1、缓冲池的定义

应用系统分层架构,为了加速数据访问,会把最常访问的数据放在缓存(cache)里,避免每次都去访问数据库。操作系统会有缓冲池(buffer pool)机制,避免每次访问磁盘,以加速数据的访问。MySQL作为一个存储系统,同样具有缓冲池机制,以避免每次查询数据都进行磁盘IO。

缓冲池简单来说就是一块内存区域,通过内存的速度来弥补磁盘速度较慢对数据库性能的影响。

在数据库当中读取页的操作,首先将从磁盘读到的页存放在缓存池中。下一次再读相同的页时,首先判断该页是不是在缓冲池中。若在,直接读取。否则,读取磁盘上的页。

对于数据库中页的修改操作,则首先修改缓存池中的页,然后再以一定的频率刷新到磁盘上。需要注意的是,缓冲池刷新回磁盘并不是每次页发生更新时触发,而是通过一种称为Checkpoint的机制刷新回磁盘。

缓冲池中缓存的数据页类型有:索引页、数据页、undo页、插入缓冲(insert buffer)、自适应哈希索引(adaptive hash index)、InnoDB存储的锁信息(lock info)、数据字典信息(data dictionary)等。不能简单地认为,缓冲池只是缓存索引页和数据页,它们只是占缓冲池很大的一部分而已。

下图很好地显示了InnoDB存储引擎中内存的结构情况。

0.jpg

缓冲池中页的大小默认为16KB。

缓冲池大小可以通过innodb_buffer_pool_size参数来设置

mysql> show variables like 'innodb_buffer_pool_size'\G;

*************************** 1. row ***************************

Variable_name: innodb_buffer_pool_size

Value: 134217728

为了减少数据库内部资源竞争,增加数据库并发能力,可以使用多个缓冲实例,每个页根据哈希值平均分配道不同缓冲池实例中,设置参数为innodb_buffer_poll_instances,默认为1。

mysql> show variables like 'innodb_buffer_pool_instances'\G;

*************************** 1. row ***************************

Variable_name: innodb_buffer_pool_instances

Value: 1

2、预读

2.1 基本概念

InnoDB在I/O的优化上有个比较重要的特性为预读(Read-Ahead),它会异步地在缓冲池中提前读取多个预计很快就会用到的数据页。

1.png

数据库请求数据的时候,会将读请求交给文件系统,放入请求队列中;相关进程从请求队列中将读请求取出,根据需求到相关数据区(内存、磁盘)读取数据;取出的数据,放入响应队列中,最后数据库就会从响应队列中将数据取走,完成一次数据读操作过程。

接着进程继续处理请求队列,判断后面几个数据读请求的数据是否相邻,再根据自身系统IO带宽处理量,进行预读,进行读请求的合并处理,一次性读取多块数据放入响应队列中,再被数据库取走。

2.2 两种算法

InnoDB使用两种预读算法来提高I/O性能:线性预读(linear read-ahead)和随机预读(randomread-ahead)

为了区分这两种预读的方式,我们可以把线性预读放到以extent为单位,而随机预读放到以extent中的page为单位。线性预读着眼于将下一个extent提前读取到buffer pool中,而随机预读着眼于将当前extent中的剩余的page提前读取到buffer pool中。

2.2.1 线性预读

线性预读方式有一个很重要的变量控制是否将下一个extent预读到buffer pool中,通过使用配置参数innodb_read_ahead_threshold控制触发innodb执行预读操作的时间。

如果一个extent中的被顺序读取的page超过或者等于该参数变量时,Innodb将会异步的将下一个extent读取到buffer pool中,innodb_read_ahead_threshold可以设置为0-64的任何值(因为一个extent中也就只有64页),默认值为56,值越高,访问模式检查越严格。

mysql> show variables like 'innodb_read_ahead_threshold';

+-----------------------------+-------+

| Variable_name | Value |

+-----------------------------+-------+

| innodb_read_ahead_threshold | 56 |

+-----------------------------+-------+

例如,如果将值设置为48,则InnoDB只有在顺序访问当前extent中的48个pages时才触发线性预读请求,将下一个extent读到内存中。如果值为8,InnoDB触发异步预读,即使程序段中只有8页被顺序访问。

在没有该变量之前,当访问到extent的最后一个page的时候,innodb会决定是否将下一个extent放入到buffer pool中。

3.2.2 随机预读

随机预读方式则是表示当同一个extent中的一些page在buffer pool中发现时,Innodb会将该extent中的剩余page一并读到buffer pool中。

mysql> show variables like 'innodb_random_read_ahead';

+--------------------------+-------+

| Variable_name | Value |

+--------------------------+-------+

| innodb_random_read_ahead | OFF |

+--------------------------+-------+

由于随机预读方式给innodb code带来了一些不必要的复杂性,同时在性能也存在不稳定性,在5.5中已经将这种预读方式废弃,默认是OFF。

3、缓冲刷新策略

3.1 LRU算法

通常来说,缓冲池是通过LRU(Latest Recent Used,最近最少使用)算法来进行管理的。即最多使用页在LRU列表前端,而最少使用页在LRU列表后端。当缓冲池不能存放新读取到的页时,将首先释放LRU列表中末端的页。

这里又分两种情况:

页已经在缓冲池里,那就只做“移至”LRU头部的动作,而没有页被淘汰;

页不在缓冲池里,除了做“放入”LRU头部的动作,还要做“淘汰”LRU尾部页的动作;

2.png

如上图,假如管理缓冲池的LRU长度为10,缓冲了页号为1,3,5…,40,7的页。

假如,接下来要访问的数据在页号为4的页中:

3.png

页号为4的页,本来就在缓冲池里;

把页号为4的页,放到LRU的头部即可,没有页被淘汰;

为了减少数据移动,LRU一般用链表实现。

假如,再接下来要访问的数据在页号为50的页中:

4.png

页号为50的页,原来不在缓冲池里;

把页号为50的页,放到LRU头部,同时淘汰尾部页号为7的页;

传统的LRU缓冲池算法十分直观,OS,memcache等很多软件都在用,但是InnoDB对传统LRU算法做了一些优化,来应对预读失效与缓冲池污染的问题。

3.2 预读失效

由于预读,提前把页放入了缓冲池,但最终MySQL并没有从页中读取数据,称为预读失效。

要优化预读失效,思路是:

让预读失败的页,停留在缓冲池LRU里的时间尽可能短;

让真正被读取的页,才挪到缓冲池LRU的头部;

以此来保证真正被读取的热数据留在缓冲池里的时间尽可能长。

具体方法是:

将LRU分为两个部分:新生代(new sublist)与老生代(old sublist)

新老生代收尾相连,即:新生代的尾(tail)连接着老生代的头(head);

新页(例如被预读的页)加入缓冲池时,只加入到老生代头部:如果数据真正被读取(预读成功),才会加入到新生代的头部;如果数据没有被读取,则会比新生代里的“热数据页”更早被淘汰出缓冲池

5.png

举个例子,整个缓冲池LRU如上图:

整个LRU长度是10;

前70%是新生代;

后30%是老生代;

新老生代首尾相连;

6.png

假如有一个页号为50的新页被预读加入缓冲池:

50只会从老生代头部插入,老生代尾部(也是整体尾部)的页会被淘汰掉;

假设50这一页不会被真正读取,即预读失败,它将比新生代的数据更早淘汰出缓冲池;

7.png

假如50这一页立刻被读取到,例如SQL访问了页内的行row数据:

它会被立刻加入到新生代的头部;

新生代的页会被挤到老生代,此时并不会有页面被真正淘汰;

3.3 缓冲池污染

当某一个SQL语句,要批量扫描大量数据时,可能导致把缓冲池的所有页都替换出去,导致大量热数据被换出,MySQL性能急剧下降,这种情况叫缓冲池污染。

例如,有一个数据量较大的用户表,当执行:

select * from user where name like "%John%";

虽然结果集可能只有少量数据,但这类like不能命中索引,必须全表扫描,就需要访问大量的页:

把页加到缓冲池(插入老生代头部);

从页里读出相关的row(插入新生代头部);

row里的name字段和字符串shenjian进行比较,如果符合条件,加入到结果集中;

…直到扫描完所有页中的所有row…

如此一来,所有的数据页都会被加载到新生代的头部,但只会访问一次,真正的热数据被大量换出。

怎么这类扫码大量数据导致的缓冲池污染问题呢?MySQL缓冲池加入了一个“老生代停留时间窗口”的机制:假设T=老生代停留时间窗口,插入老生代头部的页,即使立刻被访问,并不会立刻放入新生代头部,只*满足“被访问”并且“在老生代停留时间”大于T,才会被放入新生代头部。

8.png

继续举例,假如批量数据扫描,有51,52,53,54,55等五个页面将要依次被访问。

9.png

如果没有“老生代停留时间窗口”的策略,这些批量被访问的页面,会换出大量热数据。

10.png

加入“老生代停留时间窗口”策略后,短时间内被大量加载的页,并不会立刻插入新生代头部,而是优先淘汰那些,短期内仅仅访问了一次的页。

11.png

而只有在老生代呆的时间足够久,停留时间大于T,才会被插入新生代头部。

3.4 相关参数

mysql> show variables like 'innodb_old_blocks_pct'\G;

*************************** 1. row ***************************

Variable_name: innodb_old_blocks_pct

Value: 37

innodb_old_blocks_pct控制老生代占整个LRU链长度的比例,默认是37,即整个LRU中新生代与老生代长度比例是63:37。如果把这个参数设为100,就退化为普通LRU了。

mysql> show variables like 'innodb_old_blocks_time'\G;

*************************** 1. row ***************************

Variable_name: innodb_old_blocks_time

Value: 1000

innodb_old_blocks_time代表老生代停留时间窗口,单位是毫秒,默认是1000,即同时满足“被访问”与“在老生代停留时间超过1秒”两个条件,才会被插入到新生代头部。

数据库刚启动时,LRU列表是空的,缓冲池的所有页都存放在Free列表中。需要添加新的缓冲时,若Free列表中有可用的空闲页,则将其移到LRU列表;否则,根据LRU算法,淘汰末尾页。

LRU列表中的页被修改后,跟磁盘上的页就产生了不一致的情况,称该页为脏页(dirty page)。数据库会通过checkpoint机制将脏页刷新回磁盘。脏页由Flush列表管理。

可以通过show engine innodb status命令查看缓冲池的的状态:

mysql> show engine innodb status\G;

*************************** 1. row ***************************

Type: InnoDB

Name:

Status:

=====================================

2019-03-07 22:09:08 0x7000013d8000 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 3 seconds

...

----------------------

BUFFER POOL AND MEMORY

----------------------

Total large memory allocated 137428992

Dictionary memory allocated 100382

Buffer pool size 8192 //缓冲池页的总数

Free buffers 7945 //Free列表页的数量

Database pages 247 //LRU列表页的数量

Old database pages 0

Modified db pages 0 //脏页数量

Pending reads 0

Pending writes: LRU 0, flush list 0, single page 0

Pages made young 0, not young 0

0.00 youngs/s, 0.00 non-youngs/s

Pages read 213, created 34, written 36

0.00 reads/s, 0.00 creates/s, 0.00 writes/s

No buffer pool page gets since the last printout //Buffer pool hit rate 1000 / 1000...

Pages read ahead 0.00/s, evicted without access 0.00/s, Random read ahead 0.00/s

LRU len: 247, unzip_LRU len: 0 //LRU表共有247页,unzip_LRU管理的是压缩页

I/O sum[0]:cur[0], unzip sum[0]:cur[0]

...

本例中的数据库是一个空数据库,所以没有缓冲池命中率的统计。实际应用中一般会打印出这样的一句话:

Buffer pool hit rate 1000 / 1000, young-making rate 0 / 1000 not 0 / 1000…

正常情况下缓冲池的命中率应该接近100%,如果低于95%,说明LRU表很可能存在被污染的问题。

mysql的缓冲池大小_MySQL之缓冲池相关推荐

  1. mysql 数据库 限制大小_MySQL数据库表各种大小限制小结

    本文所有条目总结均来自mysql5.6的官网英文文档: 1. MySQL表的列数限制 1.1 MySQL硬性限制每个表最大4096个列 1.2 InnoDB存储引擎的约束: 每个表最大1017个列; ...

  2. mysql查看导入大小_mysql 数据导入、导出,及库大小查看

    一.导出数据库用mysqldump命令(注意mysql的安装路径,即此命令的路径): 1.导出数据和表结构: mysqldump -u用户名 -p密码 数据库名 > 数据库名.sql #/usr ...

  3. mysql 默认page大小_MySQL innodb_page_size

    原标题:MySQL innodb_page_size 墨墨导读:Page是MySQL Innodb存储的最基本结构,也是Innodb磁盘管理的最小单位,了解page的一些特性,可以更容易理解MySQL ...

  4. mysql ip比较大小_MySQL优化/面试,看这一篇就够了

    原文链接:http://www.zhenganwen.top/articles/2018/12/25/1565048860202.html 作者:Anwen~ 链接:https://www.nowco ...

  5. mysql 二进制日志大小_mysql二进制日志。

    mysql二进制日志: 命令行参数: --log-bin[=file_name]   文件名 --log-bin-index[=file]文件索引 --max_binlog_size     单个文件 ...

  6. mysql初始化ibdata1大小_MySQL问答系列之如何避免ibdata1文件大小暴涨

    0.导读 ibdata1文件是什么? ibdata1是一个用来构建innodb系统表空间的文件,这个文件包含了innodb表的元数据.撤销记录.修改buffer和双写buffer.如果file-per ...

  7. mysql 二进制日志大小_mysql二进制日志相关参数

    1,binlog_cache_size和max_binlog_cache_size 表示的为每个session的事物分配的缓存 当插入或者修改数据的时候,不会立刻写入磁盘,而是会缓存起来,缓存的大小由 ...

  8. mysql 返回集合大小_Mysql History list length 值太大引起的问题

    1.环境 Mysql 主从 Mysql版本:5.1.49-log 系统:Red Hat Enterprise Linux Server release 5.4  64bit 2.表面现象 数据库操作变 ...

  9. mysql query cache 大小_MySQL查詢緩存:限制為128 MB的最大緩存大小?

    My application is very database intensive so I've tried really hard to make sure the application and ...

最新文章

  1. 编程珠玑:对DAO层的一点修改
  2. python默认参数惹得祸
  3. python 实现倒排索引,建立简单的搜索引擎
  4. c语言现在正在下雨吗,用C语言模拟下雨
  5. 怎么看python程序卡在哪里_Python程序卡住了
  6. android getMemoryClass()的使用
  7. LeetCode 68. 文本左右对齐(字符串逻辑题)
  8. poj3190 区间贪心 挑战程序设计竞赛
  9. 编程到底该用 Tab 还是 Space?比尔·盖茨也来挑事儿
  10. 安川g7变频器说明书_【工业机器人入门课】安川机器人故障维修合集
  11. 约瑟夫环 C语言 单循环链表
  12. pdf多页合成一张pdf图片
  13. 修改判断名字重复,保证名字唯一
  14. veu项目中下载图片到本地
  15. Win7电脑如何关闭智能卡服务功能--win10专业版
  16. 毕业论文引用参考文献的脚注方法
  17. whm 设置共享IP
  18. 【技巧】EXCEL如何按行找出最大三个数并标记
  19. 【特异性双端队列 | 最小调整顺序次数】
  20. 挑战UnityShader学习之八——用最简单的方法实现下雨天积水效果

热门文章

  1. Beginning WF4读书笔记(一):创建一个简单的工作流
  2. JavaWeb视频网站开发:实现首页小喇叭的功能
  3. python怎么装pip_python中怎么安装pip
  4. 一键卸载流氓垃圾软件,这2款软件让电脑干净无弹窗
  5. 拾壹博客拆解,docker环境部署加自动化发布(一)
  6. input输入框不可编辑
  7. OSChina 周六乱弹 ——天生就是射手座
  8. 小程序textarea顶层显示的bug
  9. 国产山寨(苹果、三星等)上网本的修理记载
  10. 我的世界java版记分板_我的世界基岩版计分板入门教程