位图和调色板的概念

如今Windows(3.x以及95,98,NT)系列已经成为绝大多数用户使用的操作系统,它比DOS成功的一个重要因素是它可视化的漂亮界面。那么Windows是如何显示图象的呢?这就要谈到位图(bitmap)。

我们知道,普通的显示器屏幕是由许许多多点构成的,我们称之为象素。显示时采用扫描的方法:电子枪每次从左到右扫描一行,为每个象素着色,然后从上到下这样扫描若干行,就扫过了一屏。为了防止闪烁,每秒要重复上述过程几十次。例如我们常说的屏幕分辨率为640×480,刷新频率为70Hz,意思是说每行要扫描640个象素,一共有480行,每秒重复扫描屏幕70次。

我们称这种显示器为位映象设备。所谓位映象,就是指一个二维的象素矩阵,而位图就是采用位映象方法显示和存储的图象。举个例子,图1.1是一幅普通的黑白位图,图1.2是被放大后的图,图中每个方格代表了一个象素。我们可以看到:整个骷髅就是由这样一些黑点和白点组成的。

图1.1    骷髅

图1.2    放大后的骷髅位图

那么,彩色图是怎么回事呢?

我们先来说说三元色RGB概念。

我们知道,自然界中的所有颜色都可以由红、绿、蓝(R,G,B)组合而成。有的颜色含有红色成分多一些,如深红;有的含有红色成分少一些,如浅红。针对含有红色成分的多少,可以分成0到255共256个等级,0级表示不含红色成分;255级表示含有100%的红色成分。同样,绿色和蓝色也被分成256级。这种分级概念称为量化。

这样,根据红、绿、蓝各种不同的组合我们就能表示出256×256×256,约1600万种颜色。这么多颜色对于我们人眼来说已经足够丰富了。

表1.1    常见颜色的RGB组合值

颜色

R

G

B

255

0

0

0

255

0

绿

0

0

255

255

255

0

255

0

255

0

255

255

255

255

255

0

0

0

128

128

128

你大概已经明白了,当一幅图中每个象素赋予不同的RGB值时,能呈现出五彩缤纷的颜色了,这样就形成了彩色图。的确是这样的,但实际上的做法还有些差别。

让我们来看看下面的例子。

有一个长宽各为200个象素,颜色数为16色的彩色图,每一个象素都用R、G、B三个分量表示。因为每个分量有256个级别,要用8位(bit),即一个字节(byte)来表示,所以每个象素需要用3个字节。整个图象要用200×200×3,约120k字节,可不是一个小数目呀!如果我们用下面的方法,就能省的多。

因为是一个16色图,也就是说这幅图中最多只有16种颜色,我们可以用一个表:表中的每一行记录一种颜色的R、G、B值。这样当我们表示一个象素的颜色时,只需要指出该颜色是在第几行,即该颜色在表中的索引值。举个例子,如果表的第0行为255,0,0(红色),那么当某个象素为红色时,只需要标明0即可。

让我们再来计算一下:16种状态可以用4位(bit)表示,所以一个象素要用半个字节。整个图象要用200×200×0.5,约20k字节,再加上表占用的字节为3×16=48字节.整个占用的字节数约为前面的1/6,省很多吧?

这张R、G、B的表,就是我们常说的调色板(Palette),另一种叫法是颜色查找表LUT(Look Up Table),似乎更确切一些。Windows位图中便用到了调色板技术。其实不光是Windows位图,许多图象文件格式如pcx、tif、gif等都用到了。所以很好地掌握调色板的概念是十分有用的。

有一种图,它的颜色数高达256×256×256种,也就是说包含我们上述提到的R、G、B颜色表示方法中所有的颜色,这种图叫做真彩色图(true color)。真彩色图并不是说一幅图包含了所有的颜色,而是说它具有显示所有颜色的能力,即最多可以包含所有的颜色。表示真彩色图时,每个象素直接用R、G、B三个分量字节表示,而不采用调色板技术。原因很明显:如果用调色板,表示一个象素也要用24位,这是因为每种颜色的索引要用24位(因为总共有224种颜色,即调色板有224行),和直接用R,G,B三个分量表示用的字节数一样,不但没有任何便宜,还要加上一个256×256×256×3个字节的大调色板。所以真彩色图直接用R、G、B三个分量表示,它又叫做24位色图。

1.2bmp文件格式

介绍完位图和调色板的概念,下面就让我们来看一看Windows的位图文件(.bmp文件)的格式是什么样子的。

bmp文件大体上分成四个部分,如图1.3所示。

位图文件头BITMAPFILEHEADER

位图信息头BITMAPINFOHEADER

调色板Palette

实际的位图数据ImageDate

图1.3     Windows位图文件结构示意图

第一部分为位图文件头BITMAPFILEHEADER,是一个结构,其定义如下:

typedef struct tagBITMAPFILEHEADER {

WORD           bfType;

DWORD bfSize;

WORD           bfReserved1;

WORD           bfReserved2;

DWORD bfOffBits;

} BITMAPFILEHEADER;

这个结构的长度是固定的,为14个字节(WORD为无符号16位整数,DWORD为无符号32位整数),各个域的说明如下:

bfType

指定文件类型,必须是0x424D,即字符串“BM”,也就是说所有.bmp文件的头两个字节都是“BM”。

bfSize

指定文件大小,包括这14个字节。

bfReserved1,bfReserved2     

为保留字,不用考虑

bfOffBits

为从文件头到实际的位图数据的偏移字节数,即图1.3中前三个部分的长度之和。

第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:

typedef struct tagBITMAPINFOHEADER{

DWORD  biSize;

LONG            biWidth;

LONG            biHeight;

WORD           biPlanes;

WORD           biBitCount

DWORD  biCompression;

DWORD  biSizeImage;

LONG            biXPelsPerMeter;

LONG            biYPelsPerMeter;

DWORD  biClrUsed;

DWORD  biClrImportant;

} BITMAPINFOHEADER;

这个结构的长度是固定的,为40个字节(LONG为32位整数),各个域的说明如下:

biSize

指定这个结构的长度,为40。

biWidth

指定图象的宽度,单位是象素。

biHeight

指定图象的高度,单位是象素。

biPlanes

必须是1,不用考虑。

biBitCount

指定表示颜色时要用到的位数,常用的值为1(黑白二色图), 4(16色图), 8(256色), 24(真彩色图)(新的.bmp格式支持32位色,这里就不做讨论了)。

biCompression

指定位图是否压缩,有效的值为BI_RGB,BI_RLE8,BI_RLE4,BI_BITFIELDS(都是一些Windows定义好的常量)。要说明的是,Windows位图可以采用RLE4,和RLE8的压缩格式,但用的不多。我们今后所讨论的只有第一种不压缩的情况,即biCompression为BI_RGB的情况。

biSizeImage

指定实际的位图数据占用的字节数,其实也可以从以下的公式中计算出来:

biSizeImage=biWidth’ × biHeight

要注意的是:上述公式中的biWidth’必须是4的整倍数(所以不是biWidth,而是biWidth’,表示大于或等于biWidth的,最接近4的整倍数。举个例子,如果biWidth=240,则biWidth’=240;如果biWidth=241,biWidth’=244)。

如果biCompression为BI_RGB,则该项可能为零

biXPelsPerMeter

指定目标设备的水平分辨率,单位是每米的象素个数,关于分辨率的概念,我们将在第4章详细介绍。

biYPelsPerMeter

指定目标设备的垂直分辨率,单位同上。

biClrUsed

指定本图象实际用到的颜色数,如果该值为零,则用到的颜色数为2biBitCount

biClrImportant

指定本图象中重要的颜色数,如果该值为零,则认为所有的颜色都是重要的。

第三部分为调色板Palette,当然,这里是对那些需要调色板的位图文件而言的。有些位图,如真彩色图,前面已经讲过,是不需要调色板的,BITMAPINFOHEADER后直接是位图数据。

调色板实际上是一个数组,共有biClrUsed个元素(如果该值为零,则有2biBitCount个元素)。数组中每个元素的类型是一个RGBQUAD结构,占4个字节,其定义如下:

typedef struct tagRGBQUAD {

BYTE    rgbBlue; //该颜色的蓝色分量

BYTE    rgbGreen; //该颜色的绿色分量

BYTE    rgbRed; //该颜色的红色分量

BYTE    rgbReserved; //保留值

} RGBQUAD;

第四部分就是实际的图象数据了。对于用到调色板的位图,图象数据就是该象素颜在调色板中的索引值。对于真彩色图,图象数据就是实际的R、G、B值。下面针对2色、16色、256色位图和真彩色位图分别介绍。

对于2色位图,用1位就可以表示该象素的颜色(一般0表示黑,1表示白),所以一个字节可以表示8个象素。

对于16色位图,用4位可以表示一个象素的颜色,所以一个字节可以表示2个象素。

对于256色位图,一个字节刚好可以表示1个象素。

对于真彩色图,三个字节才能表示1个象素,哇,好费空间呀!没办法,谁叫你想让图的颜色显得更亮丽呢,有得必有失嘛。

要注意两点:

(1)   每一行的字节数必须是4的整倍数,如果不是,则需要补齐。这在前面介绍biSizeImage时已经提到了。

(2)   一般来说,.bMP文件的数据从下到上,从左到右的。也就是说,从文件中最先读到的是图象最下面一行的左边第一个象素,然后是左边第二个象素……接下来是倒数第二行左边第一个象素,左边第二个象素……依次类推,最后得到的是最上面一行的最右一个象素

原文链接:http://man.lupaworld.com/content/other/book1/chap01.htm

BITMAP位图 调色板相关推荐

  1. Bitmap位图结构

    Bitmap位图结构 一.位图数据结构 BMP文件的数据按照从文件头开始的先后顺序分为四个部分: ◆ 位图文件头(bmp file header):  提供文件的格式.大小等信息 ◆ 位图信息头(bi ...

  2. 【Bitmap Index】B-Tree索引与Bitmap位图索引的锁代价比较研究

    通过以下实验,来验证Bitmap位图索引较之普通的B-Tree索引锁的"高昂代价".位图索引会带来"位图段级锁",实际使用过程一定要充分了解不同索引带来的锁代价 ...

  3. redis 中一个字段 修改map_Redis bitmap 位图 从入门到精通 基础 实战 妙用

    1.bitmap介绍 位图不是真正的数据类型,它是定义在字符串类型中,一个字符串类型的值最多能存储512M字节的内容 位上限:2^(9(512)+10(1024)+10(1024)+3(8b=1B)) ...

  4. linux中获取redis的map,深入Redis之 bitmap位图和HyperLogLog(五)

    bitmap位图 我们知道一个字符占1个字节,也就是8个位 例如 set name big big字符串中的3个字符的ASCII码为98 105 113 所以big转为二进制就是: 01100010| ...

  5. java base64转bitmap,如何将Bitmap位图与base64字符串相互转换

    先引用delphi自带的单元 uses EncdDecd; 然后就可以使用下面二个函数了: ///将Bitmap位图转化为base64字符串 function BitmapToString(img:T ...

  6. Redis(十一):Redis特殊类型之Bitmap位图

    1.位存储 只有0和1两种状态! Bitmap 位图:数据结构,都是操作二进制位来进行记录 登录/未登录 活跃/不活跃 打卡 两个状态的都可以使用Bitmap! 2.常用命令 2.1.用Bitmap来 ...

  7. Redis(十)——HyperLogLog 基数统计和 Bitmap位图场景详解

    文章目录 Redis(十)--HyperLogLog 基数统计和 Bitmap位图场景详解 1.HyperLogLog 基数统计 2.Bitmap位图场景详解 Redis(十)--HyperLogLo ...

  8. oracle位图索引和普通索引区别,【索引】Bitmap位图索引与普通的B-Tree索引锁的比较...

    通过以下实验,来验证Bitmap位图索引较之普通的B-Tree索引锁的"高昂代价".位图索引会带来"位图段级锁",实际使用过程一定要充分了解不同索引带来的锁代价 ...

  9. 三种特殊数据类型——bitmap位图

    bitmap 位存储 如:统计疫情感染人数:1 ,0 : 1表示感染, 0:表示未感染. 统计用户信息:活跃,不活跃!登录,未登录!打卡:365天打卡! 只要是两个状态的,都可以使用Bitmap! B ...

最新文章

  1. C++中 #include与#include
  2. 没有找到合适的方法来重写_玻璃片价格太高?你可能没有找到合适的供应商
  3. 关于JAVA中子类和父类的构造方法
  4. 【2021.01.01】人生中很重要的一个十年,差强人意
  5. java游戏暂停弹出字体_小白写了个java的小游戏 想加个暂停的功能 无从下手 求大佬们帮...
  6. php post undefined index,PHP 中提示undefined index如何解决(多种方法)
  7. 这款游戏玩法是Low了点,但赚的却是实打实的EOS。
  8. 不是生活所迫,谁特么想努力!
  9. map转json字符串字段排序
  10. Word排版艺术 读后感
  11. 抱米花豆丁下载器20100529(单文件绿色版)
  12. android支付宝4000,Android支付——支付宝支付
  13. JavaScript星星连线技巧
  14. ECshop商品详情页显示可赠送积分和购买使用金额积分
  15. 网络信息安全的重要性
  16. matlab调和级数求和,科学网—疯狂的绝技------级数加速收敛的艺术 - 张江敏的博文...
  17. Failed to push the item
  18. 广点通-优量汇广告接入文档
  19. Linux学习笔记 16(存储设备管理)
  20. OpenLayers基础

热门文章

  1. 2021年我国单身成年人将升至9200万,单身人口的增加会带来哪些影响?
  2. 勒索病毒之后 企业文件安全保护如何落到实处?
  3. python-----因子分析
  4. 空调风扇内机不转故障分析与检修
  5. NVMe SSD新功能Reservation从入门到精通
  6. 【免费】文件格式转换网站
  7. 女性英文名對照及涵意大全
  8. 分子模拟对接教程—带你从 0 到 1
  9. [GDUT]1060: 跟XxX_Stu 玩游戏(很简单题目)
  10. Spring的注解@Bean