---------------------------------

编码器输出格式

----------------------------------

总的来说H264的码流的打包方式有两种,一种为annex-b byte stream format的格式,这个是绝大部分编码器的默认输出格式,就是每个帧的开头的3~4个字节是H264的start_code,0x00000001或者0x000001。
另一种是原始的NAL打包格式,就是开始的若干字节(1,2,4字节)是NAL的长度,而不是start_code,此时必须借助某个全局的数据来获得编码器的profile,level,PPS,SPS等信息才可以解码。

@之前还疑惑过PPS 和SPS是哪里来的,答案是编码器给出的。

------------------------------

编码数据流分析

------------------------------

首先明确一下,NAL数据流的组成:开始码+NAL头(forbidden_bit+nal_ref+nal_type)+RBSP

下面对一段H264编码数据流进行分析。

00 00 00 01 67 42 00 1E 99 A0 B1 31 00 00 00 01

H264的数据流分为两种,一种是NAL UNIT stream(RTP),一种是 bits stream,

两者可以互相转换。我们分析的这个是 bit stream,根据AnnexB

00 00 00 01 67 42 00 1E 99 A0 B1 31 是 一个NAL,在两个00 00 00 01之间

0110 0111 0100 0010 0000 0000 0001 1110 1001 1001 1010 0000 1011 0001 0011 0001

forbidden_zero_bit(1)= 0//网络传输正确

nal_ref_idc(2)= 11//参考值为3

nal_unit_type(5) = 0 0111:seq_parameter_set_rbsp( )//7,序列参数集

说明这个NALU的RBSP里装的是SPS数据 ,所以 processSPS

profile_idc(8):42:0100 0010

constraint_set0_flag(1):0

constraint_set1_flag(1):0

constraint_set2_flag(1):0

constraint_set3_flag(1):0

reserved_zero_4bits(4):0

level_idc(8):1E

seq_parameter_set_id(UE(V)):

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor is specified in subclause9.1

uvlC: 1001:根据Table9.1 , value= 0,只占1bit.

根据profile_idc忽略掉一部分。

log2_max_frame_num_minus4(ue(v): 001 1001,len = 5,value= 5

pic_order_cnt_type(ue(v)):01 1010,len = 3,value = 2

根据pic_order_cnt_type忽略几个参数

num_ref_frames(ue):010,len = 3,value = 1

0000 1011 0001 0011 0001

gaps_in_frame_num_value_allowed_flag(1) = 0

pic_width_in_mbs_minus1(ue):000 1011 ,len = 7,value = 10;

pic_height_in_map_units_minus1(ue):0001 001,len = 7,value = 8

frame_mbs_only_flag(1) = 1

忽略1

direct_8x8_inference_flag(1):0

忽略

vui_parameters_present_flag(1):0

忽略

NALU结束

68 CE 38 80 00 00 00 01

0110 1000

forbidden_zero_bit(1)= 0

nal_ref_idc(2)= 11

nal_unit_type(5) =01000:pic_parameter_set_rbsp( ),7.3.2.2//8图像参数集

1100

pic_parameter_set_id (ue)=0

seq_parameter_set_id(ue)=0

entropy_coding_mode_flag(1) :0, 重要的flag,0表示编码Exp-Golomb coded and CAVLC,1表示CABAC

pic_order_present_flag(1):0

1110

num_slice_groups_minus1(ue):0

忽略

num_ref_idx_l0_active_minus1(ue):0

num_ref_idx_l1_active_minus1(ue):0

weighted_pred_flag(1);0

0011 1000 1000 0000

weighted_bipred_idc(2):00

pic_init_qp_minus26 /* relative to 26 */(se):0

pic_init_qs_minus26 /* relative to 26 */(se):0

chroma_qp_index_offset(se):0

deblocking_filter_control_present_flag(1);0

constrained_intra_pred_flag(1):0

redundant_pic_cnt_present_flag(1):0

忽略

NALU结束

65 88 80 21 71 27 1B 88…….3888*16 byte

65:0110 0101

forbidden_zero_bit(1)= 0

nal_ref_idc(2)= 11

nal_unit_type(5) =0 0101:slice_layer_without_partitioning_rbsp( )//IDR帧

Slice

Slice_Header:

first_mb_in_slice(ue):0

slice_type(ue):000 1000 = 7

pic_parameter_set_id(ue) = 0

80 21:000 0000 0010 0001

frame_num(u(v): frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits,9 bits = 0

忽略

if( nal_unit_type = = 5 ) //IDR frame

idr_pic_id(u(e)):0

忽略N多

ref_pic_list_reordering( ) 见7。3。3。1忽略,Islice,SI slice,B slice

nal_ref_idc =11 所以dec_ref_pic_marking( )

nal_unit_type = 5,所以

no_output_of_prior_pics_flag(1):0

long_term_reference_flag(1):0

忽略

。。71 27

001 0111 0001 0010 0111

slice_qp_delta(se(v):001 01,4:-2

忽略

slice_data( ):7.3.4

对I-Slice:忽略N多

进入if( moreDataFlag ) { if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | | ( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )mb_field_decoding_flag

macroblock_layer( )}

mb_field_decoding_flag忽略

macroblock_layer( )

mb_type(ue(v):0

mb_pred( mb_type )

prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ](1bit,对babac是ae(v)):1

1 27:0001 0010 0111

prev_intra4x4_pred_mode_flag[ 1 ] : 0001,0,001

0010 0111

prev_intra4x4_pred_mode_flag[ 2 ] : 0010,0,010

prev_intra4x4_pred_mode_flag[ 3] : 0111,0,111

……16个

1b 88 00 3e cf.

intra_chroma_pred_mode(ue(v)) :最后的一个1bit:0

接下来是macroblock_layer的coded_block_pattern和run level,既系数

c0 06 ad a0 18

1100 0000 0000 0110 1010 0000 0001 1000

coded_block_pattern(me(v):0,根据T= 47,0x2f

mb_qp_delta(se(v):):0 len =1

residual( )见7.3.5.3

residual_block( LumaLevel[ i8x8 * 4 + i4x4 ], 16 )

coeff_token(ce(v): 00 0000 0000 0110 1

nc = 0(left block and top block 相关的):

len: { // 0702

{ 1, 6, 8, 9,10,11,13,13,13,14,14,15,15,16,16,16,16},

{ 0, 2, 6, 8, 9,10,11,13,13,14,14,15,15,15,16,16,16},

{ 0, 0, 3, 7, 8, 9,10,11,13,13,14,14,15,15,16,16,16},

{ 0, 0, 0, 5, 6, 7, 8, 9,10,11,13,14,14,15,15,16,16},

},

{

{ 2, 6, 6, 7, 8, 8, 9,11,11,12,12,12,13,13,13,14,14},

{ 0, 2, 5, 6, 6, 7, 8, 9,11,11,12,12,13,13,14,14,14},

{ 0, 0, 3, 6, 6, 7, 8, 9,11,11,12,12,13,13,13,14,14},

{ 0, 0, 0, 4, 4, 5, 6, 6, 7, 9,11,11,12,13,13,13,14},

},

{

{ 4, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9,10,10,10,10},

{ 0, 4, 5, 5, 5, 5, 6, 6, 7, 8, 8, 9, 9, 9,10,10,10},

{ 0, 0, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,10,10,10},

{ 0, 0, 0, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 9,10,10,10},

},

code:

{ 1, 5, 7, 7, 7, 7,15,11, 8,15,11,15,11,15,11, 7,4},

{ 0, 1, 4, 6, 6, 6, 6,14,10,14,10,14,10, 1,14,10,6},

{ 0, 0, 1, 5, 5, 5, 5, 5,13, 9,13, 9,13, 9,13, 9,5},

{ 0, 0, 0, 3, 3, 4, 4, 4, 4, 4,12,12, 8,12, 8,12,8},

},

{

{ 3,11, 7, 7, 7, 4, 7,15,11,15,11, 8,15,11, 7, 9,7},

{ 0, 2, 7,10, 6, 6, 6, 6,14,10,14,10,14,10,11, 8,6},

{ 0, 0, 3, 9, 5, 5, 5, 5,13, 9,13, 9,13, 9, 6,10,5},

{ 0, 0, 0, 5, 4, 6, 8, 4, 4, 4,12, 8,12,12, 8, 1,4},

},

{

{15,15,11, 8,15,11, 9, 8,15,11,15,11, 8,13, 9, 5,1},

{ 0,14,15,12,10, 8,14,10,14,14,10,14,10, 7,12, 8,4},

{ 0, 0,13,14,11, 9,13, 9,13,10,13, 9,13, 9,11, 7,3},

{ 0, 0, 0,12,11,10, 9, 8,13,12,12,12, 8,12,10, 6,2},

},

根据表查的:

code = 13,len = 15,i= 12,j=2

所以numcoeff = 12,numtrailingones = 2

010 0000 0001 1000: totalzeros:根据numcoeff

int lentab[TOTRUN_NUM][16] =

{

{ 1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},

{ 3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},

{ 4,3,3,3,4,4,3,3,4,5,5,6,5,6},

{ 5,3,4,4,3,3,3,4,3,4,5,5,5},

{ 4,4,4,3,3,3,3,3,4,5,4,5},

{ 6,5,3,3,3,3,3,3,4,3,6},

{ 6,5,3,3,3,2,3,4,3,6},

{ 6,4,5,3,2,2,3,3,6},

{ 6,6,4,2,2,3,2,5},

{ 5,5,3,2,2,2,4},

{ 4,4,3,3,1,3},

{ 4,4,2,1,3}, numcoeff开始

{ 3,3,1,2},

{ 2,2,1},

{ 1,1},

};

int codtab[TOTRUN_NUM][16] =

{

{1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},

{7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},

{5,7,6,5,4,3,4,3,2,3,2,1,1,0},

{3,7,5,4,6,5,4,3,3,2,2,1,0},

{5,4,3,7,6,5,4,3,2,1,1,0},

{1,1,7,6,5,4,3,2,1,1,0},

{1,1,5,4,3,3,2,1,1,0},

{1,1,1,3,3,2,2,1,0},

{1,0,1,3,2,1,1,1,},

{1,0,1,3,2,1,1,},

{0,1,1,2,1,3},

{0,1,1,1,1}, numcoeff开始

{0,1,1,1},

{0,1,1},

{0,1},

};

Code = 1,len = 2,i=2,j = 0, totzeros = 2

Read run: 0 0000 0001 1000根据totzeros = 2

int lentab[TOTRUN_NUM][16] =

{

{1,1},

{1,2,2},

{2,2,2,2},

{2,2,2,3,3},

{2,2,3,3,3,3},

{2,3,3,3,3,3,3},

{3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},

};

int codtab[TOTRUN_NUM][16] =

{

{1,0},

{1,1,0},

{3,2,1,0},

{3,2,1,1,0},

{3,2,3,2,1,0},

{3,0,1,3,2,5,4},

{7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},

Code = 1,len =1,I = 0,j = 0

0.1.1 Slice data syntax

slice_data( ) {

C

Descriptor

if( entropy_coding_mode_flag )

while( !byte_aligned( ) )

cabac_alignment_one_bit

2

f(1)

CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )

moreDataFlag = 1

prevMbSkipped = 0

do {

if( slice_type != I && slice_type != SI )

if( !entropy_coding_mode_flag ) {

mb_skip_run

2

ue(v)

prevMbSkipped = ( mb_skip_run > 0 )

for( i=0; i<mb_skip_run; i++ )

CurrMbAddr = NextMbAddress( CurrMbAddr )

moreDataFlag = more_rbsp_data( )

} else {

mb_skip_flag

2

ae(v)

moreDataFlag = !mb_skip_flag

}

if( moreDataFlag ) {

if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | |

( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )

mb_field_decoding_flag

2

u(1) | ae(v)

macroblock_layer( )

2 | 3 | 4

}

if( !entropy_coding_mode_flag )

moreDataFlag = more_rbsp_data( )

else {

if( slice_type != I && slice_type != SI )

prevMbSkipped = mb_skip_flag

if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 )

moreDataFlag = 1

else {

end_of_slice_flag

2

ae(v)

moreDataFlag = !end_of_slice_flag

}

}

CurrMbAddr = NextMbAddress( CurrMbAddr )

} while( moreDataFlag )

}

se(v) : CABAC正式介绍。根据Table 9 5 – coeff_token mapping to TotalCoeff( coeff_token ) and TrailingOnes( coeff_token )。

chroma_format_idc 无

Table9‑1 – Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative)

Bit string form

Range of codeNum

1

0

0 1 x0

1-2

0 0 1 x1 x0

3-6

0 0 0 1 x2 x1 x0

7-14

0 0 0 0 1 x3 x2 x1 x0

15-30

0 0 0 0 0 1 x4 x3 x2 x1 x0

31-62

0.1.1.1 Slice layer without partitioning RBSP syntax

slice_layer_without_partitioning_rbsp( ) {

C

Descriptor

slice_header( )

2

slice_data( ) /* all categories of slice_data( ) syntax */

2 | 3 | 4

rbsp_slice_trailing_bits( )

2

}

0.1.1.2 Sequence parameter set RBSP syntax

seq_parameter_set_rbsp( ) {

C

Descriptor

profile_idc

0

u(8)

constraint_set0_flag

0

u(1)

constraint_set1_flag

0

u(1)

constraint_set2_flag

0

u(1)

constraint_set3_flag

0

u(1)

reserved_zero_4bits /* equal to 0 */

0

u(4)

level_idc

0

u(8)

seq_parameter_set_id

0

ue(v)

if( profile_idc = = 100 | | profile_idc = = 110 | |
profile_idc = = 122 | | profile_idc = = 144 ) {

chroma_format_idc

0

ue(v)

if( chroma_format_idc = = 3 )

residual_colour_transform_flag

0

u(1)

bit_depth_luma_minus8

0

ue(v)

bit_depth_chroma_minus8

0

ue(v)

qpprime_y_zero_transform_bypass_flag

0

u(1)

seq_scaling_matrix_present_flag

0

u(1)

if( seq_scaling_matrix_present_flag )

for( i = 0; i < 8; i++ ) {

seq_scaling_list_present_flag[ i]

0

u(1)

if( seq_scaling_list_present_flag[ i ] )

if( i < 6 )

scaling_list( ScalingList4x4[ i ], 16,
UseDefaultScalingMatrix4x4Flag[ i ])

0

else

scaling_list( ScalingList8x8[ i – 6 ], 64,
UseDefaultScalingMatrix8x8Flag[ i – 6 ] )

0

}

}

log2_max_frame_num_minus4

0

ue(v)

pic_order_cnt_type

0

ue(v)

if( pic_order_cnt_type = = 0 )

log2_max_pic_order_cnt_lsb_minus4

0

ue(v)

else if( pic_order_cnt_type = = 1 ) {

delta_pic_order_always_zero_flag

0

u(1)

offset_for_non_ref_pic

0

se(v)

offset_for_top_to_bottom_field

0

se(v)

num_ref_frames_in_pic_order_cnt_cycle

0

ue(v)

for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ )

offset_for_ref_frame[ i ]

0

se(v)

}

num_ref_frames

0

ue(v)

gaps_in_frame_num_value_allowed_flag

0

u(1)

pic_width_in_mbs_minus1

0

ue(v)

pic_height_in_map_units_minus1

0

ue(v)

frame_mbs_only_flag

0

u(1)

if( !frame_mbs_only_flag )

mb_adaptive_frame_field_flag

0

u(1)

direct_8x8_inference_flag

0

u(1)

frame_cropping_flag

0

u(1)

if( frame_cropping_flag ) {

frame_crop_left_offset

0

ue(v)

frame_crop_right_offset

0

ue(v)

frame_crop_top_offset

0

ue(v)

frame_crop_bottom_offset

0

ue(v)

}

vui_parameters_present_flag

0

u(1)

if( vui_parameters_present_flag )

vui_parameters( )

0

rbsp_trailing_bits( )

0

}

Table7‑1 – NAL unit type codes

nal_unit_type

Content of NAL unit and RBSP syntax structure

C

0

Unspecified

1

Coded slice of a non-IDR picture
slice_layer_without_partitioning_rbsp( )

2, 3, 4

2

Coded slice data partition A 
slice_data_partition_a_layer_rbsp( )

2

3

Coded slice data partition B 
slice_data_partition_b_layer_rbsp( )

3

4

Coded slice data partition C 
slice_data_partition_c_layer_rbsp( )

4

5

Coded slice of an IDR picture
slice_layer_without_partitioning_rbsp( )

2, 3

6

Supplemental enhancement information (SEI)
sei_rbsp( )

5

7

Sequence parameter set
seq_parameter_set_rbsp( )

0

8

Picture parameter set
pic_parameter_set_rbsp( )

1

9

Access unit delimiter
access_unit_delimiter_rbsp( )

6

10

End of sequence
end_of_seq_rbsp( )

7

11

End of stream
end_of_stream_rbsp( )

8

12

Filler data
filler_data_rbsp( )

9

13

Sequence parameter set extension
seq_parameter_set_extension_rbsp( )

10

14..18

Reserved

19

Coded slice of an auxiliary coded picture without partitioning
slice_layer_without_partitioning_rbsp( )

2, 3, 4

20..23

Reserved

24..31

Unspecified

byte_stream_nal_unit( NumBytesInNALunit ) {

C

Descriptor

while( next_bits( 24 ) != 0x000001 &&
next_bits( 32 ) != 0x00000001 )

leading_zero_8bits /* equal to 0x00 */

f(8)

if( next_bits( 24 ) != 0x000001 )

zero_byte /* equal to 0x00 */

f(8)

start_code_prefix_one_3bytes /* equal to 0x000001 */

f(24)

nal_unit( NumBytesInNALunit)

while( more_data_in_byte_stream( ) &&
next_bits( 24 ) != 0x000001 &&
next_bits( 32 ) != 0x00000001 )

trailing_zero_8bits /* equal to 0x00 */

f(8)

}

0.1.1.3 Picture parameter set RBSP syntax

pic_parameter_set_rbsp( ) {

C

Descriptor

pic_parameter_set_id

1

ue(v)

seq_parameter_set_id

1

ue(v)

entropy_coding_mode_flag

1

u(1)

pic_order_present_flag

1

u(1)

num_slice_groups_minus1

1

ue(v)

if( num_slice_groups_minus1 > 0 ) {

slice_group_map_type

1

ue(v)

if( slice_group_map_type = = 0 )

for( iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++ )

run_length_minus1[ iGroup ]

1

ue(v)

else if( slice_group_map_type = = 2 )

for( iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++ ) {

top_left[ iGroup ]

1

ue(v)

bottom_right[ iGroup ]

1

ue(v)

}

else if( slice_group_map_type = = 3 | | 
slice_group_map_type = = 4 | | 
slice_group_map_type = = 5 ) {

slice_group_change_direction_flag

1

u(1)

slice_group_change_rate_minus1

1

ue(v)

} else if( slice_group_map_type = = 6 ) {

pic_size_in_map_units_minus1

1

ue(v)

for( i = 0; i <= pic_size_in_map_units_minus1; i++ )

slice_group_id[ i ]

1

u(v)

}

}

num_ref_idx_l0_active_minus1

1

ue(v)

num_ref_idx_l1_active_minus1

1

ue(v)

weighted_pred_flag

1

u(1)

weighted_bipred_idc

1

u(2)

pic_init_qp_minus26 /* relative to 26 */

1

se(v)

pic_init_qs_minus26 /* relative to 26 */

1

se(v)

chroma_qp_index_offset

1

se(v)

deblocking_filter_control_present_flag

1

u(1)

constrained_intra_pred_flag

1

u(1)

redundant_pic_cnt_present_flag

1

u(1)

if( more_rbsp_data( ) ) {

transform_8x8_mode_flag

1

u(1)

pic_scaling_matrix_present_flag

1

u(1)

if( pic_scaling_matrix_present_flag )

for( i = 0; i < 6 + 2* transform_8x8_mode_flag; i++ ) {

pic_scaling_list_present_flag[ i]

1

u(1)

if( pic_scaling_list_present_flag[ i ] )

if( i < 6 )

scaling_list( ScalingList4x4[ i ], 16,
UseDefaultScalingMatrix4x4Flag[ i ] )

1

else

scaling_list( ScalingList8x8[ i – 6 ], 64,
UseDefaultScalingMatrix8x8Flag[ i – 6 ] )

1

}

second_chroma_qp_index_offset

1

se(v)

}

rbsp_trailing_bits( )

1

}

0.1.2 Slice header syntax

slice_header( ) {

C

Descriptor

first_mb_in_slice

2

ue(v)

slice_type

2

ue(v)

pic_parameter_set_id

2

ue(v)

frame_num

2

u(v)

if( !frame_mbs_only_flag ) {

field_pic_flag

2

u(1)

if( field_pic_flag )

bottom_field_flag

2

u(1)

}

if( nal_unit_type = = 5 )

idr_pic_id

2

ue(v)

if( pic_order_cnt_type = = 0 ) {

pic_order_cnt_lsb

2

u(v)

if( pic_order_present_flag && !field_pic_flag )

delta_pic_order_cnt_bottom

2

se(v)

}

if( pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag ) {

delta_pic_order_cnt[ 0 ]

2

se(v)

if( pic_order_present_flag && !field_pic_flag )

delta_pic_order_cnt[ 1 ]

2

se(v)

}

if( redundant_pic_cnt_present_flag )

redundant_pic_cnt

2

ue(v)

if( slice_type = = B )

direct_spatial_mv_pred_flag

2

u(1)

if( slice_type = = P | | slice_type = = SP | | slice_type = = B ) {

num_ref_idx_active_override_flag

2

u(1)

if( num_ref_idx_active_override_flag ) {

num_ref_idx_l0_active_minus1

2

ue(v)

if( slice_type = = B )

num_ref_idx_l1_active_minus1

2

ue(v)

}

}

ref_pic_list_reordering( )

2

if( ( weighted_pred_flag && ( slice_type = = P | | slice_type = = SP ) ) | |
( weighted_bipred_idc = = 1 && slice_type = = B ) )

pred_weight_table( )

2

if( nal_ref_idc != 0 )

dec_ref_pic_marking( )

2

if( entropy_coding_mode_flag && slice_type != I && slice_type != SI )

cabac_init_idc

2

ue(v)

slice_qp_delta

2

se(v)

if( slice_type = = SP | | slice_type = = SI ) {

if( slice_type = = SP )

sp_for_switch_flag

2

u(1)

slice_qs_delta

2

se(v)

}

if( deblocking_filter_control_present_flag ) {

disable_deblocking_filter_idc

2

ue(v)

if( disable_deblocking_filter_idc != 1 ) {

slice_alpha_c0_offset_div2

2

se(v)

slice_beta_offset_div2

2

se(v)

}

}

if( num_slice_groups_minus1 > 0 &&
slice_group_map_type >= 3 && slice_group_map_type <= 5)

slice_group_change_cycle

2

u(v)

}

0.1.3 Slice data syntax

slice_data( ) {

C

Descriptor

if( entropy_coding_mode_flag )

while( !byte_aligned( ) )

cabac_alignment_one_bit

2

f(1)

CurrMbAddr = first_mb_in_slice * ( 1 + MbaffFrameFlag )

moreDataFlag = 1

prevMbSkipped = 0

do {

if( slice_type != I && slice_type != SI )

if( !entropy_coding_mode_flag ) {

mb_skip_run

2

ue(v)

prevMbSkipped = ( mb_skip_run > 0 )

for( i=0; i<mb_skip_run; i++ )

CurrMbAddr = NextMbAddress( CurrMbAddr )

moreDataFlag = more_rbsp_data( )

} else {

mb_skip_flag

2

ae(v)

moreDataFlag = !mb_skip_flag

}

if( moreDataFlag ) {

if( MbaffFrameFlag && ( CurrMbAddr % 2 = = 0 | |

( CurrMbAddr % 2 = = 1 && prevMbSkipped ) ) )

mb_field_decoding_flag

2

u(1) | ae(v)

macroblock_layer( )

2 | 3 | 4

}

if( !entropy_coding_mode_flag )

moreDataFlag = more_rbsp_data( )

else {

if( slice_type != I && slice_type != SI )

prevMbSkipped = mb_skip_flag

if( MbaffFrameFlag && CurrMbAddr % 2 = = 0 )

moreDataFlag = 1

else {

end_of_slice_flag

2

ae(v)

moreDataFlag = !end_of_slice_flag

}

}

CurrMbAddr = NextMbAddress( CurrMbAddr )

} while( moreDataFlag )

}

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = ( mb_adaptive_frame_field_flag && !field_pic_flag ) (7-22)

0.1.4 Macroblock layer syntax

macroblock_layer( ) {

C

Descriptor

mb_type

2

ue(v) | ae(v)

if( mb_type = = I_PCM ) {

while( !byte_aligned( ) )

pcm_alignment_zero_bit

2

f(1)

for( i = 0; i < 256; i++ )

pcm_sample_luma[ i ]

2

u(v)

for( i = 0; i < 2 * MbWidthC * MbHeightC; i++ )

pcm_sample_chroma[ i ]

2

u(v)

} else {

noSubMbPartSizeLessThan8x8Flag = 1

if( mb_type != I_NxN &&

MbPartPredMode( mb_type, 0 ) != Intra_16x16 &&

NumMbPart( mb_type ) = = 4 ) {

sub_mb_pred( mb_type )

2

for( mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++ )

if( sub_mb_type[ mbPartIdx ] != B_Direct_8x8 ) {

if( NumSubMbPart( sub_mb_type[ mbPartIdx ] ) > 1 )

noSubMbPartSizeLessThan8x8Flag = 0

} else if( !direct_8x8_inference_flag )

noSubMbPartSizeLessThan8x8Flag = 0

} else {

if( transform_8x8_mode_flag && mb_type = = I_NxN )

transform_size_8x8_flag

2

u(1) | ae(v)

mb_pred( mb_type )

2

}

if( MbPartPredMode( mb_type, 0 ) != Intra_16x16 ) {

coded_block_pattern

2

me(v) | ae(v)

if( CodedBlockPatternLuma > 0 &&

transform_8x8_mode_flag && mb_type != I_NxN &&

noSubMbPartSizeLessThan8x8Flag &&

( mb_type != B_Direct_16x16 | | direct_8x8_inference_flag ) )

transform_size_8x8_flag

2

u(1) | ae(v)

}

if( CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |
MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {

mb_qp_delta

2

se(v) | ae(v)

residual( )

3 | 4

}

}

}

0.1.4.1 Macroblock prediction syntax

mb_pred( mb_type ) {

C

Descriptor

if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 | | 
MbPartPredMode( mb_type, 0 ) = = Intra_8x8 | | 
MbPartPredMode( mb_type, 0 ) = = Intra_16x16 ) {

if( MbPartPredMode( mb_type, 0 ) = = Intra_4x4 )

for( luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++ ) {

prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ]

2

u(1) | ae(v)

if( !prev_intra4x4_pred_mode_flag[ luma4x4BlkIdx ] )

rem_intra4x4_pred_mode[ luma4x4BlkIdx ]

2

u(3) | ae(v)

}

if( MbPartPredMode( mb_type, 0 ) = = Intra_8x8 )

for( luma8x8BlkIdx=0; luma8x8BlkIdx<4; luma8x8BlkIdx++ ) {

prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ]

2

u(1) | ae(v)

if( !prev_intra8x8_pred_mode_flag[ luma8x8BlkIdx ] )

rem_intra8x8_pred_mode[ luma8x8BlkIdx ]

2

u(3) | ae(v)

}

if( chroma_format_idc != 0 )

intra_chroma_pred_mode

2

ue(v) | ae(v)

} else if( MbPartPredMode( mb_type, 0 ) != Direct ) {

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( ( num_ref_idx_l0_active_minus1 > 0 | |
mb_field_decoding_flag ) && 
MbPartPredMode( mb_type, mbPartIdx ) != Pred_L1 )

ref_idx_l0[ mbPartIdx ]

2

te(v) | ae(v)

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( ( num_ref_idx_l1_active_minus1 > 0 | |
mb_field_decoding_flag ) && 
MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )

ref_idx_l1[ mbPartIdx ]

2

te(v) | ae(v)

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( MbPartPredMode ( mb_type, mbPartIdx ) != Pred_L1 )

for( compIdx = 0; compIdx < 2; compIdx++ )

mvd_l0[ mbPartIdx ][ 0 ][ compIdx]

2

se(v) | ae(v)

for( mbPartIdx = 0; mbPartIdx < NumMbPart( mb_type ); mbPartIdx++)

if( MbPartPredMode( mb_type, mbPartIdx ) != Pred_L0 )

for( compIdx = 0; compIdx < 2; compIdx++ )

mvd_l1[ mbPartIdx ][ 0 ][ compIdx]

2

se(v) | ae(v)

}

}

0.1.4.2 Residual data syntax

residual( ) {

C

Descriptor

if( !entropy_coding_mode_flag )

residual_block = residual_block_cavlc

else

residual_block = residual_block_cabac

if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

residual_block( Intra16x16DCLevel, 16 )

3

for( i8x8 = 0; i8x8 < 4; i8x8++ ) /* each luma 8x8 block */

if( !transform_size_8x8_flag | | !entropy_coding_mode_flag )

for( i4x4 = 0; i4x4 < 4; i4x4++ ) { /* each 4x4 sub-block of block */

if( CodedBlockPatternLuma & ( 1 << i8x8 ) )

if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

residual_block( Intra16x16ACLevel[ i8x8 * 4 + i4x4 ], 15 )

3

else

residual_block( LumaLevel[ i8x8 * 4 + i4x4 ], 16 )

3 | 4

else if( MbPartPredMode( mb_type, 0 ) = = Intra_16x16 )

for( i = 0; i < 15; i++ )

Intra16x16ACLevel[ i8x8 * 4 + i4x4 ][ i ] = 0

else

for( i = 0; i < 16; i++ )

LumaLevel[ i8x8 * 4 + i4x4 ][ i ] = 0

if( !entropy_coding_mode_flag && transform_size_8x8_flag )

for( i = 0; i < 16; i++ )

LumaLevel8x8[ i8x8 ][ 4 * i + i4x4 ] =
LumaLevel[ i8x8 * 4 + i4x4 ][ i ]

}

else if( CodedBlockPatternLuma & ( 1 << i8x8 ) )

residual_block( LumaLevel8x8[ i8x8 ], 64 )

3 | 4

else

for( i = 0; i < 64; i++ )

LumaLevel8x8[ i8x8 ][ i ] = 0

if( chroma_format_idc != 0 ) {

NumC8x8 = 4 / ( SubWidthC * SubHeightC )

for( iCbCr = 0; iCbCr < 2; iCbCr++ )

if( CodedBlockPatternChroma & 3 ) /* chroma DC residual present */

residual_block( ChromaDCLevel[ iCbCr ], 4 * NumC8x8 )

3 | 4

else

for( i = 0; i < 4 * NumC8x8; i++ )

ChromaDCLevel[ iCbCr ][ i ] = 0

for( iCbCr = 0; iCbCr < 2; iCbCr++ )

for( i8x8 = 0; i8x8 < NumC8x8; i8x8++ )

for( i4x4 = 0; i4x4 < 4; i4x4++ )

if( CodedBlockPatternChroma & 2 )
/* chroma AC residual present */

residual_block( ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ], 15)

3 | 4

else

for( i = 0; i < 15; i++ )

ChromaACLevel[ iCbCr ][ i8x8*4+i4x4 ][ i ] = 0

}

residual_block_cavlc( coeffLevel, maxNumCoeff ) {

C

Descriptor

for( i = 0; i < maxNumCoeff; i++ )

coeffLevel[ i ] = 0

coeff_token

3 | 4

ce(v)

if( TotalCoeff( coeff_token ) > 0 ) {

if( TotalCoeff( coeff_token ) > 10 && TrailingOnes( coeff_token ) < 3 )

suffixLength = 1

else

suffixLength = 0

for( i = 0; i < TotalCoeff( coeff_token ); i++ )

if( i < TrailingOnes( coeff_token ) ) {

trailing_ones_sign_flag

3 | 4

u(1)

level[ i ] = 1 – 2 * trailing_ones_sign_flag

} else {

level_prefix

3 | 4

ce(v)

levelCode = ( Min( 15, level_prefix ) << suffixLength )

if( suffixLength > 0 | | level_prefix >= 14 ) {

level_suffix

3 | 4

u(v)

levelCode += level_suffix

}

if( level_prefix > = 15 && suffixLength = = 0 )

levelCode += 15

if( level_prefix > = 16 )

levelCode += ( 1 << ( level_prefix – 3 ) ) – 4096

if( i = = TrailingOnes( coeff_token ) && 
TrailingOnes( coeff_token ) < 3 )

levelCode += 2

if( levelCode % 2 = = 0 )

level[ i ] = ( levelCode + 2 ) >> 1

else

level[ i ] = ( –levelCode – 1 ) >> 1

if( suffixLength = = 0 )

suffixLength = 1

if( Abs( level[ i ] ) > ( 3 << ( suffixLength – 1 ) ) && 
suffixLength < 6 )

suffixLength++

}

if( TotalCoeff( coeff_token ) < maxNumCoeff ) {

total_zeros

3 | 4

ce(v)

zerosLeft = total_zeros

} else

zerosLeft = 0

for( i = 0; i < TotalCoeff( coeff_token ) – 1; i++ ) {

if( zerosLeft > 0 ) {

run_before

3 | 4

ce(v)

run[ i ] = run_before

} else

run[ i ] = 0

zerosLeft = zerosLeft – run[ i ]

}

run[ TotalCoeff( coeff_token ) – 1 ] = zerosLeft

coeffNum = ‑1

for( i = TotalCoeff( coeff_token ) – 1; i >= 0; i-- ) {

coeffNum += run[ i ] + 1

coeffLevel[ coeffNum ] = level[ i ]

}

}

}

H264--H264编码--4相关推荐

  1. FFMPEG H264/H265 编码延迟问题

    参考:http://blog.csdn.net/aoshilang2249/article/details/40397199?utm_source=tuicool&utm_medium=ref ...

  2. mp4v2再学习 -- H264视频编码成MP4文件

    一.H264视频编码成MP4文件 参看:H264视频编码成MP4文件 参看:mp4v2在VS2010下的编译与在项目中的使用 最近做项目需要将H264文件封装为mp4文件,从网上找到了MP4V2库,下 ...

  3. 流媒体-H264协议-编码-x264学习-相关概念x264编译及文件解析(一)

    流媒体-H264协议-编码-x264学习-相关概念x264编译及文件解析(一) 流媒体-H264协议-编码-x264学习-主要结构体(二) 流媒体-H264协议-编码-x264学习-主要函数(三) 流 ...

  4. h264基本编码参数

    一  h264主要编码参数: 帧率,分辨率,YUV格式,qp,profile类型,vbr/cbr,gop,码率 1 帧率:表示每秒有多少个视频帧. 2 分辨率 3 YUV格式,标明YUV在数据流中的排 ...

  5. android 硬编码h264,windows 平台 ffmeg h264 硬编码

    本文讲述windows 平台下ffmpeg如何利用intel media SDK 进行 h264硬编码(测试版本为3.2.2). ffmeg硬编编码的流程与软件编码流程相同,唯一不同的地方在初始化en ...

  6. 流媒体-H264协议-编码-x264学习-主要结构体(二)

    流媒体-H264协议-编码-x264学习-相关概念x264编译及文件解析(一) 流媒体-H264协议-编码-x264学习-主要结构体(二) 流媒体-H264协议-编码-x264学习-主要函数(三) 流 ...

  7. 海康PS转H264的编码思想(带图码流解释)

    海康PS转H264的编码思想(带图码流解释) 本人PS流解析成H264的其余文章: 01PS流格式 02封装时遇到的重点问题 03海康PS转H264的编码思想(带图码流解释) 1 海康的PS流发包的顺 ...

  8. H264视频编码成MP4文件

    http://blog.csdn.net/firehood_/article/details/8813587 版权声明:本文为博主原创文章,未经博主允许不得转载. 最近需要将H264视频编码成MP4格 ...

  9. H264实时编码及NALU,RTP传输(续)

    对h.264压缩视频码流中i帧的提取(firstime) 2010-06-30 09:15 转载自 fandy586  http://hi.baidu.com/sdlyfdy 最终编辑 fandy58 ...

  10. 【H.264/AVC视频编解码技术】第一章【H264视频编码详细解析】

    H264压缩比 YUV格式为 YUV420  分辨率 640 x 480  帧率 15  ,比特率为  640  x 480   x 1.5 x 15 x 8 =55M ,建议码流 500kpbs . ...

最新文章

  1. oracle取_后的数字,聊聊四种Oracle数字取整函数
  2. 两张超级大表join优化
  3. Struts Validator验证器使用指南
  4. Screenshot of a full element in Selenium C#
  5. RISC-V应用创新大赛 | 一文详解RVB2601套件 助你快速上手赢比赛
  6. 【SpringCloud】Spring cloud Alibaba Sentinel 降级规则
  7. vue element dialog 对话框
  8. 2017-2018-2 1723《程序设计与数据结构》每周成绩 (更新完毕)
  9. 【linux就该这么学】-09
  10. 简单数字电压表的c语言程序,简易数字直流电压表电路及程序
  11. iphone6 计算机无法检测到照相机,iphone6手机照相不聚焦
  12. Windows10系统教育版和专业版区别在哪里?
  13. AI-WEB-1.0简单攻略
  14. mysql按月份分组查询_mysql如何按月份分组查询
  15. 用计算机写文章 单元备课,备课写教案
  16. 最全工业以太网通讯协议
  17. 接入google 登录 google oauth2
  18. 中科院30m地表精细土地利用数据Arcgis预处理——入门(二)
  19. 微信小程序开发总结与心得(一)
  20. 计算机专业英语推荐信,关于英文推荐信范文3篇

热门文章

  1. KVO.非常简单的键值监听模式
  2. 未来手机、电脑和网络将整合为一块
  3. 在cygwin下使用VC编译器
  4. 检验杜宾 瓦森检验法R语言_2018年9-11月高级计量经济学主要授课内容概要
  5. photon四种同步方式_Map 四种同步方式的性能比较
  6. JMJS系统总结系列----XSLT的语句规则(一)
  7. 网络编程 - 实现文件传送
  8. Jenkins下的Pipeline流水线入门篇
  9. 逻辑卷管理和磁盘配额
  10. CentOS7安装配置svn及svn hook实战