转自:https://www.st.com/content/st_com/zh/about/innovation---technology/PCM.html

(嵌入式内存技术正处于十字路口。在FD-SOI和FinFET高级CMOS技术中,传统浮栅嵌入式非易失性存储器(eNVM)的集成在28nm和更小的硅几何结构上是一个重大的技术挑战。新的NVM技术基于特殊外来材料的功能特性,采用了与Flash存储器技术完全不同的物理机制,并为28纳米CMOS转变带来的工艺集成困难提供了更有效的解决方案。在这些常被称为“新兴存储器”的新型NVM技术中,最成熟的是相变存储器(PCM)。

相变记忆的基本机制是由斯坦福·罗伯特·奥夫斯基在20世纪60年代发明的。ST持有原始开发的专利许可证,并在这项突破性工作的基础上发展了15年多,开发了嵌入式PCM解决方案(ePCM),该解决方案如今已集成到我们的28nm FD-SOI技术平台中。

相变存储器是用锗锑碲(GST)合金制成的,它利用了材料在非晶态和晶态之间物理性质的快速热控变化。对应于逻辑0和1的这些状态通过非晶态(逻辑0)中的高电阻和晶态(逻辑1)中的低电阻进行电区分。PCM在低电压下读写,与Flash和其他嵌入式存储器技术相比,它具有许多显著的优势。)

Embedded Memory technologies are at a crossroads. The integration of conventional floating gate embedded Non-Volatile Memories (eNVM) represents a significant technical challenge at 28nm and smaller silicon geometries in both FD-SOI and FinFET advanced CMOS technologies. New NVM technologies, based on the functional properties of particular exotic materials, employ radically different physical mechanisms than those used with Flash memory technologies and provide a more effective solution to the process integration difficulties raised by the disruptive 28nm CMOS transition. Among these new NVM technologies, often called “emerging memories,” the most mature is Phase-Change Memory (PCM).

The fundamental mechanism for Phase-Change Memory was invented in the 1960s by Stanford Robert Ovshinsky. ST holds a license to the patents that resulted from that original development and has built onto that ground-breaking work for more than 15 years, developing the embedded PCM solution (ePCM) that is today integrated into our 28nm FD-SOI technology platform.

Phase-Change Memory is made using a Germanium Antimony Tellurium (GST) alloy, and takes advantage of rapid heat-controlled changes in the material’s physical property between amorphous and crystalline states. These states, which correspond to logic 0 and 1, are electrically differentiated by high resistance in the amorphous state (logic 0) and low resistance in the crystalline state (Logic 1). PCM, which reads and writes at low voltage, offers several substantial advantages over Flash and other embedded memory technologies.

Phase-Change Memory Technology Architecture

Phase-Change Memory (PCM) array

A cross section of the embedded-PCM bitcell integrated in the 28nm FD-SOI technology shows the heater that quickly flips storage cells between crystalline and amorphous states.

Phase-Change Memory Advantages

Write Performance / Data Retention

With single-bit alterability, PCM technology delivers significantly better write and comparable read performance than Flash-based memories that require at least a byte- or sector-erase cycle before reprogramming. This single-bit alterability simplifies software handling of data storage. ST’s implementation benefits from patented technology related to the memory cell and to the GST alloy to support high-temperature data retention, including during solder reflow, so firmware can be uploaded to ePCMs before mounting and soldering.

High Density / Low Power Roadmap

The speed/power characteristics of the ePCM macro-cell and its roadmap at smaller geometries offer a scalable solution for large embedded memories.

Robust Performance

ST’s PCM technology has been developed and tested to operate within the most stringent automotive requirements for robust high-temperature operation, radiation hardening, and data retention. ePCM achieves automotive requirements for AEC-Q100 Grade 0 with an operating temperature up to +165°C.

Flexible Back-end Process

ePCM is a back-end technology which separates the non-volatile memory-cell process module from the complex logic-transistor modules built in the Front-End. As a Back-End, metallization-based process, ePCM is technology-independent, so it can be embedded in virtually any technology node.

FD-SOI and PCM Combined

Fully Depleted Silicon On Insulator, or FD-SOI, another technology that ST pioneered, is a planar process technology that delivers the benefits of reduced silicon geometries while actually simplifying manufacturing. Combining 28nm FD-SOI and PCM enables memory array sizes that are 4-5 times larger than what Flash on bulk 40nm CMOS can achieve.

Phase-Change Memory Applications

Ever more demanding applications are pushing the limits of MCU architectures due to their need for more processing power, lower power consumption, and larger memory sizes. One of the most challenging demands is for larger embedded memories to hold bigger and more complex firmware.

ePCM presents a solution to these chip- and system-level challenges, while meeting automotive requirements for AEC-Q100 Grade 0, operating at temperature up to +165°C. In addition, ST’s technology assures firmware/data retention through high-temperature soldering reflow processes and immunity to radiation, for additional data safety.

ST presented an update on the architecture and performance of a 16Mb ePCM array for a 28nm FD-SOI automotive MCU at the 2018 International Electron Devices Meeting (IEDM) in San Francisco on December 4, 2018.

Truly Innovative 28nm FDSOI Technology for Automotive Microcontroller Applications embedding 16MB Phase Change Memory:https://www.st.com/content/ccc/fragment/multimedia/e-presentation/technology_pres/group0/63/51/83/98/d4/11/40/7b/IEDM_conference_Dec2018_ARNAUD/files/IEDM_conference_Dec2018_ARNAUD.pdf/jcr:content/translations/en.IEDM_conference_Dec2018_ARNAUD.pdf

相变存储器 Phase-Change Memory (PCM)相关推荐

  1. 时代全芯卡位新型存储 聚焦PCM相变存储器

    2021开年,"缺货"."涨价"这两大关键词就博足了半导体从业人士的眼球.存储市场在这波氛围带动下,也迎来全面上涨.日经报道指出,老款的DRAM价格暴涨2倍,I ...

  2. 刷新存储器的容量单位是什么_GD25Q80CSIG|相变存储器是什么,具备什么特点?

    一.什么是相变存储器? 1.简称PCM,利用硫族化合物在晶态和非晶态巨大的导电性差异来存储数据的. 2.存储原理:在器件单元上施加不同宽度和高度的电压或电流脉冲信号,使相变材料发生物理相态的变化,即晶 ...

  3. Intel Core Enhanced Core架构/微架构/流水线 (14) - 存储器/内存读写 Memory Load/Store

    Loads 当指令从回写类型的存储器中读取某个地址时,处理器会按照如下的规则从高速缓存或存储器中查找数据(确切的说是匹配地址): 发起核(即执行读存指令的处理器核)的一级数据缓存 其他核的一级数据缓存 ...

  4. NVM(非易失存储介质)在索引结构中的机遇与挑战(未完,整理中...)

    写在前面:近期,参加2018/12/16日开源操作系统大会,听了华中科大在OSDI'18上的一个工作(<Write-Optimized and High-Performance Hashing ...

  5. 光子神经网络的应用及发展概述

    光子神经网络的应用及发展概述 最近研读光子神经网络论文,完成一个简单综述作为课程论文 参考https://blog.csdn.net/taochenning/article/details/10630 ...

  6. 随机生成稀疏矩阵_面向异构众核超级计算机的大规模稀疏计算性能优化研究

    点击上方蓝字关注我们 面向异构众核超级计算机的大规模稀疏计算性能优化研究 胡正丁, 薛巍 清华大学计算机科学与技术系,北京 100084 论文引用格式: 胡正丁, 薛巍.面向异构众核超级计算机的大规模 ...

  7. 大数据存储系统I/O性能优化技术研究进展

    大数据存储系统I/O性能优化技术研究进展 肖利民,霍志胜 北京航空航天大学计算机学院,北京 100191 摘要:大数据存储系统的I/O性能是影响大数据应用整体性能的关键因素之一,总结了当前在存储系统架 ...

  8. 闪存技术瓶颈仍难以克服 注定只是过客?

    富士通首席技术官Dr Joseph Reger 闪存仅仅是我们发展内存存储体系结构的一个中间站--富士通首席技术官Joseph Reger博士近日提出了这个观点. 按照富士通科技解决方案的首席技术官J ...

  9. 计算机架构:漫游CPU的奥秘世界

    目录标题 一.计算机架构基础(Computer Architecture Fundamentals) 1.1 历史发展(History) 1.2 计算机系统的组成(Components of Comp ...

最新文章

  1. poj 1088 滑雪 详解
  2. UE4材质:只在石头缝中刷草
  3. js reduce实现中间件_MapReduce 模型
  4. python打包工具报错_python打包生成exe报错
  5. Elasticsearch 简介入门
  6. 判断回文递归算法实现
  7. CocoaPods打包静态库
  8. python3实例车代码_Python编程pygame模块实现移动的小车示例代码
  9. 一文读懂应用市场的[发展简史]
  10. OMRON欧姆龙驱动器维修R88D-KT06F-Z过压故障处理
  11. word中的特殊文本符号
  12. 【AI识人】OpenPose:实时多人2D姿态估计 | 附视频测试及源码链接
  13. 华为悦盒烧写Ubuntu系统刷机教程
  14. 论文写作:如何写论文
  15. InnoDB---深入理解事务提交--02
  16. c#控件listview
  17. 购买你的青春和一切ZT
  18. win10下装win7双系统安装教程
  19. 大学生计算机python_人人都能学计算机:计算机科学入门与Python编程_学堂在线章节测试答案...
  20. 遮挡检测--基于角度的遮挡检测方法

热门文章

  1. js模块化html,js模块化框架
  2. 支付宝分布式事务架构设计草案
  3. postgresql和mysql中的limit使用方法
  4. 使用@RestController 没有用
  5. oneno浏览器插件_三款好用的浏览器插件,附带浏览器插件安装方法
  6. python123习题集
  7. java字符串加密_Java简单加密字符串
  8. 如何理解:程序、进程、线程、并发、并行、高并发?
  9. HTML个人博客模板(私人设计)
  10. 在conda虚拟环境中安装ipython