十分钟教你掌握CPU缓存

  • 一、 基础知识
  • 二、 缓存命中
  • 三、缓存一致
  • 四、程序性能
    • 示例一
    • 示例二
    • 示例三

一、 基础知识

   首先,大家都知道现在CPU的多核技术,都会有几级缓存,现在的CPU会有三级内存(L1,L2, L3),如下图所示。

其中:

    L1缓存分成两种,一种是指令缓存,一种是数据缓存。L2缓存和L3缓存不分指令和数据。

  • L1和L2缓存在每一个CPU核中,L3则是所有CPU核心共享的内存。

  • L1、L2、L3的越离CPU近就越小,速度也就越快,越离CPU远,速度也越慢。

再往后面就是内存,内存的后面就是硬盘。我们来看一些他们的速度。

  • L1的存取速度:4个CPU时钟周期
  • L2的存取速度:11个CPU时钟周期
  • L3的存取速度:39个CPU时钟周期
  • RAM内存的存取速度:107个CPU时钟周期

   我们可以看到,L1的速度是RAM的27倍,L1和L2的存取大小基本上是KB级的,L3则是MB级别的。例如,Intel Core i7-8700K,是一个6核的CPU,每核上的L1是64KB(数据和指令各32KB),L2是256K,L3有2MB。
我们的数据从内存向上,先到L3,再到L2,再到L1,最后到寄存器进行计算。那么,为什么会设计成三层?这里有以下几方面的考虑:

  • 物理速度,如果要更大的容量就需要更多的晶体管,除了芯片的体积会变大,更重要的是大量的晶体管会导致速度下降,因为访问速度和要访问的晶体管所在的位置成反比。也就是当信号路径变长时,通信速度会变慢,这就是物理问题。

  • 另外一个问题是,多核技术中,数据的状态需要在多个CPU进行同步。我们可以看到,cache和RAM的速度差距太大。所以,多级不同尺寸的缓存有利于提高整体的性能。
       这个世界永远是平衡的,一面变得有多光鲜,另一方面也会变得有多黑暗,建立多级的缓存,一定就会引入其它的问题。这里有两个比较重要的问题。

  • 一个是比较简单的缓存命中率的问题

  • 另一个是比较复杂的缓存更新的一致性问题

   尤其是第二个问题,在多核技术下,这就很像分布式系统了,要面对多个地方进行更新。

二、 缓存命中

   首先,我们需要了解一个术语Cache Line。缓存基本上来说就是把后面的数据加载到离自己最近的地方,对于CPU来说,它是不会一个字节一个字节的加载的。因为这非常没有效率,一般来说都是要一块一块的加载的,对于这样一块一块的数据单位,术语叫“Cache Line”。一般来说,一个主流的CPU的Cache Line是64 Bytes(也有的CPU用32Bytes和128Bytes),64Bytes也就是16个32位的数字,这就是CPU从内存中捞数据上来的最小数据单位。比如:Cache Line是最小单位(64Bytes),所以先把Cache分布多个Cache Line。比如:L1有32KB,那么 32KB/64Bytes = 512个Cache Line。
   缓存需要把内存里的数据放进来,英文叫CPU Associativity,Cache的数据放置策略决定了内存中的数据会拷贝到CPU Cache中的哪个位置上,因为Cache的大小远远小于内存,所以,需要有一种地址关联算法,能够让内存中的数据被映射到Cache中。这个就有点像内存地址从逻辑地址到物理地址的映射方法。但是不完全一样。

基本上会有以下的一些方法

  • 任何一个内存的数据可以被缓存在任何一个Cache Line里,这种方法是最灵活的,但是,如果我们要知道一个内存是否存在于Cache中。我们就需要进行O(n)复杂度的Cache遍历,这是没有效率的。
  • 另一种方法,为了降低缓存搜索算法的时间复杂度,我们要使用像hash table这样的数据结构,最简单的hash table就是“求模运算”。比如,我们的L1 Cache有512个Cache Line,那么公式就是(内存地址 mod 512) *64就可以直接找到所在的Cache地址的偏移了。但是,这样的方式需要程序对内存地址的访问非常的平均,不然会造成严重地冲突。所以,这成了一个非常理想的情况了。
  • 为了避免上述的两种方案的问题,于是就要容忍一定的hash冲突,也就出现了N-Way关联。也就是把连续的N个Cache Line绑成一组,然后,先找到相关的组,然后再在组内找到相关的Cache Line。这叫Set Associativity。如下图所示

       对于 N-Way 组关联,可能有点不好理解。这里举个例子,并多说一些细节(不然后面的代码你会不能理解),Intel 大多数处理器的L1 Cache都是32KB,8-Way 组相联,Cache Line 是64 Bytes。这意味着
  • 32KB的可以分成,32KB / 64 = 512 条 Cache Line;
  • 因为有8 Way,于是会每一Way 有 512 / 8 = 64 条 Cache Line;
  • 于是每一路就有 64 x 64 = 4096 Byts 的内存。

为了方便索引内存地址

  • Tag:每条 Cache Line 前都会有一个独立分配的 24 bits来存的 tag,其就是内存地址的前24bits;
  • Index:内存地址后续的6个bits则是在这一Way的是Cache Line 索引,2^6 = 64 刚好可以索引64条Cache Line;
  • Offset:再往后的6bits用于表示在Cache Line 里的偏移量

索引过程如下图所示:

  • 当拿到一个内存地址的时候,先拿出中间的 6bits 来,找到是哪组;

  • 然后在这一个8组的cache line中,再进行O(n) ,n=8 的遍历,主是要匹配前24bits的tag。如果匹配中了,就算命中,如果没有匹配到,那就是cache miss,如果是读操作,就需要进向后面的缓存进行访问了。L2和L3同样是这样的算法。而淘汰算法有两种,一种是随机,另一种是LRU。

这也意味着:

  • L1 Cache 可映射 36bits 的内存地址,一共 2^36 = 64GB的内存
  • 当CPU要访问一个内存的时候,通过这个内存中间的6bits 定位是哪个set,通过前 24bits 定位相应的Cache Line。
  • 就像一个hash Table的数据结构一样,先是O(1)的索引,然后进入冲突搜索。 因为中间的 6bits决定了一个同一个set,所以,对于一段连续的内存来说,每隔4096的内存会被放在同一个组内,导致缓存冲突。

   此外,当有数据没有命中缓存的时候,CPU就会以最小为Cache Line的单元向内存更新数据。当然,CPU并不一定只是更新64Bytes,因为访问主存实在是太慢了,所以,一般都会多更新一些。好的CPU会有一些预测的技术,如果找到一种pattern的话,就会预先加载更多的内存,包括指令也可以预加载。这叫 Prefetching 技术。比如,你在for-loop访问一个连续的数组,你的步长是一个固定的数,内存就可以做到prefetching。

了解这些细节,会有利于我们知道在什么情况下有可以导致缓存的失效。

三、缓存一致

   对于主流的CPU来说,缓存的写操作基本上是两种策略

  • Write Back:写操作只在Cache上,然后再flush到内存上
  • Write Through:写操作同时写到cache和内存上。

   为了提高写的性能,一般来说,主流的CPU(如:Intel Core i7/i9)采用的是Write Back的策略,因为直接写内存实在是太慢了。

   好了,现在问题来了,如果有一个数据 x 在 CPU 第0核的缓存上被更新了,那么其它CPU核上对于这个数据 x 的值也要被更新,这就是缓存一致性的问题。

   一般来说,在CPU硬件上,会有两种方法来解决这个问题。

  1. Directory 协议。这种方法的典型实现是要设计一个集中式控制器,它是主存储器控制器的一部分。其中有一个目录存储在主存储器中,其中包含有关各种本地缓存内容的全局状态信息。当单个CPU Cache 发出读写请求时,这个集中式控制器会检查并发出必要的命令,以在主存和CPU Cache之间或在CPU Cache自身之间进行数据同步和传输。
  2. Snoopy 协议。这种协议更像是一种数据通知的总线型的技术。CPU Cache通过这个协议可以识别其它Cache上的数据状态。如果有数据共享的话,可以通过广播机制将共享数据的状态通知给其它CPU Cache。这个协议要求每个CPU Cache 都可以“窥探”数据事件的通知并做出相应的反应。如下图所示,有一个Snoopy Bus的总线。

   因为Directory协议是一个中心式的,会有性能瓶颈,而且会增加整体设计的复杂度。而Snoopy协议更像是微服务+消息通讯,所以,现在基本都是使用Snoopy的总线的设计。

  在分布式系统中我们一般用Paxos/Raft这样的分布式一致性的算法。而在CPU的微观世界里,则不必使用这样的算法。因为CPU的多个核的硬件不必考虑网络会断会延迟的问题。所以,CPU的多核心缓存间的同步的核心就是要管理好数据的状态就好了。
   这里介绍几个状态协议,先从最简单的开始,MESI协议,这个协议跟那个著名的足球运动员梅西没什么关系,其主要表示缓存数据有四个状态:Modified(已修改), Exclusive(独占的),Shared(共享的),Invalid(无效的)。
    MESI 这种协议在数据更新后,会标记其它共享的CPU缓存的数据拷贝为Invalid状态,然后当其它CPU再次read的时候,就会出现 cache miss 的问题,此时再从内存中更新数据。从内存中更新数据意味着20倍速度的降低。我们能不能直接从我隔壁的CPU缓存中更新?是的,这就可以增加很多速度了,但是状态控制也就变麻烦了。还需要多来一个状态:Owner(宿主),用于标记,我是更新数据的源。于是,出现了 MOESI 协议。
    MOESI协议允许 CPU Cache 间同步数据,于是也降低了对内存的操作,性能是非常大的提升,但是控制逻辑也非常复杂。
    顺便说一下,与 MOESI 协议类似的一个协议是 MESIF,其中的 F 是 Forward,同样是把更新过的数据转发给别的 CPU Cache 但是,MOESI 中的 Owner 状态 和MESIF 中的 Forward 状态有一个非常大的不一样—— Owner状态下的数据是dirty的,还没有写回内存,Forward状态下的数据是clean的,可以丢弃而不用另行通知。
    需要说明的是,AMD用MOESI,Intel用MESIF。所以,F 状态主要是针对 CPU L3 Cache 设计的(前面我们说过,L3是所有CPU核心共享的)。

四、程序性能

    了解了我们上面的这些东西后,我们来看一下对于程序的影响。

示例一

   首先,假设我们有一个64M长的数组,设想一下下面的两个循环:

       const int LEN = 64*1024*1024;int *arr = new int[LEN];for (int i = 0; i < LEN; i += 2) arr[i] *= i;for (int i = 0; i < LEN; i += 8) arr[i] *= i; 

    按我们的想法,第二个循环要比第一个循环少4倍的计算量。其应该要快4倍的。但实际跑下来并不是,在我的机器上,第一个循环需要128毫秒,第二个循环则需要122毫秒,相差无几。这里最主要的原因就是 Cache Line,因为CPU会以一个Cache Line 64Bytes最小时单位加载,也就是16个32bits的整型,所以,无论你步长是2还是8,都差不多。而后面的乘法其实是不耗CPU时间的。

示例二

   接下来,我们再来看个示例。下面是一个二维数组的两种遍历方式,一个逐行遍历,一个是逐列遍历,这两种方式在理论上来说,寻址和计算量都是一样的,执行时间应该也是一样的。

const int row = 1024;
const int col = 512
int matrix[row][col];
//逐行遍历
int sum_row=0;
for(int _r=0; _r<row; _r++) {for(int _c=0; _c<col; _c++){sum_row += matrix[_r][_c];}
}
//逐列遍历
int sum_col=0;
for(int _c=0; _c<col; _c++) {for(int _r=0; _r<row; _r++){sum_col += matrix[_r][_c];}
}

   然而,并不是,在我的机器上,得到下面的结果。

   逐行遍历:0.083ms
   逐列遍历:1.072ms

   执行时间有十几倍的差距。其中的原因,就是逐列遍历对于CPU Cache 的运作方式并不友好,所以,付出巨大的代价。

示例三

   接下来,我们来看一下多核下的性能问题,参看如下的代码。两个线程在操作一个数组的两个不同的元素(无需加锁),线程循环1000万次,做加法操作。在下面的代码中,我高亮了一行,就是p2指针,要么是p[1],或是 p[30],理论上来说,无论访问哪两个数组元素,都应该是一样的执行时间。

 void fn (int* data) {for(int i = 0; i < 10*1024*1024; ++i)*data += rand();
}
int p[32];
int *p1 = &p[0];
int *p2 = &p[1]; // int *p2 = &p[30];
thread t1(fn, p1);
thread t2(fn, p2);

   然而,并不是,在我的机器上执行下来的结果是:

   对于 p[0] 和 p[1] :570ms
   对于 p[0] 和 p[30]:105ms

   这是因为 p[0] 和 p[1] 在同一条 Cache Line 上,而 p[0] 和 p[30] 则不可能在同一条Cache Line 上 ,CPU的缓存最小的更新单位是Cache Line,所以,这导致虽然两个线程在写不同的数据,但是因为这两个数据在同一条Cache Line上,就会导致缓存需要不断进在两个CPU的L1/L2中进行同步,从而导致了5倍的时间差异。

十分钟教你掌握CPU缓存相关推荐

  1. 十分钟教你开发EOS智能合约

    十分钟教你开发EOS智能合约 在CSDN.柏链道捷(PDJ Education).HelloEOS.中关村区块链产业联盟主办的「EOS入门及最新技术解读」专场沙龙上,柏链道捷(PDJ Educatio ...

  2. 一分钟教你学会python_十分钟教你学会python编写小游戏

    原标题:十分钟教你学会python编写小游戏 看过,估计大家都已经精通了吧,好的,话不多说,今天就活学活用,用python来编写纸牌游戏21点,江湖人称黑杰克,BLACK JACK-(注意法式卷舌). ...

  3. python批量删缩进_鬼畜小姐姐+野狼disco,十分钟教你如何用Python剪辑一个牛逼的抖音小视频?...

    鬼畜小姐姐+野狼disco,十分钟教你如何用Python剪辑一个牛逼的抖音小视频? 前言 半个月前,后台有个小伙伴问我,如何将视频中的音频提取出来,并且将声音转成文字写入到 word 中,正好接下来的 ...

  4. 十分钟教你配置frp实现内网穿透

    十分钟教你配置frp实现内网穿透 一.frp的作用 利用处于内网或防火墙后的机器,对外网环境提供 http 或 https 服务. 对于 http, https 服务支持基于域名的虚拟主机,支持自定义 ...

  5. python编写小游戏17_十分钟教你学会python编写小游戏

    原标题:十分钟教你学会python编写小游戏 看过,估计大家都已经精通了吧,好的,话不多说,今天就活学活用,用python来编写纸牌游戏21点,江湖人称黑杰克,BLACK JACK-(注意法式卷舌). ...

  6. 【Linux + Makefile】十分钟教你学会Makefile的FORCE

    相信大家在使用Linux环境编程的时候,一定接触过Makefile这个玩意.Makefile在搭建自定义的编译环境,尤其是自动化编译.多功能一键编译等功能上,还是发挥了很大的作用.如果接触过Linux ...

  7. 包教包会 | 十分钟教你用电子表格搭建一个仓库管理软件!

    最近有很多伙伴问我,如何快速搭建一个简单的仓库管理应用,其实这个问题超简单,我甚至可以教你从0-1搭建一个可以扫码录入的仓库管理系统! 先看搭建完成的模板,自取>>http://s.fan ...

  8. 快、准、狠!秒杀Excel的报表工具,十分钟教你做好数据填报

    看到文末,你不会失望的~ 大数据时代,每个企业都需要报表,都需要数据分析,这个趋势在这次疫情中显得越来越明显.无论是员工身体状况上报.每日确诊与疑似人数统计,还是物资表,都涉及到了数据分析.报表等一系 ...

  9. 干货来袭!腾讯T4大佬,十分钟教你用svg做出精美的动画

    前言 经常在Codepen上看到大侠们用SVG画出不可思议的动画,我一直很好奇他们是怎么运作的,总觉得这需要对SVG有足够透彻的了解,并且自己画出那些SVG图案,才有办法让他动起来. 但其实不然,今天 ...

最新文章

  1. 【学习笔记】树的计数,prufer(Prüfer)编码,Cayley公式及相应例题
  2. UILabel设置行间距之后的自适应高度
  3. Java的知识点21——String类、StringBuffer和StringBuilder、不可变和可变字符序列使用陷阱
  4. C++ Primer 5th笔记(7)chapter7 类:编译相关
  5. Linux 文件 IO
  6. c语言中有存储过程吗,C语言调用存储过程并且获得返回值
  7. java 验证码的制作
  8. 在Style Report中制作主从分级报表
  9. c语言:【顺序表】静态顺序表的删除指定位置元素Erase、删除指定元素Remove
  10. windows如何设定定时关机和取消定时
  11. ROS——Gazebo仿真——全向轮小车——运动学模型分析
  12. Hyperledger Fabric 环境搭建报错
  13. python爬虫 - scrapy的安装和使用
  14. DIL中基本数据类型
  15. 3dmax 建模插件 Rappa Tools 3 笔记
  16. HackTheBox | Horizontall
  17. 源码分析教程5部曲之1——漫游C语言-杨振平-专题视频课程
  18. 11、有线接入网技术
  19. 如何隐藏TPageControl Delphi控件的选项卡
  20. error LNK2001: 无法解析的外部符号 __declspec(dllimport) public: __thiscall DuiLib::CDuiString::CDuiStr

热门文章

  1. 前端实现语音识别、语音翻译
  2. python词频统计完整步骤_Python统计词频的几种方式
  3. html自动弹出提示对话框代码,html5简单的手机端弹出对话框确认代码
  4. SQL插入数据时连表查询(利用子查询一次性 insert 多条数据)
  5. Post processing stack:像美图秀秀一样处理Unity的画质
  6. 有好用文字转语音的软件吗?
  7. 电脑上怎么使用安卓手机模拟器多开手游
  8. 油酸修饰的Fe3O4磁性纳米颗粒,OA@Fe3O4,Oleic acid-Fe3O4
  9. 修改cmd控制台字体颜色,附C++代码
  10. 哈工大计算机研究生复试笔试,2011年哈工大计算机研究生复试(机考+面试)周