. 阿里四年技术 TL 的得失总结:如何做好技术 Team Leader
  9. 关闭当前(Active)视图和关闭所有视图
  10. 2023,如何为组织和自己定一个好的绩效目标?