量子计算机 量子不确定性

总览 (Overview)

Hackers may soon be able to expose all digital communications by using advanced quantum computers. A new form of cryptography would stop them, but it needs to be put into place now.

黑客可能很快就能通过使用先进的量子计算机来公开所有数字通信。 一种新的加密方式将阻止它们,但现在需要将其安装到位。

You log into your account, assuming that only you and your bank can access your financial information. Your password is strong. You’re using two-factor authentication. And you take comfort in knowing that the bank has solid security measures of its own. You’re confident that no one else can see or change these sensitive data.

Ÿ欧登录到您的帐户,假设只有你和你的银行可以访问您的财务信息。 你的密码很安全。 您正在使用两因素身份验证。 当您知道该银行拥有可靠的安全措施时,您会感到欣慰。 您相信没有其他人可以看到或更改这些敏感数据。

This is the invisible handshake between users and institutions that fuels today’s daily flurry of online banking — and so many other digital transactions. But what happens tomorrow?

这是用户和机构之间无形的握手,助长了当今每天在线银行业务的兴起以及许多其他数字交易。 但是明天会发生什么?

Let’s say that, in 10 or 20 years, “Future You” logs into your account, only to see that it’s been zeroed out. Your life savings have been transferred elsewhere. How could this be? What happened to your password, your 2FA, and the security measures that used to help lock down your account?

假设在10或20年后,“ Future You”登录到您的帐户,只是看到它已被清零。 您的生活积蓄已转移到其他地方。 怎么会这样 您的密码,2FA和用于锁定帐户的安全措施发生了什么?

A hacker used something called a quantum computer to speed past all those safeguards, right to your money.

黑客使用了一种称为量子计算机的东西来加速超越所有这些保护措施,最终获得您的金钱。

Tomorrow’s quantum computers are expected to be millions of times faster than the device you’re using right now. Whenever these powerful computers take hold, it will be like going from a Ford Model T to the Starship Enterprise.

预计明天的量子计算机将比您现在使用的设备快几百万倍。 每当这些功能强大的计算机占据一席之地时,就像从福特Model T到Starship Enterprise。

This spike in speed may undo the security measures that protect every piece of data sent over the web today. And it’s not just your bank account that could be at risk. This threat could affect everything from military communications to health records. And it would play out on a vastly larger scale than the headline-grabbing data breaches that have affected countless consumers in recent years.

如此之高的速度可能会取消保护当今通过网络发送的每个数据的安全措施。 可能不仅仅是风险在您的银行帐户中。 这种威胁可能会影响从军事通讯到医疗记录的所有内容。 它的规模将比近年来影响无数消费者的头条新闻数据泄露大得多。

But here’s the good news: This apocalyptic, break-the-internet scenario is preventable — if we act now.

但是,这是个好消息:如果我们现在就采取行动,这种世界末日的互联网中断场景是可以预防的。

A new report from the RAND Corporation explores the risks of this quantum-computing threat, as well as the efforts that could prevent it from exposing private data. The study is part of Security 2040, a RAND initiative that looks across the horizon to evaluate and analyze future threats.

兰德公司(RAND Corporation)的一份新报告探讨了这种量子计算威胁的风险,以及可能阻止其暴露私人数据的努力。 这项研究是RAND计划“ Security 2040”的一部分,该计划跨领域进行评估和分析未来威胁。

超级计算机的新品种 (A New Breed of Supercomputers)

Quantum computers use quantum physics to perform certain tasks faster than the computers we use today. Future devices will be able to solve problems that conventional computers would never be able to calculate — at least not in a lifetime, or even 100 million lifetimes.

量子计算机使用量子物理学来执行某些任务的速度比今天使用的计算机快。 未来的设备将能够解决传统计算机无法解决的问题-至少在一辈子甚至一亿个使用寿命之内。

Quantum computers won’t be better than traditional ones at everything, but they will be superior at specific tasks that have potential commercial appeal. That’s why Google, IBM, and other U.S. companies are competing with one another — and with engineers in countries across the world — to be the first to market.

昆腾计算机在所有方面都不会比传统计算机更好,但是在具有潜在商业吸引力的特定任务上它们将更胜一筹。 这就是Google,IBM和其他美国公司相互竞争以及与世界各国工程师竞争的原因,从而率先进入市场。

Because quantum computers on this scale don’t exist yet, their true potential is unknown. But one popular prediction is that they will excel at simulating chemistry. Chemists may be able to use these computers to better understand how molecules behave and interact. This could lead to the development of new drug treatments, vaccines, and other scientific discoveries. The computers will also likely be crucial for applications of artificial intelligence and machine learning.

由于尚不存在这种规模的量子计算机,因此它们的真正潜力是未知的。 但是一个流行的预测是,它们将在模拟化学方面表现出色。 化学家也许能够使用这些计算机来更好地了解分子的行为和相互作用。 这可能会导致新药治疗,疫苗和其他科学发现的发展。 对于人工智能和机器学习的应用,计算机也可能至关重要。

Although this unprecedented computing power could be used for good, researchers are wary of its potential threat to modern communications infrastructure. Because quantum computers are predicted to be able to factor large numbers very quickly, they could break the cryptographic codes that currently protect our data.

尽管这种空前的计算能力可以被很好地利用,但是研究人员对它对现代通信基础设施的潜在威胁保持警惕。 由于预计量子计算机将能够非常快地分解大量数据,因此它们可能会破坏当前保护我们数据的密码代码。

“When we use the internet, we assume that all of our communications are secure and guarded from an attacker reading or seeing them,” said Michael Vermeer, physical scientist at RAND and lead author of the report. “That is because cryptography — sort of a ‘black box’ to most people — is in the background, securing everything we do. But the public-key cryptography we use now will be vulnerable to quantum computers in the future.”

“当我们使用互联网时,我们假设我们所有的通讯都是安全的,并且可以防止攻击者阅读或看到它们,”兰德公司的物理科学家,报告的主要作者迈克尔·维米尔说。 “这是因为加密技术(对大多数人来说是一个“黑匣子”)处于后台,确保了我们所做的一切。 但是我们现在使用的公钥加密技术将来可能会受到量子计算机的攻击。”

If hackers are ever able to crack public-key cryptography, then all information connected to the internet could be compromised.

如果黑客能够破解公钥密码,那么连接到Internet的所有信息都将受到威胁。

If hackers are ever able to crack public-key cryptography, then all information connected to the internet could be compromised.

如果黑客能够破解公钥密码,那么连接到Internet的所有信息都将受到威胁。

Fortunately, these quantum computers, which experts call “cryptographically relevant,” are unlikely to emerge for another decade or more. That means there’s still time to prevent the worst from happening.

幸运的是,这些量子计算机被专家称为“密码学上相关的”,不可能再出现十年或更长时间。 这意味着仍有时间来防止最坏情况的发生。

预防是可能的 (Prevention Is Possible)

While engineers race to develop the first advanced quantum computer, cybersecurity experts are racing to roll out a new form of cryptography that would defend against quantum hacks. This is known as post-quantum cryptography, or PQC.

当工程师们争相开发第一台先进的量子计算机时,网络安全专家们正在争相推出一种新形式的加密技术,以抵御量子黑客的攻击。 这被称为量子后密码学或PQC。

Experts are currently developing PQC solutions, but these will need to be standardized and widely adopted. That could take years or even decades. The U.S. government recently took steps to accelerate quantum research and development, including the passage of the National Quantum Initiative Act. The law mandates new funding, human capital, and congressional oversight of quantum advancement. This is a great first step, the RAND researchers said, but there’s room to do more. And the clock is ticking.

专家目前正在开发PQC解决方案,但是这些将需要标准化并被广泛采用。 这可能需要数年甚至数十年。 美国政府最近采取了加速量子研究和开发的步骤,包括通过了《国家量子计划法案》。 该法律规定了新的资金,人力资本和国会对量子进步的监督。 兰德研究人员说,这是迈出的重要一步,但是还有更多的空间要做。 时钟在滴答作响。

“Post-quantum cryptography is the best solution,” said Vermeer. “It’s just a matter of getting it done in time.”

威猛(Vermeer)说:“后量子密码学是最好的解决方案。” “这只是及时完成工作的问题。”

Compounding this risk is what researchers call the “catch now, exploit later” threat. Nefarious hackers might intercept secure messages today and then hold onto them until tomorrow, whenever quantum computers are advanced enough to decrypt them.

研究人员称之为“立即捕获,以后再利用”的威胁,加剧了这种风险。 邪恶的黑客可能会在今天拦截拦截安全消息,然后一直保留到明天,直到量子计算机的先进程度足以解密它们。

“This is why we need to push for the adoption of post-quantum cryptography as early as possible,” said Evan Peet, associate economist at RAND and coauthor of the report. “Some encrypted communications don’t lose their value over time.”

“这就是为什么我们需要尽早推动采用后量子密码学的原因,”兰德公司副经济学家,该报告的合著者埃文·皮特 ( Evan Peet)说。 “一些加密通信不会随着时间的流逝而失去价值。”

Simply put, the longer that PQC is not in place, the greater the amount of today’s encrypted information that is at risk of being exposed tomorrow.

简而言之,PQC所用的时间越长,则明天可能暴露在外的当今加密信息的数量就越大。

没人知道量子计算机什么时候到达 (No One Knows When Quantum Computers Will Arrive)

RAND researchers interviewed a cadre of quantum computing and cryptography experts from both private-sector and academic backgrounds. This diverse group included a quantum hardware lead at Google and an information security officer from the financial services sector.

兰德公司的研究人员采访了一批来自私营部门和学术背景的量子计算和密码学专家。 这个多元化的团队包括Google的量子硬件主管和金融服务部门的信息安全官。

The RAND team asked the group to estimate when advanced quantum computers might be developed, when a standardized PQC security suite might be implemented, and whether these two timelines might overlap. On average, the experts suggested 2033 as the most likely year for the creation of a quantum computer that could break public-key cryptography. But focusing on that date may not be the best way to think about this looming threat.

RAND小组要求该小组估算何时可以开发高级量子计算机,何时可以实施标准化的PQC安全套件,以及这两个时间表是否可能重叠。 平均而言,专家们认为2033年是最有可能创造出能打破公钥密码学的量子计算机的年份。 但是,专注于这一日期可能不是思考这一迫在眉睫的威胁的最佳方法。

With so many factors up in the air, Vermeer said that a better approach is to weigh informed estimates to get a better sense of the likelihood and scale of all possible scenarios. “How likely will a quantum computer be created at this date? How likely is it that the PQC standard will be ready at this date? How long is it likely to take? We don’t honestly know,” Vermeer said.

Vermeer表示,由于存在众多因素,Vermeer认为更好的方法是权衡已知的估计,以更好地了解所有可能情况的可能性和规模。 “目前有多大可能性创建量子计算机? PQC标准在此日期准备就绪的可能性有多大? 大概需要多长时间? 我们不诚实地知道,”维米尔(Vermeer)说。

Peet described the uncertain timing of the quantum-computing threat as “ Y2K meets climate change.” He compared it to Y2K because the challenge is unfolding in the digital world and to climate change because the risk will grow over time the longer we delay action.

Peet将量子计算威胁的不确定时机描述为“ Y2K遇到气候变化”。 他将其与Y2K进行了比较,因为挑战在数字世界和气候变化中不断发展,因为随着我们延迟行动的时间越长,风险会随着时间增长。

And just as with threats from climate change, the unfixed time horizon of this potential quantum nightmare makes it easier to drag our feet instead of running toward a solution.

就像气候变化带来的威胁一样,这种潜在的量子噩梦的不确定的时间范围使我们更容易拖延脚步,而不是寻求解决方案。

“The human nature of procrastination, plus the uncertain deadline around quantum computing, means we really need to get people to understand the threat and overcome that procrastination nature,” said Peet.

Peet说:“拖延的人性,加上量子计算的不确定的最后期限,这意味着我们确实需要让人们理解威胁并克服这种拖延性。”

如何停止量子攻击 (How to Stop a Quantum Attack)

The research team surveyed consumers and learned that public awareness of quantum computing and its potential risks is low. With consumers not likely to be vocal drivers of change, it’s important for policymakers to take the lead. If policymakers start working today as if quantum computers really are coming for our data tomorrow, then we can avoid these threats.

该研究小组对消费者进行了调查,发现公众对量子计算及其潜在风险的认识很低。 由于消费者不太可能成为变革的明确推动者,因此对于政策制定者来说,带头很重要。 如果决策者今天开始工作,就好像量子计算机明天真的要来收集我们的数据一样,那么我们可以避免这些威胁。

In the report, the researchers recommend actions that the executive branch, Congress, and individual organizations could take now to minimize the harm that quantum computers may cause.

在报告中,研究人员建议行政部门,国会和各个组织现在可以采取行动,以最小化量子计算机可能造成的危害。

If policymakers start working today as if quantum computers really are coming for our data tomorrow, then we can avoid these threats.

如果决策者今天开始工作,就好像量子计算机明天真的要来收集我们的数据一样,那么我们可以避免这些威胁。

For example, the White House could mandate PQC transition for government agencies, critical infrastructure, and other organizations. To exercise oversight and help increase public awareness, lawmakers on Capitol Hill could hold hearings on the risks of quantum computing. And organizations of any type can prepare for the quantum future by taking inventory of all instances of public-key cryptography in their own processes, as well as the processes of partners and suppliers. This will help ensure that the organization is ready for the transition to PQC, once a standard is available.

例如,白宫可以要求政府机构,关键基础设施和其他组织进行PQC过渡。 为了进行监督并帮助提高公众的认识,国会山的立法者可以举行有关量子计算风险的听证会。 任何类型的组织都可以通过盘点其自己的流程以及合作伙伴和供应商的流程中所有公钥密码实例来为未来的未来做准备。 一旦有了标准,这将有助于确保组织已准备好过渡到PQC。

The bottom line: It’s not all doom and gloom for Future You and your bank account. Quantum computers could break the internet. That much is true. But whether that actually happens is entirely up to us.

最重要的是:对于“未来您”和您的银行帐户,这并非都是厄运和沮丧。 量子计算机可能会破坏互联网。 那是真的。 但是那是否真的发生完全取决于我们。

项目学分 (Project Credits)

Story: Marissa NorrisDesign: Alyson Youngblood

故事:Marissa Norris设计:Alyson Youngblood

This originally appeared on The RAND Blog on April 9, 2020.

它最初出现在 2020年4月9日 的RAND博客 上。

翻译自: https://medium.com/rand-corporation/quantum-computers-will-break-the-internet-but-only-if-we-let-them-2bf151f241bf

量子计算机 量子不确定性


http://www.taodudu.cc/news/show-2746326.html

相关文章:

  • 程序员github头像_给新程序员的5个GitHub技巧
  • Day7-Python综合作业1(DataWhale)
  • 现金的消亡与货币的未来之战 |链捕手
  • 一文读懂DeFi保险市场主要玩家及其运作机制 链捕手
  • 用go来做图像相似性比较
  • python按位置从字符串提取子串的操作是_Python基础-字符串操作和“容器”的操作...
  • ELK 测试数据
  • 事件模式归纳相关研究简述
  • 神经网络提取图片特征,神经网络算法识别图像
  • 相似图像识别算法是什么,机器图像识别常用算法
  • 图像处理 图像相似算法aHash、dHash、pHash解析与对比
  • 数组转这种格式 county_list:{ 110101: “东城区“, 110102: “西城区“, 110105: “朝阳区“, 110106: “丰台区“,
  • 采集全国疫情数据(Python)
  • (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO
  • 5、访客分析
  • MyCat相关知识及测试要点
  • shardingsphere之sharding-proxy读写分离学习笔记
  • 3、流量分析--分组TopN统计
  • 学习笔记——Python输入与输出
  • 5分钟python爬虫案例,手把手教爬取国内外最新疫情历史数据
  • PC/UVa 题号: 110106/10033 Interpreter (解释器)题解 c语言版
  • ubuntu qq音乐/网易云音乐 播放没有声音,播放mv有声音,解决办法
  • MAC OS 下QQ音乐下载存放的位置
  • QQ音乐API
  • php获取QQ音乐直链,~~~获取qq音乐外链方法+源码~~~
  • java获取qq音乐播放连接_QQ音乐vkey获取,更新播放url
  • 计算机锁屏之后QQ音乐停止播放了,MAC电脑如何在息屏状态下让QQ音乐能继续播放音乐...
  • 如何用python抓取qq音乐_手把手教你使用Python抓取QQ音乐数据
  • android 如何去控制第三方音乐播放app之控制QQ音乐
  • qq音乐网络异常获取音乐失败_QQ音乐怎么诊断网络异常

量子计算机 量子不确定性_量子计算机将打破互联网,但前提是我们让它们相关推荐

  1. 量子计算机与人脑接口,量子信息科学:量子计算机、隐形传物与人脑量子运算...

    原标题:量子信息科学:量子计算机.隐形传物与人脑量子运算 提示: 自然界有三个要素:物质.能量和信息:相应的有三类学科:物质科学.能源科学和信息科学.量子力学的诞生从根本观念上改变了人类对自然的认识, ...

  2. 【行业看点】量子通信 量子计算机 量子列车…… 量子的世界究竟多精彩?

    今年以来,"量子"就像科学界的一匹黑马,突然窜出来成了"网红".从量子卫星"墨子号",到量子通信.量子计算机.量子雷达,和量子相关的词语越来 ...

  3. 量子计算机技术难,量子计算机是什么工作原理运行的?现在制造还存在什么技术上的难...

    量子计算机,顾名思义,就是实现量子计算的机器.要说清楚量子计算,首先看经典计算.经典计算机从物理上可以被描述为对输入信号序列按一定算法进行变换的机器,其算法由计算机的内部逻辑电路来实现.经典计算机具有 ...

  4. 量子计算机量子信息研讨会,2015全国量子信息与量子计算机前沿研讨会在我校召开...

    由我校承办的"2015全国量子信息及量子计算机前沿研讨会" 近日在我校成功召开,清华大学.复旦大学.中国科学院等20多个高等院校.科研院所.工程技术人员和在校研究生约100人参加了 ...

  5. 量子纠缠在量子计算机中的作用,量子计算机的强大,为什么需要量子纠缠

    如果不用量子纠缠,量子计算机就没有优势可言了. 很多人都知道,量子计算机的好处就是它算得快,比经典计算机快得多.为什么算得快呢?常见的解释像这样: 中国有一个寓言,叫"杨子见歧路而哭之&qu ...

  6. 量子通信技术和量子计算机,我国的量子通信技术,走在世界前沿,但是量子计算机还需加把劲!...

    原标题:我国的量子通信技术,走在世界前沿,但是量子计算机还需加把劲! 十年前,纳米技术风靡一时,十年后,量子技术成了主流,世界大国不留余力地争相发展量子技术,其中主要是量子通信和量子计算机. 量子通信 ...

  7. IBM发布第一个有100个量子比特的量子计算机; 研究人员创建动态对称性以改进量子比特 | 全球量子科技与工业快讯第四十五期

    IBM发布第一个拥有100个量子比特的量子计算机 IBM最新的量子计算芯片,在11月15日发布,这建立了一个里程碑,其封装了127个量子比特(qubit),这使得它成为第一个比特达到3位数的此类设备. ...

  8. 冷原子量子计算机,量子计算新突破:在71个格点超冷原子量子模拟器中求解施温格方程...

    原标题:量子计算新突破:在71个格点超冷原子量子模拟器中求解施温格方程 来源:中国科学报 北京时间11月19日,<自然>杂志发表了中国科学技术大学教授潘建伟.苑震生等最新研究进展,在71个 ...

  9. 量子计算机led,科学家发现三维量子液晶 超高速量子计算机有戏

    原标题:科学家发现三维量子液晶 超高速量子计算机有戏 19世纪以前,人们从未想过某些物质还可以具有"液晶"状态.直到一位来自奥地利的植物学家,莱尼茨尔在做胆甾醇苯酸酶加热实验时,发 ...

最新文章

  1. SAP WM中阶Storage Type的Capacity Check – Check based on palletization according to SUT 1
  2. 总结2020,起航2021,奔向腾讯,实现增长!
  3. Go语言集合(Map)
  4. [CodeForces1070C]Cloud Computing(2018-2019 ICPC, NEERC, Southern Subregional Contest )
  5. Kafka的Spring Cloud Stream
  6. CF Gym102059 H. Fractions
  7. delphi 中如果不进行 closehandle 会怎么样_心理学:当你迷茫了,请坚持做三件事,你的未来会越来越好...
  8. java判断总共天数_java 判断两个时间相差的天数
  9. vue element new vue const
  10. 创建Windows Mobile上兼容性好的UI 程序
  11. iOS第三方开源库的吐槽和备忘
  12. 域用用户怎么允许共享_怎么设置访问WIN10共享文件夹无需验证(输入用户名和密码)?...
  13. 修改phpMyAdmin使其能够管理多台远程MySQL服务器
  14. 【CVX】SDP and conic form problems
  15. 多多客api_蚂蚁星球(原好京客)(haojingke.com)- 做大京客,享大数据营销 - 拼多多API接口...
  16. 基于Arduino的超声波悬浮
  17. pg_repack使用
  18. 第四届“绽放杯”5G应用征集大赛圆满落幕 中国移动参与项目获奖数量四年蝉联第一
  19. Python之条件竞争
  20. 第六次前端培训(JavaScript的基础语法(二))

热门文章

  1. 新店速递丨白玉兰(商务)酒店赣榆吾悦广场店 正式上线
  2. html用bmob做留言,Bmob 之 简单使用
  3. LambdaQueryWrapper和QueryWapper的区别
  4. MD5 SHA1 SHA256 SHA512 SHA1WithRSA RSA 的区别
  5. cmake的-G 参数
  6. Your Customers Do Not Mean What They Say
  7. httpd配置三种虚拟主机带访问控制
  8. 用python计算100以内所有奇数的和_python怎样求1到100的奇数和
  9. 华为交换机端口配置流量统计
  10. 如何使用图片的exif信息计算相机焦距