前言

在 上文 中我简单概括了矩阵的基本运算,并给出了两个应用实例。这篇文章我们继续谈谈向量。

向量是线性代数中的基本概念,也是机器学习的基础数据表示形式。例如计算机阅读文本的过程首先就会将文本分词,然后用向量表示。这是因为向量很适合在高维空间中表达和处理。在机器学习中会接触到的诸如投影、降维的概念,都是在向量的基础上做的。

在 \(\mathbb{R}^{n}\)空间中定义的向量 \(\vec{\mathbf{V}}\),可以用一个包含 n 个实数的有序集来表示,即 \(\vec{\mathbf{V}} = \begin{bmatrix}v_1 \\ v_2 \\ \ldots \\ v_n\end{bmatrix}\),这个有序集里的每个元素称为向量的 分量 。例如一个 \(\mathbb{R}^{2}\) 空间中的向量 \(\begin{bmatrix}2 \\ 1\end{bmatrix}\) ,有些地方也会用 \((2, 1)\) 或 \(<2, 1>\) 这样的形式来表示。

绘图表示这个变量:

向量的长度被定义为 \[\left\| \vec{\mathbf{v}} \right\| = \sqrt{v_{1}^{2} + v_{2}^{2} + \ldots + v_{n}^{2}}\],和我们以往所接触的距离公式一模一样。长度为 1 的向量称为 单位向量 。

基本运算

向量 \(\mathbf{a}\) 与向量 \(\mathbf{b}\) 的加法定义为:

\[ \mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \ldots \\ a_n + b_n \end{bmatrix} \]

绘图示意向量 \(\mathbf{a} = \begin{bmatrix}-1 \\ 2\end{bmatrix}\) 与 \(\mathbf{b} = \begin{bmatrix}3 \\ 1\end{bmatrix}\) 的相加,值为 \(\begin{bmatrix}2 \\ 3\end{bmatrix}\) :

在 Python 中,可以直接用 Numpy 的 ndarray 来表示向量。

import numpy as np
a = np.array([-1, 2])
b = np.array([3, 1])
print a + b # [2 3]

\[ \mathbf{a} - \mathbf{b} = \begin{bmatrix} a_1 - b_1 \\ a_2 - b_2 \\ \ldots \\ a_n - b_n \end{bmatrix} \]

从几何角度讲,向量减相当于加上一个反向的向量。

import numpy as np
a = np.array([-1, 2])
b = np.array([3, 1])
print a - b  # [-4, 1]

标量乘向量

标量 \(c\) 乘以向量 \(\mathbf{a}\) 定义为:

\[ c \cdot \mathbf{a} = \begin{bmatrix} c \cdot a_1 \\ c \cdot a_2 \\ \ldots \\ c \cdot a_n \end{bmatrix} = \begin{bmatrix} a_1 \cdot c \\ a_2 \cdot c \\ \ldots \\ a_n \cdot c \end{bmatrix} \]

绘图示意向量 \(\mathbf{a} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}\) 乘以一个标量 3 得到 \(\begin{bmatrix} -3 \\ 6 \end{bmatrix}\) :

Python 实现:

import numpy as np
a = np.array([-1, 2])
print a * 3 #[-3, 6]

向量点积

向量的点积(又叫点乘)定义如下:

\[\vec{\mathbf{a}}\cdot \vec{\mathbf{b}} = \begin{bmatrix} a_1 \\ a_2 \\ \ldots \\ a_n\end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \ldots \\ b_n \end{bmatrix} = a_{1}b_{1} + a_{2}b_{2} + \ldots + a_{n}b_{n}\]

可见点积得到的是一个标量。

例如:

\[\begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} = 3 \cdot 1 + 5 \cdot 4 + 2 \cdot 7 = 37\]

Python 示例:

import numpy as np
a = np.array([3, 5, 2])
b = np.array([1, 4, 7])
print a.dot(b)  # 37
print np.dot(a, b)  # 37(另一种等价写法)

容易证明点积满足乘法交换律、分配律和结合律。

我们知道向量的长度定义为 \(\left\| \vec{\mathbf{v}} \right\| = \sqrt{v_{1}^{2} + v_{2}^{2} + \ldots + v_{n}^{2}}\),联立点积的定义,可以得出:

eq: 1 »

\[\left\| \vec{\mathbf{v}} \right\| = \sqrt{v_{1}^{2} + v_{2}^{2} + \ldots + v_{n}^{2}} = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}}\]

关于点积还有一个非常重要的性质,称为 柯西不等式 :

  • 对两个非 0 向量 \(\vec{\mathbf{x}}, \vec{\mathbf{y}} \in \mathbb{R}^{n}\),\(|\vec{\mathbf{x}} \cdot \vec{\mathbf{y}}| \le \left\|\vec{\mathbf{x}}\right\|\left\|\vec{\mathbf{y}}\right\|\)。
  • 当且仅当 \(\vec{\mathbf{x}} = c\vec{\mathbf{y}}\) 时,等式成立。

虽然受限于篇幅不去证明它,但这个性质非常重要,后面会有很多向量的理论都建立在它的基础之上。例如,对一个向量 \((\vec{\mathbf{x}} + \vec{\mathbf{y}})\) ,利用这个性质,结合公式 1,我们可以得到

\[ \begin{align} \left\|\vec{\mathbf{x}} + \vec{\mathbf{y}}\right\|^2 & = (\vec{\mathbf{x}} + \vec{\mathbf{y}})\cdot (\vec{\mathbf{x}} + \vec{\mathbf{y}}) \\\ & = \left\|\vec{\mathbf{x}}\right\|^2 + 2\vec{\mathbf{x}}\vec{\mathbf{y}} + \left\|\vec{\mathbf{y}}\right\|^2 \\\ & \le \left\|\vec{\mathbf{x}}\right\|^2 + 2\left\|\vec{\mathbf{x}}\right\|\left\|\vec{\mathbf{y}}\right\| + \left\|\vec{\mathbf{y}}\right\|^2 \end{align} \]

所以:

\[ \left\|\vec{\mathbf{x}} + \vec{\mathbf{y}}\right\|^2 \le (\left\|\vec{\mathbf{x}}\right\| + \left\|\vec{\mathbf{y}}\right\|)^2 \]

两边开平方得到:

\[ \left\|\vec{\mathbf{x}} + \vec{\mathbf{y}}\right\| \le \left\|\vec{\mathbf{x}}\right\| + \left\|\vec{\mathbf{y}}\right\| \]

这就得到了三角不等式。

从几何的角度来说,向量的点积与向量间夹角 \(\theta\) 的余弦有关:\[\vec{\mathbf{a}}\cdot\vec{\mathbf{b}} = \left\|\vec{\mathbf{a}}\right\|\left\|\vec{\mathbf{b}}\right\|cos\theta\],这意味着向量的点积其实反映了向量 \(\vec{\mathbf{a}}\) 在向量 \(\vec{\mathbf{b}}\) 上的 投影 ,即两个向量在同个方向上的相同程度。当两向量正交时,\(cos\theta\) 的值为0,点积的值为0,投影最小。当两向量平行时,\(cos\theta\) 的值为1,点积值最大,投影也最大。

观察上图,\(L\) 是 \(\vec{\mathbf{v}}\) 向量两端延伸出来的直线,即 \(L={c\vec{\mathbf{v}}|c\in \mathbb{R}}\)。记向量 \(\vec{\mathbf{x}}\) 在 \(L\) 上的投影为 \(Proj_L(\vec{\mathbf{x}})\)。根据点积的性质,可得:

\[ \begin{align} (\vec{\mathbf{x}}-\underbrace { c\vec{\mathbf{v}}}_{ Proj_L({\vec{\mathbf{x}}}) } )\cdot \vec{\mathbf{v}} &= 0 \\\ \vec{\mathbf{x}}\cdot \vec{\mathbf{v}} -c\vec{\mathbf{v}}\cdot \vec{\mathbf{v}} &= 0\\\ c\cdot \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} &= \vec{\mathbf{x}}\cdot \vec{\mathbf{v}}\\\ c &= \frac{\vec{\mathbf{x}}\cdot \vec{\mathbf{v}}}{\vec{\mathbf{v}}\cdot \vec{\mathbf{v}}} \end{align} \]

有了 \(c\), 我们就可以求出投影 \(Proj_L({\vec{\mathbf{x}}})\) 为:

\[Proj_L({\vec{\mathbf{x}}}) = c\vec{\mathbf{v}} = (\frac{\vec{\mathbf{x}}\cdot \vec{\mathbf{v}}}{\vec{\mathbf{v}}\cdot \vec{\mathbf{v}}})\vec{\mathbf{v}}\]

例如,向量 \(\vec{\mathbf{a}} = \begin{bmatrix}1 \\ 2\end{bmatrix}\),向量 \(\vec{\mathbf{b}} = \begin{bmatrix}1 \\ 1\end{bmatrix}\),那么 \(\vec{\mathbf{a}}\) 在 \(\vec{\mathbf{b}}\) 方向 \(L\) 上的投影为:

\[Proj_L({\vec{\mathbf{a}}}) = c\vec{\mathbf{b}} = (\frac{\vec{\mathbf{a}}\cdot \vec{\mathbf{b}}}{\vec{\mathbf{b}}\cdot \vec{\mathbf{b}}})\vec{\mathbf{b}} = \frac{3}{2}\vec{\mathbf{b}}\]

Python 示例:

defget_projection(a, b):return a.dot(b)*1.0*b/b.dot(b)a = np.array([1, 2])
b = np.array([2, 2])
print get_projection(a, b)  # [1.5 1.5]

向量外积

向量的(又叫叉乘、向量积、叉积)只在 \(\mathbb{R}^{2}\) 和 \(\mathbb{R}^{3}\) 中定义:

\(\mathbb{R}^{2}\) 的向量外积:

\[\begin{bmatrix} a_1 \\ a_2\end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 \cdot b_2 - a_2 \cdot b_1\end{bmatrix}\]

例如:

\[ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \cdot 4 - 3 \cdot 2 \end{bmatrix} = \begin{bmatrix}-2\end{bmatrix} \]

\(\mathbb{R}^{3}\) 的向量外积:

\[\begin{bmatrix} a_1 \\ a_2 \\ a_3\end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1\end{bmatrix}\]

例如:

\[ \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 \cdot 7 - 2 \cdot 4 \\ 2 \cdot 1 - 3 \cdot 7 \\ 3 \cdot 4 - 5 \cdot 1\end{bmatrix} = \begin{bmatrix} 27 \\ -19 \\ 7\end{bmatrix} \]

可见向量间外积的结果会得到一个新的向量。

Python 示例:

import numpy as np
a = np.array([3, 5, 2])
b = np.array([1, 4, 7])
print np.cross(a, b)  # [27, -19, 7]

外积的一个重要作用是可以得到一个和 \(\vec{\mathbf{a}}\) 、\(\vec{\mathbf{b}}\) 两个原向量正交的新向量 \(\vec{\mathbf{c}}\) ,且可以通过右手法则来确定新向量的方向(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从 \(\vec{\mathbf{a}}\) 以不超过180度的转角转向 \(\vec{\mathbf{b}}\) 时,竖起的大拇指指向是 \(\vec{\mathbf{c}}\) 的方向)。

从几何的角度来说,向量的外积与向量间夹角 \(\theta\) 的正弦有关:\[\left\|\vec{\mathbf{a}}\times\vec{\mathbf{b}}\right\| = \left\|\vec{\mathbf{a}}\right\|\left\|\vec{\mathbf{b}}\right\|sin\theta\],这意味着向量的外积反映了向量 \(\vec{\mathbf{a}}\) 与向量 \(\vec{\mathbf{b}}\) 的正交程度。当两向量平行时,\(sin\theta\) 的值为0,外积的值为0,正交程度最小。当两向量正交时,\(sin\theta\) 的值为1,外积值最大,正交程度最大。

矩阵向量积

当矩阵 \(\mathbf{A}\) 的列数与向量 \(\vec{\mathbf{x}}\) 的分量数相同时,矩阵和向量的积有定义:

\[\underset{m\times n}{A}\vec{\mathbf{x}}=\begin{bmatrix}a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn}\end{bmatrix}\begin{bmatrix}x_1 \\ x_2 \\ \ldots \\ x_n \end{bmatrix} = \begin{bmatrix}a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \\ \ldots \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \\ \end{bmatrix} \]

例如矩阵 \(\mathbf{A} = \begin{bmatrix}4 & 3 & 1 \\ 1 & 2 & 5\end{bmatrix}\) 乘以向量 \(\vec{\mathbf{x}} = \begin{bmatrix}5 \\ 2 \\ 7\end{bmatrix}\) 的结果为:

\[\begin{bmatrix}4\cdot 5 + 3\cdot 2 + 1\cdot 7 \\ 1 \cdot 5 + 2 \cdot 2 + 5 \cdot 7\end{bmatrix} = \begin{bmatrix}33 \\ 44\end{bmatrix}\]

Python 示例:

a = np.matrix('4 3 1;1 2 5')
x = np.array([[5], [2], [7]])
print a*x  # [[33] [44]]

矩阵的向量积可以当成是矩阵的所有列向量的线性组合:

\[\underset { m\times n }{ \mathbf{A} } \vec { \mathbf{x} } =\begin{bmatrix} \underbrace { \begin{bmatrix} a_{ 11 } \\ a_{ 21 } \\ \ldots \\ a_{ m1 } \end{bmatrix} }_{ \vec { \mathbf{ V }_{ 1 } } } & \underbrace { \begin{bmatrix} a_{ 12 } \\ a_{ 22 } \\\ldots \\ a_{ m2 } \end{bmatrix} }_{ \vec { \mathbf{ V_{ 2 } } } } & \ldots & \underbrace { \begin{bmatrix} a_{ 1n } \\ a_{ 2n } \\ \ldots \\ a_{ mn } \end{bmatrix} }_{ \vec { \mathbf{ V_{ n } } } } \end{bmatrix}\begin{bmatrix} x_{ 1 } \\ x_{ 2 } \\ \ldots \\ x_{ n } \end{bmatrix}=x_1\vec{\mathbf{V}_1}+x_2\vec{\mathbf{V}_2}+\ldots+x_n\vec{\mathbf{V}_n}\]

而向量 \(\vec{\mathbf{x}}\) 的每一个分量可以看成是 \(\mathbf{A}\) 的每个列向量的加权。

向量的转置

向量 \(\vec{\mathbf{V}} = \underbrace{\begin{bmatrix}v_1 \\ v_2 \\ \ldots \\ v_n \end{bmatrix}}_{n\times 1}\) 的转置定义为 \(\vec{\mathbf{V}}^T = \underbrace{\begin{bmatrix}v_1 & v_2 & \ldots & v_n \end{bmatrix}}_{1 \times n}\)

例如向量 \(\vec{\mathbf{A}} = \begin{bmatrix} 2 & 4 \end{bmatrix}\) 的转置就是 \(\vec{\mathbf{A}}^T = \begin{bmatrix} 2 \\ 4\end{bmatrix}\)。

Python 示例:

>>> a = np.array([[2, 4]])
>>> a.T
array([[2],[4]])

注意上面声明 a 时用了两对 [] ,以生成一个二维向量。一维的向量转置结果是不会变化的:

>>> b = np.array([2, 4])
>>> b.T
array([2, 4])

向量的转置有两个性质:一个向量 \(\vec{\mathbf{v}}\) 点乘另一个向量 \(\vec{\mathbf{w}}\) ,其结果和向量 \(\vec{\mathbf{v}}\) 转置后和向量 \(\vec{\mathbf{w}}\) 做矩阵乘法相同。即 \(\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = \vec{\mathbf{v}}^T \vec{\mathbf{w}}\) 。

线性无关

张成空间

一组向量的张成空间说白了就是指这些向量随便线性组合后能够表示多少个向量。记为 \(span(\vec{\mathbf{a}}, \vec{\mathbf{b}})\)。

例如,对于 \(\mathbb{R}^{2}\) 空间中两个不平行的非0向量 \(\vec{\mathbf{a}} = \begin{bmatrix}2 \\ 1\end{bmatrix}\) 和向量 \(\vec{\mathbf{b}} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}\) ,不难发现这两个向量能够表示二维空间中任一其他向量,即 \(span(\vec{\mathbf{a}}, \vec{\mathbf{b}}) = \mathbb{R}^{2}\)。证明如下:

对于 \(\mathbb{R}^{2}\) 中任一向量 \(\begin{bmatrix}x \\y \end{bmatrix}\) ,假设可以由 \(\vec{\mathbf{a}}\) 和 \(\vec{\mathbf{b}}\) 线性组合而成,那么有:

\[ c_1 \begin{bmatrix}2 \\ 1\end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} \]

即:

\[ \left\{ \begin{align} c_1 \cdot 2 & + c_2 \cdot 0 &= x\\\ c_1 \cdot 1 & + c_2 \cdot 3 &= y \end{align} \right. \]

求解该方程得:

\[ \left\{ \begin{align} c_1 &= \frac{x}{2}\\ c_2 &= \frac{y}{3} - \frac{x}{6} \end{align} \right. \]

由于 \(x\)、\(y\) 的值已确定,所以 \(c_1\)、\(c_2\) 的值也必然唯一。

线性相关和线性无关

当一个向量集合里的每个向量都对张成的空间有贡献时,称这个向量集合线性无关。反之称为线性无关。能够表示一个空间的最少向量组合称为空间的基。

听起来有点难理解,其实就是非常简单的道理:假如一个向量集合中存在某个向量能由集合里的其他向量线性组合而成,那这个集合对于张成空间而言就存在多余的向量。此时就是线性相关;反之,假如集合里每一个元素都没法由其他元素组合而成,那么这个集合每个元素都对张成空间有贡献,这个集合就是线性无关的。

例如,对于上述的例子,如果再增加一个向量 \(\vec{\mathbf{c}} = \begin{bmatrix} 5 \\ 2\end{bmatrix}\) ,由于 \(\vec{\mathbf{c}}\) 可以由 \(\vec{\mathbf{a}}\) 和 \(\vec{\mathbf{b}}\) 线性组合而成,由 \(\mathbf{a}\) 、\({\mathbf{b}}\) 和 \({\mathbf{c}}\) 共同张成的空间并没有变化,仍然是 \(\mathbb{R}^{2}\),因此称集合 \(\left\{\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}\right \}\) 线性相关。

判断是否线性相关

一个向量集合 \(s = {v_1, v_2, \ldots, v_n}\) 线性相关的充分必要条件是存在一部分非0系数使得 \(c_1 v_1 + c_2 v_2 + \ldots + c_n v_n = \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \ldots \\ 0\end{bmatrix}\) 。

例如有向量 \(\begin{bmatrix}2 \\ 1\end{bmatrix}\) 和 \(\begin{bmatrix}3 \\ 2\end{bmatrix}\),则可以先写出如下的等式:

\[c_1 \begin{bmatrix}2 \\ 1\end{bmatrix} + c_2 \begin{bmatrix}3 \\ 2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}\]

容易求解得 \(\begin{bmatrix}c_1 \\ c_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}\),说明两个向量线性无关。也说明这两个向量可以张成 \(\mathbb{R}^{2}\)。

类似地,对于三个 \(\mathbb{R}^{3}\) 中的向量 \(\begin{bmatrix}2 \\ 0 \\ 0\end{bmatrix}\)、\(\begin{bmatrix}0 \\ 1 \\ 0\end{bmatrix}\) 和 \(\begin{bmatrix}0 \\ 0 \\ 7\end{bmatrix}\),不难判断这三个向量是线性无关的,他们共同张成了 \(\mathbb{R}^3\) 空间。

而对于向量集合 \(\left\{\begin{bmatrix}2 \\ 1\end{bmatrix}, \begin{bmatrix}3 \\ 2\end{bmatrix}, \begin{bmatrix}1 \\ 2 \end{bmatrix}\right\}\) ,不难算出存在非 0 的系数 \(\begin{bmatrix}c_1 \\ c_2 \\ c_3\end{bmatrix} = \begin{bmatrix}-4 \\ 3 \\ -1\end{bmatrix}\) 使得 \(c1 \begin{bmatrix}2 \\ 1\end{bmatrix} + c_2 \begin{bmatrix}3 \\ 2\end{bmatrix} + c_3 \begin{bmatrix}1 \\ 2 \end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}\)。因此集合 \(\left\{\begin{bmatrix}2 \\ 1\end{bmatrix}, \begin{bmatrix}3 \\ 2\end{bmatrix}, \begin{bmatrix}1 \\ 2 \end{bmatrix}\right\}\) 线性相关。

下篇文章将进阶讨论线性子空间和特征向量。

机器学习的数学基础:向量篇相关推荐

  1. 【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(10):向量组及其线性组合

    文章目录 前言 往期文章 4.1 向量组及其线性组合 定义1 定义2 定理1 定义3 定理2 推论 举例 例 1 例2 定理3 小结 结语 前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文 ...

  2. 【机器学习的数学基础】(九)向量微积分(Vector Calculus)(上)

    文章目录 5 向量微积分(Vector Calculus) 5.1 单变量函数的微分 5.1.1 泰勒级数 5.1.2 微分法则 5.2 偏微分与梯度 5.2.1 偏微分的基本法则 5.2.2 链式法 ...

  3. 【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(11):向量组的线性相关性

    文章目录 前言 往期文章 4.2 向量组的线性相关性 定义4 线性相关/无关 特殊情况 定理4 举例 例4 例5 例6 定理5 结语 前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错 ...

  4. 两个卡方分布之和_机器学习算法数学基础之 —— 统计与概率论篇(3)

    核心问题 发现数字的隐藏规律,完成分类. 核心技能 最大似然估计 给定一个概率分布 ,已知其概率密度函数(连续分布)或概率质量函数(离散分布)为 ,以及一个分布参数 ,我们可以从这个分布中抽出一个具有 ...

  5. 机器学习理论引导 电子版_机器学习理论篇1:机器学习的数学基础(2)

    本节主要就是讲述的机器学习的数学基础,提到数学基础,可能一眼就会是满眼的枯燥.没意思,但是成就英雄的路上注定了孤独,要想要真正的在学术上有所突破就必须挨得住寂寞,受得住孤独,才能真正的走进熟悉直到完全 ...

  6. 矩阵迹的性质_机器学习的数学基础 之 矩阵范数 — 我的长度我做主?

    热点追踪 / 数学基础 / 编程基础 / 实战技术 字数: 3925 作者: 小组成员机器学习与数学 出品 0x01.矩阵的诞生 在数学史上,矩阵的概念提出得比较晚,但可以朔源到两千多年前就提出的线性 ...

  7. AI第二阶段 高等数学基础——线性代数篇学习总结

    AI第二阶段:高等数学基础-线性代数篇 学习总结                            田超凡_20190307复习课 ==================目录============ ...

  8. 【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(14):向量范数及其性质

    目录 前言 往期文章 4.1 向量范数及其性质 4.1.1 向量范数的概念及P-范数 定义4.1 例1 向量的几种范数 4.1.2 n n n维线性空间 V V V上的向量范数等价性 定理4.1.1 ...

  9. 【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(20):用配方法化二次型为标准形

    目录 前言 往期文章 5.6 用配方法化二次型为标准形 题目一 题目二 结语 前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出-   自我介绍 ଘ(੭ˊᵕˋ)੭ ...

  10. 机器学习的数学基础1:集合、关系、元组

    目录 机器学习的数学基础1:集合.关系.元组 机器学习的数学基础2:字母表.二叉树.树 机器学习的数学基础3:有限状态自动机 本贴的目的, 是让我的学生们树立元组的思想, 并能在写论文的时候, 正确地 ...

最新文章

  1. 【廖雪峰python入门笔记】整数和浮点数
  2. R语言使用caretEnsemble包的caretList函数一次性构建多个机器学习模型、使用lattice包的bwplot函数使用箱图对比多个模型在多个指标上的性能差异
  3. 用vs2005开发比delphi快多了
  4. [置顶] Application,Session,Cookie之Application对象
  5. 为什么要用GCD-Swift2.x
  6. 关于面向过程编程的一些思考
  7. 腾讯基于全时态数据库技术的数据闪回
  8. Linux下安装nginx, php, php-fpm并配置
  9. .Net开发人员应该下载的十种必备工具(二)
  10. android 源码开发 关于编译等小知识点总结
  11. 自定义获取焦点的TextView
  12. MVC学习Day01
  13. Codejock Suite Pro for ActiveX COM Crack Xacker 大作
  14. 华为手机遮挡html页面,手机知识:华为手机老是显示屏幕被遮挡
  15. 小学计算机专业说课稿模板,小学信息技术说课稿集锦
  16. 【WINAPI】CreateSemaphore_信号量
  17. win7 局域网共享文件
  18. python练习题5:货币转换 I
  19. 【Applied Algebra】可满足性模理论(Satisfiability Modulo Theories)入门
  20. 【JavaSE】接口

热门文章

  1. SAS软件介绍单元测验
  2. Arduino的图形化开发环境: ArduBlock
  3. 【java毕业设计】基于javaEE+Spring的新闻发布及管理系统设计与实现(毕业论文+程序源码)——新闻发布及管理系统
  4. Adobe Audition CC v6.0.732免注册版更新
  5. 接口测试平台-112: 首页优化2期 竖线右侧:数据看板+图形看板
  6. express 搭建简易的本地服务器
  7. 【合宙ESP32C3】MPU6500六轴姿态传感器
  8. win7扫描仪在计算机,教你win7电脑上的扫描仪在哪里
  9. Android课程设计--网上购物商城
  10. Openstack中为虚拟机挂载ISO镜像