主成分分析

引言主成分分析(PCA)是一种能够极大提升无监督特征学习速度的数据降维算法。更重要的是,理解PCA算法,对实现白化算法有很大的帮助,很多算法都先用白化算法作预处理步骤。假设你使用图像来训练算法,因为图像中相邻的像素高度相关,输入数据是有一定冗余的。具体来说,假如我们正在训练的16x16灰度值图像,记为一个256维向量 ,其中特征值 对应每个像素的亮度值。由于相邻像素间的相关性,PCA算法可以将输入向量转换为一个维数低很多的近似向量,而且误差非常小。实例和数学背景在我们的实例中,使用的输入数据集表示为 ,维度 即 。假设我们想把数据从2维降到1维。(在实际应用中,我们也许需要把数据从256维降到50维;在这里使用低维数据,主要是为了更好地可视化算法的行为)。下图是我们的数据集:wbx这些数据已经进行了预处理,使得每个特征 和 具有相同的均值(零)和方差。为方便展示,根据 值的大小,我们将每个点分别涂上了三种颜色之一,但该颜色并不用于算法而仅用于图解。PCA算法将寻找一个低维空间来投影我们的数据。从下图中可以看出, 是数据变化的主方向,而 是次方向。也就是说,数据在 方向上的变化要比在 方向上大。为更形式化地找出方向 和 ,我们首先计Deep Learning - Ngwbx算出矩阵 ,如下所示:假设 的均值为零,那么 就是x的协方差矩阵。(符号 ,读"Sigma",是协方差矩阵的标准符号。虽然看起来与求和符号 比较像,但它们其实是两个不同的概念。)可以证明,数据变化的主方向 就是协方差矩阵 的主特征向量,而 是次特征向量。注:如果你对如何得到这个结果的具体数学推导过程感兴趣,可以参看CS229(机器学习)PCA部分的课件(链接在本页底部)。但如果仅仅是想跟上本课,可以不必如此。你可以通过标准的数值线性代数运算软件求得特征向量(见实现说明).我们先计算出协方差矩阵 的特征向量,按列排放,而组成矩阵 :此处, 是主特征向量(对应最大的特征值), 是次特征向量。以此类推,另记 为相应的特征值。在本例中,向量 和 构成了一个新基,可以用来表示数据。令 为训练样本,那么 就是样本点 在维度 上的投影的长度(幅值)。同样的, 是 投影到 维度上的幅值。旋转数据至此,我们可以把 用 基表达为:(下标“rot”来源于单词“rotation”,意指这是原数据经过旋转(也可以说成映射)后得到的结果)对数据集中的每个样本 分别进行旋转: for every ,然后把变换后的数据 显示在坐标图上,可得:Deep Learning - Ngwbx这就是把训练数据集旋转到 , 基后的结果。一般而言,运算 表示旋转到基 , , ..., 之上的训练数据。矩阵 有正交性,即满足 ,所以若想将旋转后的向量 还原为原始数据 ,将其左乘矩阵 即可: , 验算一下: .数据降维数据的主方向就是旋转数据的第一维 。因此,若想把这数据降到一维,可令:更一般的,假如想把数据 降到 维表示 (令 ),只需选取 的前 个成分,分别对应前 个数据变化的主方向。PCA的另外一种解释是: 是一个 维向量,其中前几个成分可能比较大(例如,上例中大部分样本第一个成分 的取值相对较大),而后面成分可能会比较小(例如,上例中大部分样本的较小)。PCA算法做的其实就是丢弃 中后面(取值较小)的成分,就是将这些成分的值近似为零。具体的说,设是 的近似表示,那么将 除了前 个成分外,其余全赋值为零,就得到:Deep Learning - Ngwbx在本例中,可得 的点图如下(取 ):然而,由于上面 的后 项均为零,没必要把这些零项保留下来。所以,我们仅用前 个(非零)成分来定义 维向量 。这也解释了我们为什么会以 为基来表示数据:要决定保留哪些成分变得很简单,只需取前个成分即可。这时也可以说,我们“保留了前 个PCA(主)成分”。还原近似数据现在,我们得到了原始数据 的低维“压缩”表征量 , 反过来,如果给定 ,我们应如何还原原始数据 呢?查看以往章节以往章节可知,要转换回来,只即可。进一步,我们把 看作将 的最后 个元素被置0所得的近似表示,因此如果给定 ,可以通过在其末尾添加 个0来得到对 的近似,最后,左乘 便可近似还原出原数据 。具体来说,计算如下:上面的等式基于先前对 的定义。在实现时,我们实际上并不先给 填0然后再左乘 ,因为这意味着大量的乘0运算。我们可用 来与 的前 列相乘,即上式中最右项,来达到同样的目的。将该算法应用于本例中的数据集,可得如下关于重构数据 的点图:Deep Learning - Ngwbx由图可见,我们得到的是对原始数据集的一维近似重构。在训练自动编码器或其它无监督特征学习算法时,算法运行时间将依赖于输入数据的维数。若用取代 作为输入数据,那么算法就可使用低维数据进行训练,运行速度将显著加快。对于很多数据集来说,低维表征量 是原数据集的极佳近似,因此在这些场合使用PCA是很合适的,它引入的近似误差的很小,却可显著地提高你算法的运行速度。选择主成分个数我们该如何选择 ,即保留多少个PCA主成分?在上面这个简单的二维实验中,保留第一个成分看起来是自然的选择。对于高维数据来说,做这个决定就没那么简单:如过大,数据压缩率不高,在极限情况时,等于是在使用原始数据(只是旋转投射到了不同的基);相反地,如果 过小,那数据的近似误差太太。决定 值时,我们通常会考虑不同 值可保留的方差百分比。具体来说,如果 ,那么我们得到的是对数据的完美近似,也就是保留了100%的方差,即原始数据的所有变化都被保留下来;相反,如果,那等于是使用零向量来逼近输入数据,也就是只有0%的方差被保留下来。一般而言,设 表示 的特征值(按由大到小顺序排列),使得 为对应于特征向量的特征值。那么如果我们保留前 个成分,则保留的方差百分比可计算为:在上面简单的二维实验中, , 。因此,如果保留 个主成分,等于我们保留了 ,即91.3%的方差。对保留方差的百分比进行更正式的定义已超出了本教程的范围,但很容易证明, 。因此,如果 ,则说明 也就基本上接近于0,所以用0来近似它并不会产生多大损失。这也解释了为Deep Learning - Ngwbx什么要保留前面的主成分(对应的 值较大)而不是末尾的那些。 这些前面的主成分 变化性更大,取值也更大,如果将其设为0势必引入较大的近似误差。以处理图像数据为例,一个惯常的经验法则是选择 以保留99%的方差,换句话说,我们选取满足以下条件的最小 值:对其它应用,如不介意引入稍大的误差,有时也保留90-98%的方差范围。若向他人介绍PCA算法详情,告诉他们你选择的 保留了95%的方差,比告诉他们你保留了前120个(或任意某个数字)主成分更好理解。对图像数据应用PCA算法为使PCA算法能有效工作,通常我们希望所有的特征 都有相似的取值范围(并且均值接近于0)。如果你曾在其它应用中使用过PCA算法,你可能知道有必要单独对每个特征做预处理,即通过估算每个特征 的均值和方差,而后将其取值范围规整化为零均值和单位方差。但是,对于大部分图像类型,我们却不需要进行这样的预处理。假定我们将在自然图像上训练算法,此时特征 代表的是像素 的值。所谓“自然图像”,不严格的说,是指人或动物在他们一生中所见的那种图像注:通常我们选取含草木等内容的户外场景图片,然后从中随机截取小图像块(如16x16像素)来训练算法在实践中我们发现,大多数特征学习算法对训练图片的确切类型并不敏感,所以大多数用普通照相机拍摄的图片,只要不是特别的模糊或带有非常奇怪的人工痕迹,都可以使用。在自然图像上进行训练时,对每一个像素单独估计均值和方差意义不大,因为(理论上)图像任一部分的统计性质都应该和其它部分相同,图像的这种特性被称作平稳性(stationarity)。具体而言,为使PCA算法正常工作,我们通常需要满足以下要求:(1)特征的均值大致为0;(2)不同特征的方差值彼此相似。对于自然图片,即使不进行方差归一化操作,条件(2)也自然满足,故而我们不再进行任何方差归一化操作(对音频数据,如声谱,或文本数据,如词袋向量,我们通常也不进行方差归一化)。实际上,PCA算法对输入数据具有缩放不变性,无论输入数据的值被如何放大(或缩小),返回的特征向量都不改变更正式的说:如果将每个特征向量 都乘以某个正数(即所有特征量被放大或缩小相同的倍数),PCA的输出特征向量都将不会发生变化。既然我们不做方差归一化,唯一还需进行的规整化操作就是均值规整化,其目的是保证所有特征的均值都在附近。根据应用,在大多数情况下,我们并不关注所输入图像的整体明亮程度。比如在对象识别任务中,图像的整体明亮程度并不会影响图像中存在的是什么物体。更为正式地说,我们对图像块的平均亮度值不感兴趣,所以可以减去这个值来进行均值规整化。具体的步骤是,如果 代表16x16的图像块的亮度(灰度)值( ),可用如下算法来对每幅图像进行零均值化操作:, for all请注意:1)对每个输入图像块 都要单独执行上面两个步骤,2)这里的 是指图像块 的平均亮度值。尤其需要注意的是,这和为每个像素 单独估算均值是两个完全不同的概念。如果你处理的图像并非自然图像(比如,手写文字,或者白背景正中摆放单独物体),其他规整化操作就值得考虑了,而哪种做法最合适也取决于具体应用场合。但对自然图像而言,对每幅图像进行上述的零均值规整化,是默认而合理的处理Deep Learning -

主成分分析PCA案例相关推荐

  1. 主成分分析PCA案例及原理

    1. 主成分分析PCA案例 https://blog.csdn.net/goodshot/article/details/78080220 http://www.cnblogs.com/zhangch ...

  2. 清风数学建模学习笔记——主成分分析(PCA)原理详解及案例分析

    主成分分析   本文将介绍主成分分析(PCA),主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息. 一般 ...

  3. 机器学习系列笔记六:主成分分析PCA[下]

    机器学习系列笔记六:主成分分析PCA[下] 文章目录 机器学习系列笔记六:主成分分析PCA[下] scikit-learn中的PCA 基本使用 进阶操作 对比实验 设置合理的n_components ...

  4. sklearn主成分分析PCA

    sklearn主成分分析PCA 菜菜的sklearn学习笔记 文章目录 sklearn主成分分析PCA 数学原理 代码 导入包 导入数据 核心代码 查看降维后所带有的信息量大小 可视化 扩展 累计方差 ...

  5. 机器学习-Sklearn(第三版)Day4 主成分分析PCA与奇异值分解SVD

    目录 一.简介 什么是维度 sklearn中的降维算法 二.PCA与SVD 0.如何实现降维算法 思考:PCA和特征选择技术都是特征工程的一部分,它们有什么不同? 1.重要参数n_components ...

  6. 主成分分析(PCA)简介

    主成分分析(Principal Components Analysis, PCA)是一个简单的机器学习算法,可以通过基础的线性代数知识推导. 假设在Rn空间中我们有m个点{x(1),-,x(m)},我 ...

  7. 223.主成分分析PCA

    主成分分析 PCA 本节作者:刘华,中国科学技术大学 版本1.0.3,更新日期:2020年6月18日 什么是PCA(Principal Component Analysis) 相关背景 在许多领域的研 ...

  8. R语言主成分分析PCA和因子分析EFA、主成分(因子)个数、主成分(因子)得分、主成分(因子)旋转(正交旋转、斜交旋转)、主成分(因子)解释

    R语言主成分分析PCA和因子分析EFA.主成分(因子)个数.主成分(因子)得分.主成分(因子)旋转(正交旋转.斜交旋转).主成分(因子)解释 目录

  9. Python数据集可视化:抽取数据集的两个特征进行二维可视化、主成分分析PCA对数据集降维进行三维可视化(更好地理解维度之间的相互作用)

    Python数据集可视化:抽取数据集的两个特征进行二维可视化.主成分分析PCA对数据集降维进行三维可视化(更好地理解维度之间的相互作用) 目录 Python数据集可视化:抽取数据集的两个特征进行二维可 ...

最新文章

  1. ThreadLocal源码分析
  2. Java自带的广告怎么删掉_如何屏蔽电脑上的弹窗广告?
  3. 九度OJ 1011:最大连续子序列 (DP)
  4. java前后端用json传值_前后端——json的传值与接收(springMvc)
  5. 互联网大厂必学技能:压力测试!
  6. hbase集群搭建,hbase单个节点重启
  7. 【Java线程】线程池的原理和实现
  8. SVN 版本控制的数据合并规则
  9. CCNA-网络常用工具介绍篇
  10. 如何在 HTML5 页面中嵌入音频?如何在 HTML5 页面中嵌入视频?
  11. Ubuntu 关闭触摸板
  12. STC学习:扫描频率可变的电子钟
  13. 手把手教你使用 i2c-tools
  14. cc2540 android,手机APP通过CC2541蓝牙模块来控制LED等,附安卓APP源码
  15. 57、RapidJson存储Base64数据和空间释放
  16. 灯谜大全查询易语言代码
  17. arcgis api 3.X 实现加载百度矢量地图和百度影像地图
  18. 连续41次通过VB100认证,腾讯安全技术实力再获国际权威认可
  19. 火影忍者粉:入手一个酷炫的NARUTO发光手机壳
  20. 如何培养小学生数学独立思考能力?

热门文章

  1. 计算机网络----数据通信基础
  2. 通过QQ查看对方地址
  3. 程序员的十层楼 http://club.topsage.com/thread-274387-1-1.html
  4. ramdisk.img文件解析
  5. mysql连接字符乱码_MySQL 字符集导致SQL连接之后中文乱码的问题!
  6. 深圳区块链电子发票系统日均开票超12万张
  7. CISSP认证机考时间表2012年12月-2013年(部分更新)
  8. 计算机书籍(必看推荐)
  9. kaggle 入门 泰坦尼克 处理过程
  10. 【原创】拼多多事件对我们业务测试的启发