欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章

sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

医药统计项目可联系
 QQ:231469242
 目录:
1.Shapiro-Wilk test
  样本量小于50
2.normaltest
  样本量小于50, normaltest运用了D’Agostino–Pearson综合测试法,每组样本数大于20
3.Lilliefors-test
- for intermediate sample numbers, the Lilliefors-test is good since the original Kolmogorov-Smirnov-test is unreliable when mean and std of the distribution are not known.
4.Kolmogorov-Smirnov(Kolmogorov-Smirnov) test
- the Kolmogorov-Smirnov(Kolmogorov-Smirnov) test should only be used for large sample numbers (>300)
 

 最新版本代码

# -*- coding: utf-8 -*-
'''
Author:Toby
QQ:231469242,all right reversed,no commercial use'''import scipy
from scipy.stats import f
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
# additional packages
from statsmodels.stats.diagnostic import lilliforsgroup1=[2,3,7,2,6]
group2=[10,8,7,5,10]
group3=[10,13,14,13,15]
list_groups=[group1,group2,group3]
list_total=group1+group2+group3#正态分布测试
def check_normality(testData):#20<样本数<50用normal test算法检验正态分布性if 20<len(testData) <50:p_value= stats.normaltest(testData)[1]if p_value<0.05:print"use normaltest"print "data are not normal distributed"return  Falseelse:print"use normaltest"print "data are normal distributed"return True#样本数小于50用Shapiro-Wilk算法检验正态分布性if len(testData) <50:p_value= stats.shapiro(testData)[1]if p_value<0.05:print "use shapiro:"print "data are not normal distributed"return  Falseelse:print "use shapiro:"print "data are normal distributed"return Trueif 300>=len(testData) >=50:p_value= lillifors(testData)[1]if p_value<0.05:print "use lillifors:"print "data are not normal distributed"return  Falseelse:print "use lillifors:"print "data are normal distributed"return Trueif len(testData) >300:  p_value= stats.kstest(testData,'norm')[1]if p_value<0.05:print "use kstest:"print "data are not normal distributed"return  Falseelse:print "use kstest:"print "data are normal distributed"return True#对所有样本组进行正态性检验
def NormalTest(list_groups):for group in list_groups:#正态性检验status=check_normality(group1)if status==False :return False#对所有样本组进行正态性检验
NormalTest(list_groups)

pp-plot和qq-plot结论都很类似。如果数据服从正太分布,生成的点会很好依附在y=x直线上

In all three cases the results are similar: if the two distributions being compared
are similar, the points will approximately lie on the line y D x. If the distributions
are linearly related, the points will approximately lie on a line, but not necessarily
on the line y D x (Fig. 7.1).
In Python, a probability plot can be generated with the command
stats.probplot(data, plot=plt)

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.probplot.html

a) Probability-Plots
用于可视化评估分布,绘制分位点来比较概率分布
sample quantilies是你的样本原始的数据
sample distribution
In statistics different tools are available for the visual assessments of distributions.
A number of graphical methods exist for comparing two probability distributions by plotting their quantiles, or closely related parameters, against each other:
# -*- coding: utf-8 -*-
import numpy as np
import pylab
import scipy.stats as statsmeasurements = np.random.normal(loc = 20, scale = 5, size=100)
stats.probplot(measurements, dist="norm", plot=pylab)
pylab.show()

7.1 Probability-plot, to
check for normality of a
由于随机产生的100个正态分布点,测试其正太性。概率图显示100个点很好落在y=x直线附近,所以这些数据有很好正态性。

QQPlot(quantile quantile plot)

http://baike.baidu.com/link?url=o9Z7vr6VdvGAtTRO3RYxQbVu56U_XDaSdibPeVcidMJQ7B6LcAUBHcIro4tLf5BSI5Pu-59W4SPNZ-zRFJ8_FgL3dxJLaUdY0JiB2xUmqie

QQPlot图是用于直观验证一组数据是否来自某个分布,或者验证某两组数据是否来自同一(族)分布。在教学和软件中常用的是检验数据是否来自于正态分布。

# -*- coding: utf-8 -*-
import numpy as np
import statsmodels.api as sm
import pylabtest = np.random.normal(0,1, 1000)sm.qqplot(test, line='45')
pylab.show()

QQ图显示1000个点很好落在y=x直线附近,所以这些数据有很好正态性。

验证右图的生成的卡方数据是否服从正太分布,pp-plot图中,很多点没有很好落在y=x直线附近,所以正态性比较差,R**2只有0.796
# -*- coding: utf-8 -*-
from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
nsample = 100
np.random.seed(7654321)ax1 = plt.subplot(221)#A t distribution with small degrees of freedom:
#生成自由度3,样本量100的t分布数据,自由度太小,正态分布性较差
x = stats.t.rvs(3, size=nsample)
res = stats.probplot(x, plot=plt)#A t distribution with larger degrees of freedom:
#自由度大,数据接近正态分布
ax2 = plt.subplot(222)
x2 = stats.t.rvs(25, size=nsample)
res1 = stats.probplot(x2, plot=plt)#A mixture of two normal distributions with broadcasting:
ax3 = plt.subplot(223)
x3 = stats.norm.rvs(loc=[0,5], scale=[1,1.5],size=(nsample/2.,2)).ravel()
res = stats.probplot(x3, plot=plt)#A standard normal distribution:标准正太分布,pp-plot正态性较好
ax4 = plt.subplot(224)
x4 = stats.norm.rvs(loc=0, scale=1, size=nsample)
res = stats.probplot(x4, plot=plt)#Produce a new figure with a loggamma distribution, using the dist and sparams keywords:fig = plt.figure()
ax = fig.add_subplot(111)
x = stats.loggamma.rvs(c=2.5, size=500)
stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax)
ax.set_title("Probplot for loggamma dist with shape parameter 2.5")
plt.show()

 
 综合测试法
代码GitHub下载地址
https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/07_CheckNormality_CalcSamplesize/checkNormality
In tests for normality, different challenges can arise: sometimes only few samples
may be available, while other times one may have many data, but some extremely
outlying values. To cope with the different situations different tests for normality
have been developed. These tests to evaluate normality (or similarity to some
specific distribution) can be broadly divided into two categories:
1. Tests based on comparison (“best fit”) with a given distribution, often specified
in terms of its CDF. Examples are the Kolmogorov–Smirnov test, the Lilliefors
test, the Anderson–Darling test, the Cramer–von Mises criterion, as well as the
Shapiro–Wilk and Shapiro–Francia tests.
2. Tests based on descriptive statistics of the sample. Examples are the skewness
test, the kurtosis test, the D’Agostino–Pearson omnibus test, or the Jarque–Bera
test.
For example, the Lilliefors test, which is based on the Kolmogorov–Smirnov
test, quantifies a distance between the empirical distribution function of the sample
and the cumulative distribution function of the reference distribution (Fig. 7.3),
or between the empirical distribution functions of two samples. (The original
Kolmogorov–Smirnov test should not be used if the number of samples is ca. 300.)
The Shapiro–Wilk W test, which depends on the covariance matrix between the
order statistics of the observations, can also be used with 50 samples, and has been
recommended by Altman (1999) and by Ghasemi and Zahediasl (2012).
The Python command stats.normaltest(x) uses the D’Agostino–Pearson
omnibus test. This test  combines a skewness and kurtosis test to produce a single,
global “omnibus” statistic.
# -*- coding: utf-8 -*-
#bug report 231469242@qq.com
'''
Graphical and quantitative check, if a given distribution is normal.
- For small sample-numbers (<50), you should use the Shapiro-Wilk test or the "normaltest"
- for intermediate sample numbers, the Lilliefors-test is good since the original Kolmogorov-Smirnov-test is unreliable when mean and std of the distribution
are not known.
- the Kolmogorov-Smirnov(Kolmogorov-Smirnov) test should only be used for large sample numbers (>300)
'''# Copyright(c) 2015, Thomas Haslwanter. All rights reserved, under the CC BY-SA 4.0 International License# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
import pandas as pd# additional packages
from statsmodels.stats.diagnostic import lilliforsdef check_normality():'''Check if the distribution is normal.'''# Set the parametersnumData = 1000myMean = 0mySD = 3# To get reproducable values, I provide a seed valuenp.random.seed(1234)   # Generate and show random datadata = stats.norm.rvs(myMean, mySD, size=numData)fewData = data[:100]plt.hist(data)plt.show()# --- >>> START stats <<< ---# Graphical test: if the data lie on a line, they are pretty much# normally distributed_ = stats.probplot(data, plot=plt)plt.show()pVals = pd.Series()pFewVals = pd.Series()# The scipy normaltest is based on D-Agostino and Pearsons test that# combines skew and kurtosis to produce an omnibus test of normality._, pVals['Omnibus']    = stats.normaltest(data)_, pFewVals['Omnibus'] = stats.normaltest(fewData)# Shapiro-Wilk test_, pVals['Shapiro-Wilk']    = stats.shapiro(data)_, pFewVals['Shapiro-Wilk'] = stats.shapiro(fewData)# Or you can check for normality with Lilliefors-test_, pVals['Lilliefors']    = lillifors(data)_, pFewVals['Lilliefors'] = lillifors(fewData)# Alternatively with original Kolmogorov-Smirnov test_, pVals['Kolmogorov-Smirnov']    = stats.kstest((data-np.mean(data))/np.std(data,ddof=1), 'norm')_, pFewVals['Kolmogorov-Smirnov'] = stats.kstest((fewData-np.mean(fewData))/np.std(fewData,ddof=1), 'norm')print('p-values for all {0} data points: ----------------'.format(len(data)))print(pVals)print('p-values for the first 100 data points: ----------------')print(pFewVals)if pVals['Omnibus'] > 0.05:print('Data are normally distributed')# --- >>> STOP stats <<< ---return pVals['Kolmogorov-Smirnov']if __name__ == '__main__':p = check_normality()    print(p)

normaltest

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html
http://stackoverflow.com/questions/42036907/scipy-stats-normaltest-to-test-the-normality-of-numpy-random-normal
scipy.stats.normaltest运用了D’Agostino–Pearson综合测试法,返回(得分值,p值),得分值=偏态平方+峰态平方
 
样本量必须大于等于20
UserWarning: kurtosistest only valid for n>=20

If my understanding is correct, it indicates how likely the input data is in normal distribution. I had expected that all the pvalues generated by the above code very close to 1.

Your understanding is incorrect, I'm afraid. The p-value is the probability to get a result that is at least as extreme as the observation under the null hypothesis (i.e. under the assumption that the data is actually normal distributed). It does not need to be close to 1. Usually, p-values greater than 0.05 are considered not significant, which means that normality has not been disproved by the test.

As pointed out by Victor Chubukov, you can get low p-values simply by chance, even if the data is really normally distributed.

Statistical hypothesis testing is rather complex and can appear somewhat counter intuitive. If you need to know more details, Cross Validated is the place to get more detailed answers.

# -*- coding: utf-8 -*-
'''
样本量必须大于等于20
UserWarning: kurtosistest only valid for n>=20
'''import numpy
from numpy import random
from scipy import statsd = numpy.random.normal(size=1000)
n = stats.normaltest(d)
print (n)

# -*- coding: utf-8 -*-
import numpy,scipy
from numpy import random
from scipy import statsfor i in range(0, 10):d = numpy.random.normal(size=50000)n = scipy.stats.normaltest(d)print (n)

H0:样本服从正太分布

p值都大于0.05,H0成立

 Shapiro-Wilk
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
#样本数小于50用Shapiro-Wilk算法检验正态分布性
- For small sample-numbers (<50), you should use the Shapiro-Wilk test or the "normaltest"

# -*- coding: utf-8 -*-
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
x = stats.norm.rvs(loc=5, scale=3, size=49)
stats.shapiro(x)
'''
p值大于0.05,H0成立,数据呈现正态分布
Out[9]: (0.9735164046287537, 0.3322194814682007)
'''
plt.hist(x)



Lilliefors-test

适用于中等样本数据- for intermediate sample numbers, the Lilliefors-test is good since the original Kolmogorov-Smirnov-test is unreliable when mean and std of the distribution are not known.

In statistics, the Lilliefors test, named after Hubert Lilliefors, professor of statistics at George Washington University, is a normality test based on the Kolmogorov–Smirnov test. It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution.

statsmodels.stats.diagnostic.lilliefors

http://www.statsmodels.org/stable/generated/statsmodels.stats.diagnostic.lilliefors.htmlstatsmodels.stats.diagnostic.lilliefors(x, pvalmethod='approx')

lilliefors test for normality,

Kolmogorov Smirnov test with estimated mean and variance

Parameters:

x : array_like, 1d

data series, sample

pvalmethod : ‘approx’, ‘table’

‘approx’ uses the approximation formula of Dalal and Wilkinson, valid for pvalues < 0.1. If the pvalue is larger than 0.1, then the result of table is returned ‘table’ uses the table from Dalal and Wilkinson, which is available for pvalues between 0.001 and 0.2, and the formula of Lilliefors for large n (n>900). Values in the table are linearly interpolated. Values outside the range will be returned as bounds, 0.2 for large and 0.001 for small pvalues.

Returns:

ksstat : float

Kolmogorov-Smirnov test statistic with estimated mean and variance.

pvalue : float

If the pvalue is lower than some threshold, e.g. 0.05, then we can reject the Null hypothesis that the sample comes from a normal distribution

Notes

Reported power to distinguish normal from some other distributions is lower than with the Anderson-Darling test.

could be vectorized

 
# -*- coding: utf-8 -*-
'''
样本量必须大于等于20
UserWarning: kurtosistest only valid for n>=20
'''import numpy
from numpy import random
from statsmodels.stats.diagnostic import lilliforsd = numpy.random.normal(size=200)
n = lillifors(d)
print (n)
'''
(0.047470987201221337, 0.3052490552871156)
'''

 



Kolmogorov-Smirnov(Kolmogorov-Smirnov) test

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html#scipy.stats.kstest

- the Kolmogorov-Smirnov(Kolmogorov-Smirnov) test should only be used for large sample numbers (>300)

# -*- coding: utf-8 -*-
'''
样本量必须大于等于20
UserWarning: kurtosistest only valid for n>=20
'''import numpy
from numpy import random
from scipy import statsd = numpy.random.normal(size=1000)
n = stats.kstest(d,'norm')
print (n)'''
KstestResult(statistic=0.028620435047503723, pvalue=0.38131540630243177)
'''

 



http://jingyan.baidu.com/article/86112f135cf84c27379787cb.html

K-S检验是以两位苏联数学家Kolmogorov和Smirnov的名字命名的,它是一个拟合优度检验。K-S检验通过对两个分布之间的差异的分析,判断样本的观察结果是否来自制定分布的总体。

  • 数据录入

首先把要分析的数据导入到SPSS软件中,如图所示:

  • 步骤1

点击“分析”,然后选择“非参数检验(N)”,选择“旧对话框”中的“1-样本K-S(1)”,如图所示。

  • 步骤2

这里,我们只对“身高”和“体重”进行检验,所以把两变量导入到“检验变量列表(T)”,如图所示。

  • 步骤3

然后点击“选项”,选择“描述性(D)”,点击“继续”。如图所示。

  • 结果分析

点击“确定”,即可得到以下结果。

由于身高和体重的双侧显著性取值均小于0.10,故否定零假设,即认为初中生的身高和体重不服从正态分布。



http://www.cnblogs.com/sddai/p/5737408.html

柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

在进行 cumulative probability统计(如下图)的时候,你怎么知道组之间是否有显著性差异?有人首先想到单因素方差分析或双尾检验(2 tailed TEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显著性差异。

Kolmogorov-Smirnov test原理:寻找最大距离(Distance), 所以常简称为D法。 适用于大样本。 KS test checks if two independent distributions are similar or different, by generating cumulative probability plots for two distributions and finding the distance along the y-axis for a given x values between the two curves. From all the distances calculated for each x value, the maximum distance is searched.
如何分析结果呢?This maximum distance or maximum difference is then plugged into KS probability function to calculate the probability value.  The lower the probability value is the less likely the two distributions are similar.  Conversely, the higher or more close to 1 the value is the more similar the two distributions are.极端情况:如果P值为1的话,说明两给数据基本相同,如果P值无限接近0,说明两组数据差异性极大。
有一个网站可以进行在线的统计,你只需要输入数据就可以了。地址如下:http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html
当然还有更多的软件支持这个统计,如SPSS,SAS,MiniAnalysis,Clampfit10
根据软件统计出来后给出的结果决定有没有显著性差异,如果D max值>D 0.05。则认为有显著性差异。D 0.05的经验算法:1.36/SQRT(N) 其中SQRT为平方要,N为样本数。D 0.01经验算法1.64/SQRT(N) 。当然最准确的办法还是去查KS检定表。不过大多数软件如CLAMPFIT,MINIANALYSIS统计出来的结果都是直接有P值。根据这个值(alpha=0.05)就可以断定有没有差异了。

在统计学中,柯尔莫可洛夫-斯米洛夫检验基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同。

在进行累计概率(cumulative probability)统计的时候,你怎么知道组之间是否有显著性差异?有人首先想到单因素方差分析或双尾检验(2 tailedTEST)。其实这些是不准确的,最好采用Kolmogorov-Smirnov test(柯尔莫诺夫-斯米尔诺夫检验)来分析变量是否符合某种分布或比较两组之间有无显著性差异。

分类:

1、Single sample Kolmogorov-Smirnov goodness-of-fit hypothesis test.

采用柯尔莫诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。指令如下:

>> H = KSTEST(X,CDF,ALPHA,TAIL) % X为待检测样本,CDF可选:如果空缺,则默认为检测标准正态分布;

如果填写两列的矩阵,第一列是x的可能的值,第二列是相应的假设累计概率分布函数的值G(x)。ALPHA是显著性水平(默认0.05)。TAIL是表示检验的类型(默认unequal,不平衡)。还有larger,smaller可以选择。

如果,H=1 则否定无效假设; H=0,不否定无效假设(在alpha水平上)

例如,

x = -2:1:4
x =
  -2  -1   0   1   2   3   4

[h,p,k,c] = kstest(x,[],0.05,0)
h =
   0
p =
   0.13632
k =
   0.41277
c =
   0.48342

The test fails to reject the null hypothesis that the values come from a standard normal distribution.

2、Two-sample Kolmogorov-Smirnov test

检验两个数据向量之间的分布的。

>>[h,p,ks2stat] = kstest2(x1,x2,alpha,tail)

% x1,x2都为向量,ALPHA是显著性水平(默认0.05)。TAIL是表示检验的类型(默认unequal,不平衡)。

例如,x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)
h =
     0
p =
    0.0774
k =
    0.5214

Kolmogorov–Smirnov test (K–S test)

wiki翻译起来太麻烦,还有可能曲解本意,最好看原版解释。

In statistics, the Kolmogorov–Smirnov test (K–S test) is a form of minimum distance estimation used as a nonparametric test of equality of one-dimensional probability distributions used to compare a sample with a reference probability distribution (one-sample K–S test), or to compare two samples (two-sample K–S test). The Kolmogorov–Smirnov statistic quantifies a distance between theempirical distribution function of the sample and the cumulative distribution function of the reference distribution, or between the empirical distribution functions of two samples. The null distribution of this statistic is calculated under the null hypothesis that the samples are drawn from the same distribution (in the two-sample case) or that the sample is drawn from the reference distribution (in the one-sample case). In each case, the distributions considered under the null hypothesis are continuous distributions but are otherwise unrestricted.

The two-sample KS test is one of the most useful and general nonparametric methods for comparing two samples, as it is sensitive to differences in both location and shape of the empirical cumulative distribution functions of the two samples.

The Kolmogorov–Smirnov test can be modified to serve as a goodness of fit test. In the special case of testing for normality of the distribution, samples are standardized and compared with a standard normal distribution. This is equivalent to setting the mean and variance of the reference distribution equal to the sample estimates, and it is known that using the sample to modify the null hypothesis reduces the power of a test. Correcting for this bias leads to theLilliefors test. However, even Lilliefors' modification is less powerful than the Shapiro–Wilk test or Anderson–Darling test for testing normality.[1]

KS比卡方检验更加简单和方便,但ks用于评估正态分布时,样本量需要大于300

python风控评分卡建模和风控常识

https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

转载于:https://www.cnblogs.com/webRobot/p/6760839.html

Tests for normality正态分布检验相关推荐

  1. python实现Shapiro-Wilk正态分布检验

    python实现Shapiro-Wilk正态分布检验 Shapiro-Wilk检验 Shapiro-Wilk检验等显著性假设检验方法,则从统计学意义上将样本分布与正态分布进行比较,以确定数据是否显示出 ...

  2. python实现D‘Agostino‘s K-squared test正态分布检验

    python实现D'Agostino's K-squared test正态分布检验 测试数据样本是否具有高斯分布. 假设条件 每个样本中的观察结果都是独立且均等分布的(iid). 解释 H0:样本具有 ...

  3. python实现Anderson-Darling正态分布检验

    python实现Anderson-Darling正态分布检验 正态性检验 确定您绘制样本所基于的总体是否呈非正态分布的单样本假设检验.许多统计过程均依赖于总体正态性,且使用正态性检验确定否定此假设是不 ...

  4. R语言学习——一元与多元正态分布检验(也可以用于其他分布的检验)

    文章目录 1 一元正态的评估 1.1 图像法 1.1.1 直方图 1.1.2 Q-Q图 1.2 峰度和偏度 1.3 统计检验 1.3.1 Shapiro-Wilks检验 1.3.2 Kolmogoro ...

  5. R语言shapiro.test()函数实现Shapiro-Wilk正态分布检验

    R语言shapiro.test()函数实现Shapiro-Wilk正态分布检验 目录 R语言shapiro.test()函数实现Shapiro-Wilk正态分布检验 #Shapiro-Wilk正态分布 ...

  6. ks检验正态分布结果_数据分析基础(2)——正态分布检验

    #寻找真知派#如上一篇文章所述,样本所属总体服从正态分布是数据分析和数据挖掘等数据处理的重要前提.如果我们采集的样本并不能确认其总体是否服从正态分布,那么数据处理的结果就是不可靠的.因此,对样本数据进 ...

  7. 单列表_正态分布检验(单样本K-S检验)

    目的:检验"肺活量"是否服从正态分布.(数据是否满足正态分布,对统计方法的选择以及部分统计结果的可靠性有很大影响) 注:下面以SPSS24.0操作为例.SPSS18.0及以前的版本 ...

  8. Python实操:正态分布检验

    利用Python检测一组数据是否服从正态分布 内容待补充 参考下文: 正态分布检验之Python实现

  9. R 数据正态分布检验

    使用R检测数据是否符合正态分布(正态分布检验) R语言正态检验; R语言QQ图; R语言概率密度曲线比较法; 详细的方法介绍在网上已经有很多了,推荐这篇 概括得来讲,主要分为4(or 5)种方法: 概 ...

  10. 统计学之正态分布检验

    统计学之正态分布检验 本次主要是对数据集数据进行正态分布检验,数据集地址为:http://jse.amstat.org/datasets/normtemp.dat.txt 主要包括三列数据,体温(F) ...

最新文章

  1. java动效_Android 界面漩涡扭曲动效实现
  2. Redis 管道(Pipelining)
  3. centOS7挂在windows移动硬盘方法
  4. JAVA多线程和并发基础面试题
  5. Pycharm配置Anaconda
  6. 用JPEXS软件实现swf反编译-逆向调试方法
  7. python-一些文件相关的操作
  8. oracle复合结构,动名词的复合结构作宾语
  9. 网络连接状态指示器(NCSI ,Network Connectivity Status Indicator)
  10. Three Bags CodeForces - 1467C (贪心)
  11. 【归档】Kata Containers 2.0 介绍
  12. 使用python turtle库绘制一个三角形_python ——turtle画三角形
  13. linux公社_如何在Linux中安装和使用dig和nslookup命令
  14. 我们要不要和to B“霸王龙”企业交朋友?
  15. plsql激活码(永久可用)
  16. Java使用Jco连接sap详解
  17. 9个不为人知的黑科技网站,每一个都强大到无敌!
  18. J2me项目实例------网络通讯录(1) (转)
  19. C/C++制作炫酷烟雾特效
  20. 医院客户关系管理/医院随访/CRM/HCRM

热门文章

  1. java mybatis 事务,单独的使用mybatis 如何来管理事务
  2. php中页面静态化技术,在PHP中实现页面静态化的方法有哪些
  3. python的本质是什么意思_python生成器指的是什么意思
  4. 845透色android10,骁龙845旗舰宝刀不老 升级安卓10焕然一新
  5. python去重排序_python文本去重并排序
  6. 【Python实例第33讲】单变量特征选择
  7. oledb操作Excel
  8. CString转char*的两种方法讨论
  9. 配置github的SSH key及GitHub项目上传方式一——使用终端命令行
  10. 多因子策略介绍与应用