实验环境

  • win10 + anaconda + jupyter notebook
  • Pytorch1.1.0
  • Python3.7
  • gpu环境(可选)

MNIST数据集介绍

MNIST 包括6万张28x28的训练样本,1万张测试样本,可以说是CV里的“Hello Word”。本文使用的CNN网络将MNIST数据的识别率提高到了99%。下面我们就开始进行实战。

导入包

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
torch.__version__

定义超参数

BATCH_SIZE=512
EPOCHS=20
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

数据集

我们直接使用PyTorch中自带的dataset,并使用DataLoader对训练数据和测试数据分别进行读取。如果下载过数据集这里download可选择False

train_loader = torch.utils.data.DataLoader(datasets.MNIST('data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(datasets.MNIST('data', train=False, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])),batch_size=BATCH_SIZE, shuffle=True)

定义网络

该网络包括两个卷积层和两个线性层,最后输出10个维度,即代表0-9十个数字。

class ConvNet(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,10,5) # input:(1,28,28) output:(10,24,24) self.conv2=nn.Conv2d(10,20,3) # input:(10,12,12) output:(20,10,10)self.fc1 = nn.Linear(20*10*10,500)self.fc2 = nn.Linear(500,10)def forward(self,x):in_size = x.size(0)out = self.conv1(x)out = F.relu(out)out = F.max_pool2d(out, 2, 2)  out = self.conv2(out)out = F.relu(out)out = out.view(in_size,-1)out = self.fc1(out)out = F.relu(out)out = self.fc2(out)out = F.log_softmax(out,dim=1)return out

实例化网络

model = ConvNet().to(DEVICE) # 将网络移动到gpu上
optimizer = optim.Adam(model.parameters()) # 使用Adam优化器

定义训练函数

def train(model, device, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = F.nll_loss(output, target)loss.backward()optimizer.step()if(batch_idx+1)%30 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))

定义测试函数

def test(model, device, test_loader):model.eval()test_loss = 0correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标correct += pred.eq(target.view_as(pred)).sum().item()test_loss /= len(test_loader.dataset)print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))

开始训练

for epoch in range(1, EPOCHS + 1):train(model, DEVICE, train_loader, optimizer, epoch)test(model, DEVICE, test_loader)

实验结果

Train Epoch: 1 [14848/60000 (25%)]   Loss: 0.375058
Train Epoch: 1 [30208/60000 (50%)]  Loss: 0.255248
Train Epoch: 1 [45568/60000 (75%)]  Loss: 0.128060Test set: Average loss: 0.0992, Accuracy: 9690/10000 (97%)Train Epoch: 2 [14848/60000 (25%)]  Loss: 0.093066
Train Epoch: 2 [30208/60000 (50%)]  Loss: 0.087888
Train Epoch: 2 [45568/60000 (75%)]  Loss: 0.068078Test set: Average loss: 0.0599, Accuracy: 9816/10000 (98%)Train Epoch: 3 [14848/60000 (25%)]  Loss: 0.043926
Train Epoch: 3 [30208/60000 (50%)]  Loss: 0.037321
Train Epoch: 3 [45568/60000 (75%)]  Loss: 0.068404Test set: Average loss: 0.0416, Accuracy: 9859/10000 (99%)Train Epoch: 4 [14848/60000 (25%)]  Loss: 0.031654
Train Epoch: 4 [30208/60000 (50%)]  Loss: 0.041341
Train Epoch: 4 [45568/60000 (75%)]  Loss: 0.036493Test set: Average loss: 0.0361, Accuracy: 9873/10000 (99%)Train Epoch: 5 [14848/60000 (25%)]  Loss: 0.027688
Train Epoch: 5 [30208/60000 (50%)]  Loss: 0.019488
Train Epoch: 5 [45568/60000 (75%)]  Loss: 0.018023Test set: Average loss: 0.0344, Accuracy: 9875/10000 (99%)Train Epoch: 6 [14848/60000 (25%)]  Loss: 0.024212
Train Epoch: 6 [30208/60000 (50%)]  Loss: 0.018689
Train Epoch: 6 [45568/60000 (75%)]  Loss: 0.040412Test set: Average loss: 0.0350, Accuracy: 9879/10000 (99%)Train Epoch: 7 [14848/60000 (25%)]  Loss: 0.030426
Train Epoch: 7 [30208/60000 (50%)]  Loss: 0.026939
Train Epoch: 7 [45568/60000 (75%)]  Loss: 0.010722Test set: Average loss: 0.0287, Accuracy: 9892/10000 (99%)Train Epoch: 8 [14848/60000 (25%)]  Loss: 0.021109
Train Epoch: 8 [30208/60000 (50%)]  Loss: 0.034845
Train Epoch: 8 [45568/60000 (75%)]  Loss: 0.011223Test set: Average loss: 0.0299, Accuracy: 9904/10000 (99%)Train Epoch: 9 [14848/60000 (25%)]  Loss: 0.011391
Train Epoch: 9 [30208/60000 (50%)]  Loss: 0.008091
Train Epoch: 9 [45568/60000 (75%)]  Loss: 0.039870Test set: Average loss: 0.0341, Accuracy: 9890/10000 (99%)Train Epoch: 10 [14848/60000 (25%)] Loss: 0.026813
Train Epoch: 10 [30208/60000 (50%)] Loss: 0.011159
Train Epoch: 10 [45568/60000 (75%)] Loss: 0.024884Test set: Average loss: 0.0286, Accuracy: 9901/10000 (99%)Train Epoch: 11 [14848/60000 (25%)] Loss: 0.006420
Train Epoch: 11 [30208/60000 (50%)] Loss: 0.003641
Train Epoch: 11 [45568/60000 (75%)] Loss: 0.003402Test set: Average loss: 0.0377, Accuracy: 9894/10000 (99%)Train Epoch: 12 [14848/60000 (25%)] Loss: 0.006866
Train Epoch: 12 [30208/60000 (50%)] Loss: 0.012617
Train Epoch: 12 [45568/60000 (75%)] Loss: 0.008548Test set: Average loss: 0.0311, Accuracy: 9908/10000 (99%)Train Epoch: 13 [14848/60000 (25%)] Loss: 0.010539
Train Epoch: 13 [30208/60000 (50%)] Loss: 0.002952
Train Epoch: 13 [45568/60000 (75%)] Loss: 0.002313Test set: Average loss: 0.0293, Accuracy: 9905/10000 (99%)Train Epoch: 14 [14848/60000 (25%)] Loss: 0.002100
Train Epoch: 14 [30208/60000 (50%)] Loss: 0.000779
Train Epoch: 14 [45568/60000 (75%)] Loss: 0.005952Test set: Average loss: 0.0335, Accuracy: 9897/10000 (99%)Train Epoch: 15 [14848/60000 (25%)] Loss: 0.006053
Train Epoch: 15 [30208/60000 (50%)] Loss: 0.002559
Train Epoch: 15 [45568/60000 (75%)] Loss: 0.002555Test set: Average loss: 0.0357, Accuracy: 9894/10000 (99%)Train Epoch: 16 [14848/60000 (25%)] Loss: 0.000895
Train Epoch: 16 [30208/60000 (50%)] Loss: 0.004923
Train Epoch: 16 [45568/60000 (75%)] Loss: 0.002339Test set: Average loss: 0.0400, Accuracy: 9893/10000 (99%)Train Epoch: 17 [14848/60000 (25%)] Loss: 0.004136
Train Epoch: 17 [30208/60000 (50%)] Loss: 0.000927
Train Epoch: 17 [45568/60000 (75%)] Loss: 0.002084Test set: Average loss: 0.0353, Accuracy: 9895/10000 (99%)Train Epoch: 18 [14848/60000 (25%)] Loss: 0.004508
Train Epoch: 18 [30208/60000 (50%)] Loss: 0.001272
Train Epoch: 18 [45568/60000 (75%)] Loss: 0.000543Test set: Average loss: 0.0380, Accuracy: 9894/10000 (99%)Train Epoch: 19 [14848/60000 (25%)] Loss: 0.001699
Train Epoch: 19 [30208/60000 (50%)] Loss: 0.000661
Train Epoch: 19 [45568/60000 (75%)] Loss: 0.000275Test set: Average loss: 0.0339, Accuracy: 9905/10000 (99%)Train Epoch: 20 [14848/60000 (25%)] Loss: 0.000441
Train Epoch: 20 [30208/60000 (50%)] Loss: 0.000695
Train Epoch: 20 [45568/60000 (75%)] Loss: 0.000467Test set: Average loss: 0.0396, Accuracy: 9894/10000 (99%)

总结

一个实际项目的工作流程:找到数据集,对数据做预处理,定义我们的模型,调整超参数,测试训练,再通过训练结果对超参数进行调整或者对模型进行调整。

用PyTorch实现MNIST手写体识别相关推荐

  1. python模拟手写笔迹_pytorch实现MNIST手写体识别

    本文实例为大家分享了pytorch实现MNIST手写体识别的具体代码,供大家参考,具体内容如下 实验环境 pytorch 1.4 Windows 10 python 3.7 cuda 10.1(我笔记 ...

  2. TensorRT(3)-C++ API使用:mnist手写体识别

    本节将介绍如何使用tensorRT C++ API 进行网络模型创建. 1 使用C++ API 进行 tensorRT 模型创建 还是通过 tensorRT官方给的一个例程来学习. 还是mnist手写 ...

  3. TensorRT(2)-基本使用:mnist手写体识别

    结合 tensorRT官方给出的一个例程,介绍tensorRT的使用. 这个例程是mnist手写体识别.例程位于目录: /usr/src/tensorrt/samples/sampleMNIST 文件 ...

  4. R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)

    本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ...

  5. 【人工智能项目】MNIST手写体识别实验及分析

    [人工智能项目]MNIST数据集实验报告 这是之前接的小作业,现在分享出来,给大家以学习!!! [人工智能项目]MNIST手写体识别实验及分析 1.实验内容简述 1.1 实验环境 本实验采用的软硬件实 ...

  6. 2021年人工神经网络第四次作业 - 第二题MNIST手写体识别

    简 介: ※MNIST数据集合是深度学习基础训练数据集合.改数据集合可以使用稠密前馈神经网络训练,也可以使用CNN.本文采用了单隐层BP网络和LeNet网络对于MNIST数据集合进行测试.实验结果标明 ...

  7. python神经网络案例——CNN卷积神经网络实现mnist手写体识别

    分享一个朋友的人工智能教程.零基础!通俗易懂!风趣幽默!还带黄段子!大家可以看看是否对自己有帮助:点击打开 全栈工程师开发手册 (作者:栾鹏) python教程全解 CNN卷积神经网络的理论教程参考 ...

  8. python神经网络案例——FC全连接神经网络实现mnist手写体识别

    全栈工程师开发手册 (作者:栾鹏) python教程全解 FC全连接神经网络的理论教程参考 http://blog.csdn.net/luanpeng825485697/article/details ...

  9. mnist手写体识别中用到的TensorFlow API总结

    声明:本文通过CNN实现mnist例子总结了TensorFlow 1.12的相关API.代码来源于<Learning TensorFlow>这本书,API查阅了TensorFlow官网AP ...

最新文章

  1. ASP.NET中如何防范SQL注入式攻击
  2. Perl 连接 SQL Server(ReShip)
  3. SpringBoot中使用thymeleaf的trim方法进行判断字符串是否相等
  4. C语言再学习 -- 运算符与表达式
  5. Linux 下 MediaWiki 的安装使用
  6. notes belonging to given user
  7. python封装继承多态_浅谈JavaScript的面向对象和它的封装、继承、多态
  8. [转载] public static void main(String[] args) 隐含了什么?
  9. matlab2015统计工具箱,matlab统计工具箱函数汇集
  10. C言语教程第四章: 数组(4)
  11. C++ 资源大全整理
  12. xp桌面计算机在哪个文件夹,XP电脑的桌面背景在哪个文件夹?
  13. PHP中smart原则,什么是smart原则(smart原则适用于哪些内容)
  14. 2020-12-30
  15. 商务短信通平台建设实施方案
  16. ssh命令行使用明文密码连接远程服务器并执行命令
  17. 计算机毕业设计ssm基于Andriod的剪纸艺术平台3swaq系统+程序+源码+lw+远程部署
  18. 关于大数据技术原理与应用的学习(6)
  19. 常用的连续时间信号及其时域特性
  20. 三.N32G003 系统性能测试--dhrystone (IAR环境)

热门文章

  1. 阿里矢量图刷新显示异常
  2. liquibase 扩展适配达梦数据库(dm7)
  3. 哪个证券APP可以设置条件单?
  4. vrep与matlab 互动
  5. 关于IE8浏览器JS导出excel,要使导出列宽度按自己控制。
  6. MT2503资料汇总,MT2503原理图
  7. 四个步骤实现在ESRI ArcMap中加载17.6G离线卫星地图的方法
  8. 对Java三大运行平台(javase,javaee,javame)的理解
  9. oracle 7天密码过期,Oracle 密码过期 ORA-28002: 7 天之后口令将过期 的解决方法
  10. Proxycap对打印的影响