深入浅出TensorFlow

一、概述

1.常见深度学习框架对比





2.TensorFlow介绍


TF2.0 模型使用最新架构图




TensorFlow 资源




3.TensorFlow的安装(2.0版本)





4.tf.keras介绍



tf.keras与keras API

tf.keras 数据集

1、默认下载置于用户目录的 `.keras/dataset` 目录下(Windows 下用户目录为 C:\Users\用户名 ,Linux 下用户目录为 `/home/用户名` )
2、mnist = tf.keras.datasets.mnist将从网络上自动下载 MNIST 数据集并加载。如果运行时出现网络连接错误,可以从 https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 或 https://s3.amazonaws.com/img-datasets/mnist.npz 下载 MNIST 数据集 mnist.npz文件


二、TensorFlow基础

1.Tensorflow 计算


张量的类型

张量的阶

2.张量操作


3.自动求导机制




4.案例:线性回归




三、TensorFlow快速入门模型

1.模型构建-Model与Layer



案例:使用Model构建模型

对于上面的 y_pred = w * X + b ,我们可以通过模型类的方式编写如下:

import tensorflow as tfX = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
y = tf.constant([[10.0], [20.0]])# 1、构建线性模型
class Linear(tf.keras.Model):def __init__(self):super().__init__()self.dense = tf.keras.layers.Dense(units=1,activation=None,kernel_initializer=tf.zeros_initializer(),bias_initializer=tf.zeros_initializer())def call(self, input):output = self.dense(input)return output# 以下代码结构与前节类似
model = Linear()
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
for i in range(100):with tf.GradientTape() as tape:y_pred = model(X)loss = 0.5 * tf.reduce_mean(tf.square(y_pred - y))# 使用 model.variables 这一属性直接获得模型中的所有变量grads = tape.gradient(loss, model.variables)optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))
print(model.variables)

Keras 当中的layer(层)接口

Models

print(model.layers)
[<tensorflow.python.keras.layers.core.Flatten object at 0x10864a780>, <tensorflow.python.keras.layers.core.Dense object at 0x10f95b128>, <tensorflow.python.keras.layers.core.Dense object at 0x125bd6fd0>, <tensorflow.python.keras.layers.core.Dense object at 0x125bf9240>]


2.案例:多层感知机(MLP)识别Mnist手写数字


import tensorflow as tf
import numpy as np
class MNISTLoader(object):"""数据加载处理类"""def __init__(self):""""""# 1、获取数据    (self.train_data, self.train_label), (self.test_data, self.test_label) = tf.keras.datasets.mnist.load_data()# 2、处理数据,归一化,维度以及类型# MNIST中的图像默认为uint8(0-255的数字)。以下代码将其归一化到0-1之间的浮点数,并在最后增加一维作为颜色通道# 默认下载是(60000, 28, 28),扩展到四维方便计算理解[60000, 28, 28, 1]self.train_data = np.expand_dims(self.train_data.astype(np.float32) / 255.0, axis=-1)# [10000, 28, 28, 1]self.test_data = np.expand_dims(self.test_data.astype(np.float32) / 255.0, axis=-1)self.train_label = self.train_label.astype(np.int32)    # [60000]self.test_label = self.test_label.astype(np.int32)      # [10000]# 获取数据的大小self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0]def get_batch(self, batch_size):"""随机获取获取批次数据:param batch_size: 批次大小:return:"""# 从数据集中随机取出batch_size个元素并返回index = np.random.randint(0, np.shape(self.train_data)[0], batch_size)return self.train_data[index, :], self.train_label[index]if __name__ == '__main__':mnist = MNISTLoader()train_data, train_label = mnist.get_batch(50)print(train_data.shape, train_label)






四、案例:CNN进行分类

1.卷积神经网络构建识别手写数字

卷积神经网络包含一个或多个卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully-connected Layer)。

使用 Keras 实现卷积神经网络

卷积神经网络的一个实现现如下所示,新加入了一些卷积层和池化层。当然这个网络可以增加、删除或调整 CNN 的网络结构和参数,以达到更好效果。

class CNN(tf.keras.Model):def __init__(self):super().__init__()self.conv1 = tf.keras.layers.Conv2D(filters=32,             # 卷积层神经元(卷积核)数目kernel_size=[5, 5],     # 感受野大小padding='same',         # padding策略(vaild 或 same)activation=tf.nn.relu   # 激活函数)self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.conv2 = tf.keras.layers.Conv2D(filters=64,kernel_size=[5, 5],padding='same',activation=tf.nn.relu)self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)self.dense2 = tf.keras.layers.Dense(units=10)def call(self, inputs):x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]x = self.pool1(x)                       # [batch_size, 14, 14, 32]x = self.conv2(x)                       # [batch_size, 14, 14, 64]x = self.pool2(x)                       # [batch_size, 7, 7, 64]x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]x = self.dense1(x)                      # [batch_size, 1024]x = self.dense2(x)                      # [batch_size, 10]output = tf.nn.softmax(x)return output

2.迁移学习(Transfer Learning)-Keras 中预定义的经典卷积神经网络结构

介绍

方法

过程

使用


五、Keras Pipline与自定义模型

1.Keras Sequential/Functional API 模式建立模型


2.使用 Keras Model 的 compile 、 fit 和 evaluate 方法训练和评估模型



1、Numpy array (or array-like), or a list of arrays
2、A TensorFlow tensor, or a list of tensors
3、`tf.data` dataset or a dataset iterator. Should return a tuple of either `(inputs, targets)` or `(inputs, targets, sample_weights)`.
4、A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`.

3.案例:CIFAR100数据集介绍


API 使用

步骤分析以及代码实现(缩减版LeNet5)




    def compile(self):CNNMnist.model.compile(optimizer=tf.keras.optimizers.Adam(),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])return Nonedef fit(self):CNNMnist.model.fit(self.train, self.train_label, epochs=1, batch_size=32)return Nonedef evaluate(self):test_loss, test_acc = CNNMnist.model.evaluate(self.test, self.test_label)print(test_loss, test_acc)return Noneif __name__ == '__main__':cnn = CNNMnist()cnn.compile()cnn.fit()cnn.predict()print(CNNMnist.model.summary())

手动保存和恢复模型





4.自定义层、损失函数和评估指标

自定义层



自定义损失函数和评估指标

class SparseCategoricalAccuracy(tf.keras.metrics.Metric):def __init__(self):super().__init__()self.total = self.add_weight(name='total', dtype=tf.int32, initializer=tf.zeros_initializer())self.count = self.add_weight(name='count', dtype=tf.int32, initializer=tf.zeros_initializer())def update_state(self, y_true, y_pred, sample_weight=None):values = tf.cast(tf.equal(y_true, tf.argmax(y_pred, axis=-1, output_type=tf.int32)), tf.int32)self.total.assign_add(tf.shape(y_true)[0])self.count.assign_add(tf.reduce_sum(values))def result(self):return self.count / self.total

六、TF常用功能模块

1.fit的callbacks详解

ModelCheckpoint

check = ModelCheckpoint('./ckpt/singlenn_{epoch:02d}-{val_acc:.2f}.h5',monitor='val_acc',save_best_only=True,save_weights_only=True,mode='auto',period=1)SingleNN.model.fit(self.train, self.train_label, epochs=5, callbacks=[check], validation_data=(x, y))

注意:使用ModelCheckpoint一定要在fit当中指定验证集才能使用,否则报错误。

Tensorboard


2.tf.data :数据集的构建与预处理

数据集对象的建立



数据集对象的预处理

使用案例



数据集元素的获取与使用


使用tf.data的并行化策略提高训练流程效率


# 添加参数使用,num_parallel_calls 设置为 tf.data.experimental.AUTOTUNE 以让 TensorFlow 自动选择合适的数值
train_dataset = train_dataset.map(map_func=_decode_and_resize, num_parallel_calls=tf.data.experimental.AUTOTUNE)

3.案例:实现猫狗图像分类

class CatOrDog(object):"""猫狗分类"""num_epochs = 1batch_size = 32learning_rate = 0.001# 训练目录train_cats_dir = '/root/cv_project/tf_example/cats_vs_dogs/train/cats/'train_dogs_dir = '/root/cv_project/tf_example/cats_vs_dogs/train/dogs/'# 验证目录test_cats_dir = '/root/cv_project/tf_example/cats_vs_dogs/valid/cats/'test_dogs_dir = '/root/cv_project/tf_example/cats_vs_dogs/valid/dogs/'def __init__(self):# 1、读取训练集的猫狗文件self.train_cat_filenames = tf.constant([CatOrDog.train_cats_dir + filenamefor filename in os.listdir(CatOrDog.train_cats_dir)])self.train_dog_filenames = tf.constant([CatOrDog.train_dogs_dir + filenamefor filename in os.listdir(CatOrDog.train_dogs_dir)])# 2、猫狗文件列表合并,并且初始化猫狗的目标值,0为猫,1为狗self.train_filenames = tf.concat([self.train_cat_filenames, self.train_dog_filenames], axis=-1)self.train_labels = tf.concat([tf.zeros(self.train_cat_filenames.shape, dtype=tf.int32),tf.ones(self.train_dog_filenames.shape, dtype=tf.int32)],axis=-1)

定义数据的获取方法,通过tf.data指定

    def get_batch(self):"""获取dataset批次数据:return:"""train_dataset = tf.data.Dataset.from_tensor_slices((self.train_filenames, self.train_labels))# 进行数据的map, 随机,批次和预存储train_dataset = train_dataset.map(map_func=_decode_and_resize,num_parallel_calls=tf.data.experimental.AUTOTUNE)train_dataset = train_dataset.shuffle(buffer_size=20000)train_dataset = train_dataset.batch(CatOrDog.batch_size)train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)return train_dataset# 图片处理函数,读取,解码并且进行输入形状修改
def _decode_and_resize(filename, label):image_string = tf.io.read_file(filename)image_decoded = tf.image.decode_jpeg(image_string)image_resized = tf.image.resize(image_decoded, [256, 256]) / 255.0return image_resized, label


    def test(self):# 1、构建测试数据集test_cat_filenames = tf.constant([CatOrDog.test_cats_dir + filenamefor filename in os.listdir(CatOrDog.test_cats_dir)])test_dog_filenames = tf.constant([CatOrDog.test_dogs_dir + filenamefor filename in os.listdir(CatOrDog.test_dogs_dir)])test_filenames = tf.concat([test_cat_filenames, test_dog_filenames], axis=-1)test_labels = tf.concat([tf.zeros(test_cat_filenames.shape, dtype=tf.int32),tf.ones(test_dog_filenames.shape, dtype=tf.int32)],axis=-1)# 2、构建datasettest_dataset = tf.data.Dataset.from_tensor_slices((test_filenames, test_labels))test_dataset = test_dataset.map(_decode_and_resize)test_dataset = test_dataset.batch(batch_size)# 3、加载模型进行评估if os.path.exists("./ckpt/cat_or_dogs.h5"):self.model.load_weights("./ckpt/cat_or_dogs.h5")print(self.model.metrics_names)print(self.model.evaluate(test_dataset))

4.ImageDataGenerator介绍

tf.keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,  samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None, validation_split=0.0, dtype=None)




5.案例:ImageDataGenerator与迁移学习结合(基于VGG)

案例效果

Epoch 1/21/13 [=>............................] - ETA: 3:20 - loss: 1.6811 - acc: 0.15622/13 [===>..........................] - ETA: 3:01 - loss: 1.5769 - acc: 0.25003/13 [=====>........................] - ETA: 2:44 - loss: 1.4728 - acc: 0.39584/13 [========>.....................] - ETA: 2:27 - loss: 1.3843 - acc: 0.45315/13 [==========>...................] - ETA: 2:14 - loss: 1.3045 - acc: 0.49386/13 [============>.................] - ETA: 1:58 - loss: 1.2557 - acc: 0.51567/13 [===============>..............] - ETA: 1:33 - loss: 1.1790 - acc: 0.57598/13 [=================>............] - ETA: 1:18 - loss: 1.1153 - acc: 0.62119/13 [===================>..........] - ETA: 1:02 - loss: 1.0567 - acc: 0.6562
10/13 [======================>.......] - ETA: 46s - loss: 1.0043 - acc: 0.6875
11/13 [========================>.....] - ETA: 31s - loss: 0.9580 - acc: 0.7159
12/13 [==========================>...] - ETA: 15s - loss: 0.9146 - acc: 0.7344
13/13 [==============================] - 249s 19s/step - loss: 0.8743 - acc: 0.7519 - val_loss: 0.3906 - val_acc: 0.9000
Epoch 2/21/13 [=>............................] - ETA: 2:56 - loss: 0.3862 - acc: 1.00002/13 [===>..........................] - ETA: 2:44 - loss: 0.3019 - acc: 1.00003/13 [=====>........................] - ETA: 2:35 - loss: 0.2613 - acc: 1.00004/13 [========>.....................] - ETA: 2:01 - loss: 0.2419 - acc: 0.98445/13 [==========>...................] - ETA: 1:49 - loss: 0.2644 - acc: 0.96886/13 [============>.................] - ETA: 1:36 - loss: 0.2494 - acc: 0.96887/13 [===============>..............] - ETA: 1:24 - loss: 0.2362 - acc: 0.97328/13 [=================>............] - ETA: 1:10 - loss: 0.2234 - acc: 0.97669/13 [===================>..........] - ETA: 58s - loss: 0.2154 - acc: 0.9757
10/13 [======================>.......] - ETA: 44s - loss: 0.2062 - acc: 0.9781
11/13 [========================>.....] - ETA: 29s - loss: 0.2007 - acc: 0.9801
12/13 [==========================>...] - ETA: 14s - loss: 0.1990 - acc: 0.979213/13 [==============================] - 243s 19s/step - loss: 0.1923 - acc: 0.9809 - val_loss: 0.1929 - val_acc: 0.9300

数据集以及迁移需求

思路和步骤

训练的时候读取本地图片以及类别

基于上面工具的读取代码

train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)test_datagen = ImageDataGenerator(rescale=1./255)train_generator = train_datagen.flow_from_directory('data/train',target_size=(150, 150),batch_size=32,class_mode='binary')validation_generator = test_datagen.flow_from_directory('data/validation',target_size=(150, 150),batch_size=32,class_mode='binary')
# 使用fit_generator
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)

class TransferModel(object):def __init__(self):self.model_size = (224, 224)self.train_dir = "./data/train/"self.test_dir = "./data/test/"self.batch_size = 32self.train_generator = ImageDataGenerator(rescale=1.0 / 255)self.test_generator = ImageDataGenerator(rescale=1.0 / 255)def read_img_to_generator(self):"""读取本地固定格式数据:return:"""train_gen = self.train_generator.flow_from_directory(directory=self.train_dir,target_size=self.model_size,batch_size=self.batch_size,class_mode='binary',shuffle=True)test_gen = self.test_generator.flow_from_directory(directory=self.test_dir,target_size=self.model_size,batch_size=self.batch_size,class_mode='binary',shuffle=True)return train_gen, test_gen

VGG模型的修改添加全连接层-GlobalAveragePooling2D




freeze VGG模型结构

编译和训练

进行预测

预测的步骤就是读取图片以及处理到模型中预测,加载我们训练的模型

    def predict(self, model):model.load_weights("./Transfer.h5")# 2、对图片进行加载和类型修改image = load_img("./data/test/dinosaurs/402.jpg", target_size=(224, 224))print(image)# 转换成numpy array数组image = img_to_array(image)print("图片的形状:", image.shape)# 形状从3维度修改成4维img = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))print("改变形状结果:", img.shape)# 3、处理图像内容,归一化处理等,进行预测img = preprocess_input(img)print(img.shape)y_predict = model.predict(img)index = np.argmax(y_predict, axis=1)print(self.label_dict[str(index[0])])

七、Tensorflow执行模式

1.Eager Execution与Graph Execution

Graph Execution(图模式)


Eager Execution(动态图模式)

注:实际上,Eager Execution 在 1.x 的后期版本中也存在,但需要单独执行 tf.enable_eager_execution() 进行手动启用。

2.@tf.function实现Graph Execution 模式


import tensorflow as tf@tf.function
def train_one_step(X, y):    with tf.GradientTape() as tape:y_pred = model(X)loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)loss = tf.reduce_mean(loss)# 注意这里使用了TensorFlow内置的tf.print()# @tf.function不支持Python内置的print方法去当做计算节点tf.print("loss", loss)  grads = tape.gradient(loss, model.variables)optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))if __name__ == '__main__':model = CNN()optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)start_time = time.time()for batch_index in range(num_batches):X, y = data_loader.get_batch(batch_size)train_one_step(X, y)end_time = time.time()print(end_time - start_time)

@tf.function 机制原理

import tensorflow as tf
import numpy as np@tf.function
def f(x):# 注意这里是print,不是tf.printprint("The function is running in Python")tf.print(x)# 运行过程
a = tf.constant(1, dtype=tf.int32)
f(a)
b = tf.constant(2, dtype=tf.int32)
f(b)
b_array = np.array(2, dtype=np.int32)
f(b_array)
c = tf.constant(0.1, dtype=tf.float32)
f(c)
d = tf.constant(0.2, dtype=tf.float32)
f(d)# 对于Python的类型
f(1)
f(2)
f(1)

上述程序的计算结果是?答案是:



3.使用传统的 tf.Session(了解)

optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
num_batches = int(data_loader.num_train_data // batch_size * num_epochs)
# 1、建立计算图
X_placeholder = tf.compat.v1.placeholder(name='X', shape=[None, 28, 28, 1], dtype=tf.float32)
y_placeholder = tf.compat.v1.placeholder(name='y', shape=[None], dtype=tf.int32)
y_pred = model(X_placeholder)
loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y_placeholder, y_pred=y_pred)
loss = tf.reduce_mean(loss)
train_op = optimizer.minimize(loss)
sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()# 2、建立Session,并运行图计算
with tf.compat.v1.Session() as sess:sess.run(tf.compat.v1.global_variables_initializer())for batch_index in range(num_batches):X, y = data_loader.get_batch(batch_size)# 使用Session.run()将数据送入计算图节点,进行训练以及计算损失函数_, loss_value = sess.run([train_op, loss], feed_dict={X_placeholder: X, y_placeholder: y})print("batch %d: loss %f" % (batch_index, loss_value))num_batches = int(data_loader.num_test_data // batch_size)for batch_index in range(num_batches):start_index, end_index = batch_index * batch_size, (batch_index + 1) * batch_sizey_pred = model.predict(data_loader.test_data[start_index: end_index])
# 运行预测结果
sess.run(sparse_categorical_accuracy.update(y_true=data_loader.test_label[start_index: end_index], y_pred=y_pred))print("test accuracy: %f" % sess.run(sparse_categorical_accuracy.result()))

八、分布式训练

1.TensorFlow 分布式的分类



TensorFlow多机多卡实现思路。多级多卡的分布式有很多实现方式,比如:
1. 将每个GPU当做一个worker
2. 同一个机器的各个GPU进行图内并行
3. 同一个机器的各个GPU进行图间并行
比如说第三种:模型实现封装成函数、将数据分成GPU数量的份数、在每个GPU下,进行一次模型forward计算,并使用优化器算出梯度、reduce每个GPU下的梯度,并将梯度传入到分布式中的优化器中

2.单机多卡训练: MirroredStrategy


MirroredStrategy进行分类模型训练

以下代码展示了使用 MirroredStrategy 策略,在 TensorFlow Datasets 中的部分图像数据集上使用 Keras 训练 MobileNetV2 的过程:

import tensorflow as tf
import tensorflow_datasets as tfdsnum_epochs = 5
batch_size_per_replica = 64
learning_rate = 0.001strategy = tf.distribute.MirroredStrategy()
print('Number of devices: %d' % strategy.num_replicas_in_sync)  # 输出设备数量
batch_size = batch_size_per_replica * strategy.num_replicas_in_sync# 载入数据集并预处理
def resize(image, label):image = tf.image.resize(image, [224, 224]) / 255.0return image, label# 当as_supervised为True时,返回image和label两个键值
dataset = tfds.load("cats_vs_dogs", split=tfds.Split.TRAIN, as_supervised=True)
dataset = dataset.map(resize).shuffle(1024).batch(batch_size)with strategy.scope():model = tf.keras.applications.MobileNetV2()model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=[tf.keras.metrics.sparse_categorical_accuracy])model.fit(dataset, epochs=num_epochs)

3.多机训练: MultiWorkerMirroredStrategy


import tensorflow_datasets as tfds
import os
import jsonnum_epochs = 5
batch_size_per_replica = 64
learning_rate = 0.001num_workers = 2
# 1、指定集群环境
os.environ['TF_CONFIG'] = json.dumps({'cluster': {'worker': ["localhost:20000", "localhost:20001"]},'task': {'type': 'worker', 'index': 0}
})batch_size = batch_size_per_replica * num_workersdef resize(image, label):image = tf.image.resize(image, [224, 224]) / 255.0return image, labeldataset = tfds.load("cats_vs_dogs", split=tfds.Split.TRAIN, as_supervised=True)
dataset = dataset.map(resize).shuffle(1024).batch(batch_size)
# 2、初始化集群
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()# 3、上下文环境定义模型
with strategy.scope():model = tf.keras.applications.MobileNetV2()model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=[tf.keras.metrics.sparse_categorical_accuracy])model.fit(dataset, epochs=num_epochs)

九、综合案例:垃圾分类介绍

1.垃圾分类介绍


分类知识小拓展:可回收物指适宜回收和资源利用的废弃物,包括废弃的玻璃、金属、塑料、纸类、织物、家具、电器电子产品和年花年桔等。厨余垃圾指家庭、个人产生的易腐性垃圾,包括剩菜、剩饭、菜叶、果皮、蛋壳、茶渣、汤渣、骨头、废弃食物以及厨房下脚料等。有害垃圾指对人体健康或者自然环境造成直接或者潜在危害且应当专门处理的废弃物,包括废电池、废荧光灯管等。其他垃圾指除以上三类垃圾之外的其他生活垃圾,比如纸尿裤、尘土、烟头、一次性快餐盒、破损花盆及碗碟、墙纸等。

垃圾分类比赛

{"0": "其他垃圾/一次性快餐盒","1": "其他垃圾/污损塑料","2": "其他垃圾/烟蒂","3": "其他垃圾/牙签","4": "其他垃圾/破碎花盆及碟碗","5": "其他垃圾/竹筷","6": "厨余垃圾/剩饭剩菜","7": "厨余垃圾/大骨头","8": "厨余垃圾/水果果皮","9": "厨余垃圾/水果果肉","10": "厨余垃圾/茶叶渣","11": "厨余垃圾/菜叶菜根","12": "厨余垃圾/蛋壳","13": "厨余垃圾/鱼骨","14": "可回收物/充电宝","15": "可回收物/包","16": "可回收物/化妆品瓶","17": "可回收物/塑料玩具","18": "可回收物/塑料碗盆","19": "可回收物/塑料衣架","20": "可回收物/快递纸袋","21": "可回收物/插头电线","22": "可回收物/旧衣服","23": "可回收物/易拉罐","24": "可回收物/枕头","25": "可回收物/毛绒玩具","26": "可回收物/洗发水瓶","27": "可回收物/玻璃杯","28": "可回收物/皮鞋","29": "可回收物/砧板","30": "可回收物/纸板箱","31": "可回收物/调料瓶","32": "可回收物/酒瓶","33": "可回收物/金属食品罐","34": "可回收物/锅","35": "可回收物/食用油桶","36": "可回收物/饮料瓶","37": "有害垃圾/干电池","38": "有害垃圾/软膏","39": "有害垃圾/过期药物"
}

2.华为垃圾分类比赛介绍


赛题分析

对策









3.项目构建(模块分析)

项目模块图


import multiprocessing
import numpy as np
import argparse
import tensorflow as tf
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.callbacks import TensorBoard, Callback
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam, RMSpropfrom efficientnet import model as EfficientNet
from efficientnet import preprocess_input
from data_gen import data_flow
from utils.warmup_cosine_decay_scheduler import WarmUpCosineDecayScheduler
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
# efficientnet源码实现用TF1.X版本,所以要关闭默认的eager模式
tf.compat.v1.disable_eager_execution()parser = argparse.ArgumentParser()
parser.add_argument("data_url", type=str, default='./data/garbage_classify/train_data', help="data dir", nargs='?')
parser.add_argument("train_url", type=str, default='./garbage_ckpt/', help="save model dir", nargs='?')
parser.add_argument("num_classes", type=int, default=40, help="num_classes", nargs='?')
parser.add_argument("input_size", type=int, default=300, help="input_size", nargs='?')
parser.add_argument("batch_size", type=int, default=16, help="batch_size", nargs='?')
parser.add_argument("learning_rate", type=float, default=0.0001, help="learning_rate", nargs='?')
parser.add_argument("max_epochs", type=int, default=30, help="max_epochs", nargs='?')
parser.add_argument("deploy_script_path", type=str, default='', help="deploy_script_path", nargs='?')
parser.add_argument("test_data_url", type=str, default='', help="test_data_url", nargs='?')def model_fn(param):"""迁移学习修改模型函数:param param::return:"""base_model = EfficientNet.EfficientNetB3(include_top=False, input_shape=(param.input_size, param.input_size, 3),classes=param.num_classes)x = base_model.outputx = GlobalAveragePooling2D(name='avg_pool')(x)predictions = Dense(param.num_classes, activation='softmax')(x)model = Model(inputs=base_model.input, outputs=predictions)return modeldef train_model(param):"""训练模型:param param: 传入的命令参数:return:"""# 1、建立读取数据的sequencetrain_sequence, validation_sequence = data_flow(param.data_url, param.batch_size,param.num_classes, param.input_size, preprocess_input)# 2、建立模型,指定模型训练相关参数model = model_fn(param)optimizer = Adam(lr=param.learning_rate)objective = 'categorical_crossentropy'metrics = ['accuracy']# 模型修改# 模型训练优化器指定model.compile(loss=objective, optimizer=optimizer, metrics=metrics)model.summary()# 判断模型是否加载历史模型if os.path.exists(param.train_url):filenames = os.listdir(param.train_url)model.load_weights(filenames[-1])print("加载完成!!!")# 3、指定训练的callbacks,并进行模型的训练# (1)Tensorboardtensorboard = tf.keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1,write_graph=True, write_images=True)# (2)自定义warm up和余弦学习率衰减sample_count = len(train_sequence) * param.batch_sizeepochs = param.max_epochswarmup_epoch = 5batch_size = param.batch_sizelearning_rate_base = param.learning_ratetotal_steps = int(epochs * sample_count / batch_size)warmup_steps = int(warmup_epoch * sample_count / batch_size)warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,total_steps=total_steps,warmup_learning_rate=0,warmup_steps=warmup_steps,hold_base_rate_steps=0,)#(3)模型保存相关参数check = tf.keras.callbacks.ModelCheckpoint(param.train_url+'weights_{epoch:02d}-{val_acc:.2f}.h5',monitor='val_acc',save_best_only=True,save_weights_only=False,mode='auto',period=1)# (4)训练model.fit_generator(train_sequence,steps_per_epoch=len(train_sequence),epochs=param.max_epochs,verbose=1,callbacks=[check, tensorboard, warm_up_lr],validation_data=validation_sequence,max_queue_size=10,workers=int(multiprocessing.cpu_count() * 0.7),use_multiprocessing=True,shuffle=True)print('模型训练结束!')

步骤以及知识点应用分析

4.数据读取与预处理

项目预处理模代码流程介绍

def data_from_sequence(train_data_dir, batch_size, num_classes, input_size):"""读取本地图片和标签数据,处理成sequence数据类型:param train_data_dir: 训练数据目录:param batch_size: 批次大小:param num_classes: 垃圾分类总类别数:param input_size: 输入模型的图片大小(300, 300):return:"""# 1、获取txt文件,打乱一次文件label_files = [os.path.join(train_data_dir, filename) for filename in os.listdir(train_data_dir) if filename.endswith('.txt')]print(label_files)random.shuffle(label_files)# 2、读取txt文件,解析出img_paths = []labels = []for index, file_path in enumerate(label_files):with open(file_path, 'r') as f:line = f.readline()line_split = line.strip().split(', ')if len(line_split) != 2:print('%s 文件中格式错误' % (file_path))continue# 获取图片名称和标签,转换格式img_name = line_split[0]label = int(line_split[1])# 图片完整路径拼接,并获取到图片和标签列表中(顺序一一对应)img_paths.append(os.path.join(train_data_dir, img_name))labels.append(label)# 3、进行标签类别处理,以及标签平滑labels = to_categorical(labels, num_classes)labels = smooth_labels(labels)# 4、进行所有数据的分割,训练集和验证集train_img_paths, validation_img_paths, train_labels, validation_labels = \train_test_split(img_paths, labels, test_size=0.15, random_state=0)print('总共样本数: %d, 训练样本数: %d, 验证样本数据: %d' % (len(img_paths), len(train_img_paths), len(validation_img_paths)))# 5、sequence序列数据制作train_sequence = GarbageDataSequence(train_img_paths, train_labels, batch_size,[input_size, input_size], use_aug=True)validation_sequence = GarbageDataSequence(validation_img_paths, validation_labels, batch_size,[input_size, input_size], use_aug=False)return train_sequence, validation_sequence

import math
import os
import random
import numpy as np
from PIL import Image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.utils import to_categorical, Sequence
from sklearn.model_selection import train_test_splitfrom data_gen.random_eraser import get_random_eraserdef data_from_sequence(train_data_dir, batch_size, num_classes, input_size):"""读取本地图片和标签数据,处理成sequence数据类型:param train_data_dir: 训练数据目录:param batch_size: 批次大小:param num_classes: 垃圾分类总类别数:param input_size: 输入模型的图片大小(300, 300):return:"""# 1、获取txt文件,打乱一次文件label_files = [os.path.join(train_data_dir, filename) for filename in os.listdir(train_data_dir) if filename.endswith('.txt')]print(label_files)random.shuffle(label_files)# 2、读取txt文件,解析出img_paths = []labels = []for index, file_path in enumerate(label_files):with open(file_path, 'r') as f:line = f.readline()line_split = line.strip().split(', ')if len(line_split) != 2:print('%s 文件中格式错误' % (file_path))continue# 获取图片名称和标签,转换格式img_name = line_split[0]label = int(line_split[1])# 图片完整路径拼接,并获取到图片和标签列表中(顺序一一对应)img_paths.append(os.path.join(train_data_dir, img_name))labels.append(label)# 3、进行标签类别处理,以及标签平滑labels = to_categorical(labels, num_classes)labels = smooth_labels(labels)return None

In [5]: tf.keras.utils.to_categorical([1,2,3,4,5], num_classes=10)
Out[5]:
array([[0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.]], dtype=float32)





 from skimage.io import imreadfrom skimage.transform import resizeimport numpy as npimport math# Here, `x_set` is list of path to the images# and `y_set` are the associated classes.class CIFAR10Sequence(Sequence):def __init__(self, x_set, y_set, batch_size):self.x, self.y = x_set, y_setself.batch_size = batch_sizedef __len__(self):return math.ceil(len(self.x) / self.batch_size)def __getitem__(self, idx):batch_x = self.x[idx * self.batch_size:(idx + 1) *self.batch_size]batch_y = self.y[idx * self.batch_size:(idx + 1) *self.batch_size]return np.array([resize(imread(file_name), (200, 200))for file_name in batch_x]), np.array(batch_y)

class GarbageDataSequence(Sequence):"""数据流生成器,每次迭代返回一个batch可直接用于fit_generator的generator参数,能保证在多进程下的一个epoch中不会重复取相同的样本"""def __init__(self, img_paths, labels, batch_size, img_size, use_aug):# 异常判断self.x_y = np.hstack((np.array(img_paths).reshape(len(img_paths), 1), np.array(labels)))self.batch_size = batch_sizeself.img_size = img_sizeself.alpha = 0.2self.use_aug = use_augself.eraser = get_random_eraser(s_h=0.3, pixel_level=True)def __len__(self):return math.ceil(len(self.x_y) / self.batch_size)@staticmethoddef center_img(img, size=None, fill_value=255):"""改变图片尺寸到300x300,并且做填充使得图像处于中间位置"""h, w = img.shape[:2]if size is None:size = max(h, w)shape = (size, size) + img.shape[2:]background = np.full(shape, fill_value, np.uint8)center_x = (size - w) // 2center_y = (size - h) // 2background[center_y:center_y + h, center_x:center_x + w] = imgreturn backgrounddef preprocess_img(self, img_path):"""图片的处理流程函数,数据增强、center_img处理"""# 1、图像读取,[180 , 200]-> (200)max(180, 200)->[300/200 * 180, 300/200 * 200]# 这样做为了不使图形直接变形,后续在统一长宽img = Image.open(img_path)resize_scale = self.img_size[0] / max(img.size[:2])img = img.resize((int(img.size[0] * resize_scale), int(img.size[1] * resize_scale)))img = img.convert('RGB')img = np.array(img)# 2、数据增强:如果是训练集进行数据增强操作# 先随机擦除,然后翻转if self.use_aug:img = self.eraser(img)datagen = ImageDataGenerator(width_shift_range=0.05,height_shift_range=0.05,horizontal_flip=True,vertical_flip=True,)img = datagen.random_transform(img)# 3、把图片大小调整到[300, 300, 3],调整的方式为直接填充小的坐标。为了模型需要img = self.center_img(img, self.img_size[0])return imgdef __getitem__(self, idx):# 1、处理图片大小、数据增强等过程print(self.x_y)batch_x = self.x_y[idx * self.batch_size: (idx + 1) * self.batch_size, 0]batch_y = self.x_y[idx * self.batch_size: (idx + 1) * self.batch_size, 1:]batch_x = np.array([self.preprocess_img(img_path) for img_path in batch_x])batch_y = np.array(batch_y).astype(np.float32)# print(batch_y[1])# 2、mixup进行构造新的样本分布数据# batch_x, batch_y = self.mixup(batch_x, batch_y)# 3、输入模型的归一化数据batch_x = self.preprocess_input(batch_x)return batch_x, batch_ydef on_epoch_end(self):np.random.shuffle(self.x_y)def preprocess_input(self, x):"""归一化处理样本特征值:param x::return:"""assert x.ndim in (3, 4)assert x.shape[-1] == 3MEAN_RGB = [0.485 * 255, 0.456 * 255, 0.406 * 255]STDDEV_RGB = [0.229 * 255, 0.224 * 255, 0.225 * 255]x = x - np.array(MEAN_RGB)x = x / np.array(STDDEV_RGB)return xdef mixup(self, batch_x, batch_y):"""数据混合mixup:param batch_x: 要mixup的batch_X:param batch_y: 要mixup的batch_y:return: mixup后的数据"""size = self.batch_sizel = np.random.beta(self.alpha, self.alpha, size)X_l = l.reshape(size, 1, 1, 1)y_l = l.reshape(size, 1)X1 = batch_xY1 = batch_yX2 = batch_x[::-1]Y2 = batch_y[::-1]X = X1 * X_l + X2 * (1 - X_l)Y = Y1 * y_l + Y2 * (1 - y_l)return X, Yif __name__ == '__main__':train_data_dir = '../data/garbage_classify/train_data'batch_size = 32train_sequence, validation_sequence = data_from_sequence(train_data_dir, batch_size, num_classes=40, input_size=300)for i in range(100):print("第 %d 批次数据" % i)batch_data, bacth_label = train_sequence.__getitem__(i)print(batch_data.shape, bacth_label.shape)batch_data, bacth_label = validation_sequence.__getitem__(i)


def mixup(self, batch_x, batch_y):"""数据混合mixup:param batch_x: 要mixup的batch_X:param batch_y: 要mixup的batch_y:return: mixup后的数据"""size = self.batch_sizel = np.random.beta(self.alpha, self.alpha, size)X_l = l.reshape(size, 1, 1, 1)y_l = l.reshape(size, 1)X1 = batch_xY1 = batch_yX2 = batch_x[::-1]Y2 = batch_y[::-1]X = X1 * X_l + X2 * (1 - X_l)Y = Y1 * y_l + Y2 * (1 - y_l)return X, Y

import numpy as np
import tensorflow as tfdef get_random_eraser(p=0.5, s_l=0.02, s_h=0.4, r_1=0.3, r_2=1/0.3, v_l=0, v_h=255, pixel_level=False):def eraser(input_img):img_h, img_w, img_c = input_img.shapep_1 = np.random.rand()if p_1 > p:return input_imgwhile True:s = np.random.uniform(s_l, s_h) * img_h * img_wr = np.random.uniform(r_1, r_2)w = int(np.sqrt(s / r))h = int(np.sqrt(s * r))left = np.random.randint(0, img_w)top = np.random.randint(0, img_h)if left + w <= img_w and top + h <= img_h:breakif pixel_level:c = np.random.uniform(v_l, v_h, (h, w, img_c))else:c = np.random.uniform(v_l, v_h)input_img[top:top + h, left:left + w, :] = creturn input_imgreturn eraser

十、综合案例:垃圾分类之模型构建与训练

1.EfficientNet模型介绍

摘要

原理介绍




Efficientnet 架构


实验



2.垃圾分类开源EfficientNet实现介绍

模型目录


3.优化算法以及学习率trick

Rectified Adam(Adam with warm up)

Warmup

余弦学习率衰减(Cosine Learning rate decay)


TensorFlow实现

4.垃圾分类带有warmup的余弦退火学习率调度实现

流程分析

完整代码过程实现

import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"class WarmUpCosineDecayScheduler(tf.keras.callbacks.Callback):"""带有warmup的余弦退火学习率调度"""def __init__(self,learning_rate_base,total_steps,global_step_init=0,warmup_learning_rate=0.0,warmup_steps=0,hold_base_rate_steps=0,verbose=0):"""初始化参数:param learning_rate_base: 基础学习率:param total_steps: 总共迭代的批次步数 epoch * num_samples / batch_size:param global_step_init: 初始:param warmup_learning_rate: 预热学习率默认0.0:param warmup_steps:预热的步数默认0:param hold_base_rate_steps::param verbose:"""super(WarmUpCosineDecayScheduler, self).__init__()self.learning_rate_base = learning_rate_baseself.total_steps = total_stepsself.global_step = global_step_initself.warmup_learning_rate = warmup_learning_rateself.warmup_steps = warmup_stepsself.hold_base_rate_steps = hold_base_rate_steps# 是否在每次训练结束打印学习率self.verbose = verbose# 记录所有批次下来的每次准确的学习率,可以用于打印显示self.learning_rates = []def on_batch_end(self, batch, logs=None):# 1、批次开始前当前步数+1self.global_step = self.global_step + 1# 2、获取优化器上一次的学习率,并记录lr = K.get_value(self.model.optimizer.lr)self.learning_rates.append(lr)def on_batch_begin(self, batch, logs=None):# 1、通过参数以及记录的次数和上次学习率lr = cosine_decay_with_warmup(global_step=self.global_step,learning_rate_base=self.learning_rate_base,total_steps=self.total_steps,warmup_learning_rate=self.warmup_learning_rate,warmup_steps=self.warmup_steps,hold_base_rate_steps=self.hold_base_rate_steps)# 2、设置优化器本次的学习率K.set_value(self.model.optimizer.lr, lr)if self.verbose > 0:print('\n批次数 %05d: 设置学习率为'' %s.' % (self.global_step + 1, lr))



def cosine_decay_with_warmup(global_step,learning_rate_base,total_steps,warmup_learning_rate=0.0,warmup_steps=0,hold_base_rate_steps=0):"""每批次带有warmup余弦退火学习率计算:param global_step: 当前到达的步数:param learning_rate_base: warmup之后的基础学习率:param total_steps: 总需要批次数:param warmup_learning_rate: warmup开始的学习率:param warmup_steps:warmup学习率 步数:param hold_base_rate_steps: 预留总步数和warmup步数间隔:return:"""if total_steps < warmup_steps:raise ValueError('总步数必须大于warmup')# 1、余弦退火学习率计算# 从warmup结束之后计算# 0.5 * 0.01 * (1 + cos(pi*(1-5-0)/(10 - 5 - 0))learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi *(global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps)))# 2、warmup之后的学习率计算# 如果预留大于0,判断目前步数是否 > warmup步数+预留步数,是的话返回刚才上面计算的学习率,不是的话使用warmup之后的基础学习率if hold_base_rate_steps > 0:learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps,learning_rate, learning_rate_base)# 3、warmup步数是大于0的if warmup_steps > 0:if learning_rate_base < warmup_learning_rate:raise ValueError('warmup后学习率必须大于warmup开始学习率')# 1、计算一个0.01和0.000006的差距/warmup_steps,得到warmup结束前增加多少slope = (learning_rate_base - warmup_learning_rate) / warmup_steps# 2、计算warmup下一步第global_step的学习率warmup_rate = slope * global_step + warmup_learning_rate# 3、判断global_step小于warmup_steps的话,返回这个warmup当时的学习率,否则直接返回余弦退火计算的learning_rate = np.where(global_step < warmup_steps, warmup_rate,learning_rate)# 4、如果最后当前到达的步数大于总步数,则归0,否则返回当前的计算出来的学习率(可能是warmup学习率也可能是余弦衰减结果)return np.where(global_step > total_steps, 0.0, learning_rate)

通过以下代码进行测试:

if __name__ == '__main__':# 1、创建模型model = Sequential()model.add(Dense(32, activation='relu', input_dim=100))model.add(Dense(10, activation='softmax'))model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])# 2、参数设置sample_count = 1000  # 样本数epochs = 4  # 总迭代次数warmup_epoch = 3  # warmup 迭代次数batch_size = 16  # 批次大小learning_rate_base = 0.0001  # warmup后的初始学习率total_steps = int(epochs * sample_count / batch_size)  # 总迭代批次步数warmup_steps = int(warmup_epoch * sample_count / batch_size)  # warmup总批次数# 3、创建测试数据data = np.random.random((sample_count, 100))labels = np.random.randint(10, size=(sample_count, 1))# 转换目标类别one_hot_labels = tf.keras.utils.to_categorical(labels, num_classes=10)# 5、创建余弦warmup调度器warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,total_steps=total_steps,warmup_learning_rate=4e-06,  # warmup开始学习率warmup_steps=warmup_steps,hold_base_rate_steps=0,)# 训练模型model.fit(data, one_hot_labels, epochs=epochs, batch_size=batch_size, verbose=0, callbacks=[warm_up_lr])print(warm_up_lr.learning_rates)

结果:

[4e-06, 4.513369e-06, ....,  7.281053e-05, 7.0564354e-05, 6.826705e-05, 6.592433e-05, 6.354202e-05, 6.112605e-05, 5.868241e-05, 5.6217184e-05, 5.3736505e-05, 5.1246534e-05, 4.8753467e-05, 4.6263496e-05, 4.3782813e-05, 4.131759e-05, 3.8873954e-05, 3.6457976e-05, 3.4075667e-05, 3.173295e-05, 2.9435645e-05, 2.7189468e-05, 2.5e-05, 2.2872688e-05, 2.0812817e-05, 1.882551e-05, 1.6915708e-05, 1.5088159e-05, 1.3347407e-05, 1.1697778e-05, 1.0143374e-05, 8.688061e-06, 7.335456e-06, 6.0889215e-06, 4.9515565e-06, 3.9261895e-06, 3.015369e-06, 2.2213596e-06, 1.5461356e-06, 9.913756e-07, 5.584587e-07, 2.4846122e-07, 6.215394e-08, 0.0, 0.0]

5.模型训练过程实现

parser = argparse.ArgumentParser()
parser.add_argument("data_url", type=str, default='./data/garbage_classify/train_data', help="data dir", nargs='?')
parser.add_argument("train_url", type=str, default='./garbage_ckpt/', help="save model dir", nargs='?')
parser.add_argument("num_classes", type=int, default=40, help="num_classes", nargs='?')
parser.add_argument("input_size", type=int, default=300, help="input_size", nargs='?')
parser.add_argument("batch_size", type=int, default=16, help="batch_size", nargs='?')
parser.add_argument("learning_rate", type=float, default=0.0001, help="learning_rate", nargs='?')
parser.add_argument("max_epochs", type=int, default=30, help="max_epochs", nargs='?')
parser.add_argument("deploy_script_path", type=str, default='', help="deploy_script_path", nargs='?')
parser.add_argument("test_data_url", type=str, default='', help="test_data_url", nargs='?')

import multiprocessing
import numpy as np
import argparse
import tensorflow as tf
from tensorflow.keras.callbacks import TensorBoard, Callback
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam, RMSpropfrom efficientnet import model as EfficientNet
from data_gen import data_from_sequence
from utils.lr_scheduler import WarmUpCosineDecayScheduler
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
# 注意关闭默认的eager模式
tf.compat.v1.disable_eager_execution()def train_model(param):"""训练模型:param param: 传入的命令参数:return:"""# 1、建立读取数据的sequencetrain_sequence, validation_sequence = data_from_sequence(param.data_url, param.batch_size,param.num_classes, param.input_size)

# 2、建立模型,指定模型训练相关参数
model = model_fn(param)optimizer = Adam(lr=param.learning_rate)
objective = 'categorical_crossentropy'
metrics = ['accuracy']
# 模型修改
# 模型训练优化器指定
model.compile(loss=objective, optimizer=optimizer, metrics=metrics)
model.summary()# 判断模型是否加载历史模型
if os.path.exists(param.train_url):filenames = os.listdir(param.train_url)model.load_weights(filenames[-1])print("加载完成!!!")def model_fn(param):"""迁移学习修改模型函数:param param::return:"""base_model = EfficientNet.EfficientNetB3(include_top=False, input_shape=(param.input_size, param.input_size, 3),classes=param.num_classes)x = base_model.outputx = GlobalAveragePooling2D(name='avg_pool')(x)predictions = Dense(param.num_classes, activation='softmax')(x)model = Model(inputs=base_model.input, outputs=predictions)return model

sample_count = len(train_sequence) * param.batch_size
epochs = param.max_epochs
warmup_epoch = 5
batch_size = param.batch_size
learning_rate_base = param.learning_rate
total_steps = int(epochs * sample_count / batch_size)
warmup_steps = int(warmup_epoch * sample_count / batch_size)warm_up_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,total_steps=total_steps,warmup_learning_rate=0,warmup_steps=warmup_steps,hold_base_rate_steps=0,)
#(3)模型保存相关参数
check = tf.keras.callbacks.ModelCheckpoint(param.train_url+'weights_{epoch:02d}-{val_acc:.2f}.h5',monitor='val_acc',save_best_only=True,save_weights_only=False,mode='auto',period=1)

十一、综合案例:模型导出与部署

1.TensorFlow 模型导出


2.使用案例

    import tensorflow as tf
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"def main():num_epochs = 1batch_size = 32learning_rate = 0.001model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),tf.keras.layers.Dense(120, activation=tf.nn.relu),tf.keras.layers.Dense(100),tf.keras.layers.Softmax()])(train, train_label), (test, test_label) = \tf.keras.datasets.cifar100.load_data()model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=[tf.keras.metrics.sparse_categorical_accuracy])model.fit(train, train_label, epochs=num_epochs, batch_size=batch_size)tf.saved_model.save(model, "./saved/mlp/1")


3.TensorFlow Serving


安装Tensorflow Serving

TensorFlow Serving Docker 使用介绍

docker run -p 8501:8501 -p 8500:8500 --mount type=bind,source=/home/ubuntu/detectedmodel/commodity,target=/models/commodity -e MODEL_NAME=commodity -t tensorflow/serving

案例操作:commodity模型服务运行

itcast:~$ docker ps
CONTAINER ID        IMAGE                COMMAND                  CREATED             STATUS              POR
TS                              NAMES
1354f9aeab33        tensorflow/serving   "/usr/bin/tf_serving…"   7 seconds ago       Up 5 seconds        0.0
.0.0:8500-8501->8500-8501/tcp   gifted_jackson

4.在客户端调用以 TensorFlow Serving 部署的模型

直接使用curl

编写客户端代码

示例使用Python 的 Requests 库(你可能需要使用 pip install requests 安装该库)向本机的 TensorFlow Serving 服务器发送20张图像并返回预测结果,同时与测试集的真实标签进行比较。

def client():import jsonimport numpy as npimport requests(_, _), (test, test_label) = \tf.keras.datasets.cifar100.load_data()data = json.dumps({"instances": test[0:20].tolist()  # array转换成列表形式})headers = {"content-type": "application/json"}json_response = requests.post('http://localhost:8501/v1/models/mlp:predict',data=data, headers=headers)predictions = np.array(json.loads(json_response.text)['predictions'])print(np.argmax(predictions, axis=-1))print(test_label[0:20])if __name__ == '__main__':# main()# test()client()

输出:

[67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67]
[[49][33][72][51][71][92][15][14][23][ 0][71][75][81][69][40][43][92][97][70][53]]

因为模型并没有训练多久,只迭代一次,所以效果不好,主要是完成整个流程。

深入浅出TensorFlow相关推荐

  1. 深入浅出TensorFlow(二):TensorFlow解决MNIST问题入门

    2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着 ...

  2. 深入浅出TensorFlow(七)TensorFlow计算加速

    2017年2月16日,Google正式对外发布Google TensorFlow 1.0版本,并保证本次的发布版本API接口完全满足生产环境稳定性要求.这是TensorFlow的一个重要里程碑,标志着 ...

  3. TensorFlow(一)

    TensorFlow 概述 TensorFlow是Google主导的开源深度学习库.官网: https://www.tensorflow.org/ 代码: https://github.com/ten ...

  4. 世界最清楚tensorflow入门教程

    人工智能.机器学习和深度学习 在介绍TensorFlow(以下简称为TF)之前,我们首先了解一下相关背景. TF是一种机器学习框架,而机器学习经常和人工智能,深度学习联系在一起,那么三者到底是什么关系 ...

  5. 【TensorFlow-windows】学习笔记三——实战准备

    前言 因为学习TensorFlow的内容较多,如果只看API会很无聊,可以结合实例去学习.但是在构建基本的模型之前,需要学一些准备知识:数据读取.预处理.优化器.损失函数 国际惯例,参考网址: Ten ...

  6. 荐号 | 11个人工智能与大数据相关的个人、企业优质号

    AlphaGo Zero都会自学了,作为刚刚步入AI大门的我们,应该如何选择合适自己的知识平台呢?今天小编为你甄选了几个高质量的技术公众号. 这些号更多的不是讲授枯燥的理论,而是从行业资讯.一线技术. ...

  7. 第六章 图像识别与卷积神经网络

    这里有一篇原作者的博客:深入浅出Tensorflow(四):卷积神经网络 6.2 卷积神经网络简介 卷积神经网络和全连接神经网络的整体架构非常相似,唯一区别就在于神经网络中相邻两层的连接方式,相邻两层 ...

  8. 深入浅出 python epub_《机器学习从认知到实践(第2辑)(套装共3册,Python+TensorFlow)》epub+mobi+azw3...

    套装书目  · · · · · · <Python机器学习实践指南> <TensorFlow机器学习项目实战> <TensorFlow技术解析与实战> 分册简介   ...

  9. 今晚8点直播 | 深入浅出理解A3C强化学习

    强化学习是一种比较传统的人工智能手段,在近年来随着深度学习的发展,强化学习和深度学习逐渐结合在了一起.这种结合使得很多原来无法想象的工作有了可能,最令我们瞩目的莫过于AlphaGo战胜李世石,以及Op ...

最新文章

  1. 图解TCP、IP笔记
  2. php数组转为js json,php如何将数组转为json数组,php数组转为js数组
  3. rmmod: can't change directory to '/lib/modules': No such file or directory问题解决
  4. Linux中sort、uniq、cut、wc命令详解
  5. Apache与Nginx实现Web页面动静分离(产生的原因,应用场景)
  6. C和指针之动态内存分配之输入很多整数进行排序
  7. 硬件反垃圾邮件网关|反垃圾邮件软件产品|反垃圾邮箱邮件系统
  8. 阿里云计算赶超 IBM;扎克伯格或遭逼宫;IntelliJ IDEA 新版支持 Java 11 | CSDN极客头条...
  9. android连接程序,android程序如何连接真机进行测试
  10. Ubuntu 系统 代码比对工具Meld Diff 下载与使用介绍
  11. win10资源管理器打开缓慢,自动搜索
  12. win10如何桌面添加计算机,win10系统桌面怎么添加计算机等图标
  13. Android系统java/native crash和anr异常处理流程以及DroboxManagerService日志记录
  14. 流量来了,去努力保护好你的系统
  15. ArcMap模型:批量导出shp
  16. ios logo 启动页大小
  17. R语言plotly可视化:使用plotly可视化模型预测真阳性率(True positive)TPR和假阳性率(False positive)FPR在不同阈值(threshold)下的曲线
  18. java base64转字图片、图片转base64字符串
  19. 网络设备配置与管理(华为)基础系列 20190307
  20. Proxy SwitchyOmega安装和使用

热门文章

  1. 圆心科技冲刺港交所上市:收入主要靠卖药,毛利率仅在10%上下
  2. 看完这篇 教你玩转渗透测试靶机vulnhub——FunBox3(Easy)
  3. Struts2框架安全缺陷
  4. reveal.js + markdown 制作幻灯片——配置选项,幻灯片背景,尺寸,插入媒体,链接
  5. 漫谈广告竞价模式(七)
  6. 将String转化为String数组
  7. uSurvival 1.41多人在线生存逃杀吃鸡类游戏源码
  8. 世界10大物流公司介绍(zt)
  9. 在ARM-linux上实现4G模块PPP拨号上网
  10. 计算机显示屏对比度怎么调整,如何在笔记本电脑上调整显示器的亮度和对比度...