转自:http://www.blogjava.net/zhenandaci/archive/2008/08/31/225966.html

前文提到过,除了分类算法以外,为分类文本作处理的特征提取算法也对最终效果有巨大影响,而特征提取算法又分为特征选择和特征抽取两大类,其中特征选择算法有互信息,文档频率,信息增益,开方检验等等十数种,这次先介绍特征选择算法中效果比较好的开方检验方法。

大家应该还记得,开方检验其实是数理统计中一种常用的检验两个变量独立性的方法。(什么?你是文史类专业的学生,没有学过数理统计?那你做什么文本分类?在这捣什么乱?)

开方检验最基本的思想就是通过观察实际值与理论值的偏差来确定理论的正确与否。具体做的时候常常先假设两个变量确实是独立的(行话就叫做“原假设”),然后观察实际值(也可以叫做观察值)与理论值(这个理论值是指“如果两者确实独立”的情况下应该有的值)的偏差程度,如果偏差足够小,我们就认为误差是很自然的样本误差,是测量手段不够精确导致或者偶然发生的,两者确确实实是独立的,此时就接受原假设;如果偏差大到一定程度,使得这样的误差不太可能是偶然产生或者测量不精确所致,我们就认为两者实际上是相关的,即否定原假设,而接受备择假设。

那么用什么来衡量偏差程度呢?假设理论值为E(这也是数学期望的符号哦),实际值为x,如果仅仅使用所有样本的观察值与理论值的差值x-E之和:

∑i=1n(xi−E)

来衡量,单个的观察值还好说,当有多个观察值x1,x2,x3的时候,很可能x1-E,x2-E,x3-E的值有正有负,因而互相抵消,使得最终的结果看上好像偏差为0,但实际上每个都有偏差,而且都还不小!此时很直接的想法便是使用方差代替均值,这样就解决了正负抵消的问题,即使用

∑i=1n(xi−E)2

这时又引来了新的问题,对于500的均值来说,相差5其实是很小的(相差1%),而对20的均值来说,5相当于25%的差异,这是使用方差也无法体现的。因此应该考虑改进上面的式子,让均值的大小不影响我们对差异程度的判断,式(1):

∑i=1n(xi−E)2E

上面这个式子已经相当好了。实际上这个式子就是开方检验使用的差值衡量公式。当提供了数个样本的观察值x1,x2,……xi ,……xn之后,代入到式(1)中就可以求得开方值,用这个值与事先设定的阈值比较,如果大于阈值(即偏差很大),就认为原假设不成立,反之则认为原假设成立。

在文本分类问题的特征选择阶段,我们主要关心一个词t(一个随机变量)与一个类别c(另一个随机变量)之间是否相互独立?如果独立,就可以说词t对类别c完全没有表征作用,即我们根本无法根据t出现与否来判断一篇文档是否属于c这个分类。但与最普通的开方检验不同,我们不需要设定阈值,因为很难说词t和类别c关联到什么程度才算是有表征作用,我们只想借用这个方法来选出一些最最相关的即可。

此时我们仍然需要明白对特征选择来说原假设是什么,因为计算出的开方值越大,说明对原假设的偏离越大,我们越倾向于认为原假设的反面情况是正确的。我们能不能把原假设定为“词t与类别c相关“?原则上说当然可以,这也是一个健全的民主主义社会赋予每个公民的权利(笑),但此时你会发现根本不知道此时的理论值该是多少!你会把自己绕进死胡同。所以我们一般都使用”词t与类别c不相关“来做原假设。选择的过程也变成了为每个词计算它与类别c的开方值,从大到小排个序(此时开方值越大越相关),取前k个就可以(k值可以根据自己的需要选,这也是一个健全的民主主义社会赋予每个公民的权利)。

好,原理有了,该来个例子说说到底怎么算了。

比如说现在有N篇文档,其中有M篇是关于体育的,我们想考察一个词“篮球”与类别“体育”之间的相关性(任谁都看得出来两者很相关,但很遗憾,我们是智慧生物,计算机不是,它一点也看不出来,想让它认识到这一点,只能让它算算看)。我们有四个观察值可以使用:

1.         包含“篮球”且属于“体育”类别的文档数,命名为A

2.         包含“篮球”但不属于“体育”类别的文档数,命名为B

3.         不包含“篮球”但却属于“体育”类别的文档数,命名为C

4.         既不包含“篮球”也不属于“体育”类别的文档数,命名为D

用下面的表格更清晰:

特征选择

1.属于“体育”

2.不属于“体育”

总 计

1.包含“篮球”

A

B

A+B

2.不包含“篮球”

C

D

C+D

总 数

A+C

B+D

N

如果有些特点你没看出来,那我说一说,首先,A+B+C+D=N(这,这不废话嘛)。其次,A+C的意思其实就是说“属于体育类的文章数量”,因此,它就等于M,同时,B+D就等于N-M。

好,那么理论值是什么呢?以包含“篮球”且属于“体育”类别的文档数为例。如果原假设是成立的,即“篮球”和体育类文章没什么关联性,那么在所有的文章中,“篮球”这个词都应该是等概率出现,而不管文章是不是体育类的。这个概率具体是多少,我们并不知道,但他应该体现在观察结果中(就好比抛硬币的概率是二分之一,可以通过观察多次抛的结果来大致确定),因此我们可以说这个概率接近

A+BN

(因为A+B是包含“篮球”的文章数,除以总文档数就是“篮球”出现的概率,当然,这里认为在一篇文章中出现即可,而不管出现了几次)而属于体育类的文章数为A+C,在这些个文档中,应该有

E11=(A+C)A+BN

篇包含“篮球”这个词(数量乘以概率嘛)。

但实际有多少呢?考考你(读者:切,当然是A啦,表格里写着嘛……)。

此时对这种情况的差值就得出了(套用式(1)的公式),应该是

D11=(A−E11)2E11

同样,我们还可以计算剩下三种情况的差值D12,D21,D22,聪明的读者一定能自己算出来(读者:切,明明是自己懒得写了……)。有了所有观察值的差值,就可以计算“篮球”与“体育”类文章的开方值

χ2(篮球,体育)=D11+D12+D21+D22

把D11,D12,D21,D22的值分别代入并化简,可以得到

χ2(篮球,体育)=N(AD−BC)2(A+B)(A+C)(B+D)(C+D)

词t与类别c的开方值更一般的形式可以写成,式(2):

χ2(t,c)=N(AD−BC)2(A+B)(A+C)(B+D)(C+D)

接下来我们就可以计算其他词如“排球”,“产品”,“银行”等等与体育类别的开方值,然后根据大小来排序,选择我们需要的最大的数个词汇作为特征项就可以了。

实际上式(2)还可以进一步化简,注意如果给定了一个文档集合(例如我们的训练集)和一个类别,则N,M,N-M(即A+C和B+D)对同一类别文档中的所有词来说都是一样的,而我们只关心一堆词对某个类别的开方值的大小顺序,而并不关心具体的值,因此把它们从式(2)中去掉是完全可以的,故实际计算的时候我们都使用,式(3):

χ2(t,c)=(AD−BC)2(A+B)(C+D)

好啦,并不高深对不对?

针对英文纯文本的实验结果表明:作为特征选择方法时,开方检验和信息增益的效果最佳(相同的分类算法,使用不同的特征选择算法来得到比较结果);文档频率方法的性能同前两者大体相当,术语强度方法性能一般;互信息方法的性能最差(文献[17])。

但开方检验也并非就十全十美了。回头想想A和B的值是怎么得出来的,它统计文档中是否出现词t,却不管t在该文档中出现了几次,这会使得他对低频词有所偏袒(因为它夸大了低频词的作用)。甚至会出现有些情况,一个词在一类文章的每篇文档中都只出现了一次,其开方值却大过了在该类文章99%的文档中出现了10次的词,其实后面的词才是更具代表性的,但只因为它出现的文档数比前面的词少了“1”,特征选择的时候就可能筛掉后面的词而保留了前者。这就是开方检验著名的“低频词缺陷“。因此开方检验也经常同其他因素如词频综合考虑来扬长避短。

好啦,关于开方检验先说这么多,有机会还将介绍其他的特征选择算法。

附:给精通统计学的同学多说几句,式(1)实际上是对连续型的随机变量的差值计算公式,而我们这里统计的“文档数量“显然是离散的数值(全是整数),因此真正在统计学中计算的时候,是有修正过程的,但这种修正仍然是只影响具体的开方值,而不影响大小的顺序,故文本分类中不做这种修正。

特征选择算法之卡方检验相关推荐

  1. 浅谈关于特征选择算法与Relief的实现

    一. 背景 1) 问题 在机器学习的实际应用中,特征数量可能较多,其中可能存在不相关的特征,特征之间也可能存在相关性,容易导致如下的后果: 1.     特征个数越多,分析特征.训练模型所需的时间就越 ...

  2. 特征选择方法:卡方检验和信息增益

    -1. TF-IDF的误区 TF-IDF可以有效评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.因为它综合表征了该词在文档中的重要程度和文档区分度.但在文本分类中单纯使用TF-IDF来 ...

  3. Feature Selection: A Data Perspective --阅读笔记2 传统数据的特征选择算法

    论文的前一部分 FEATURE SELECTION ON CONVENTIONAL DATA Similarity based Methods Laplacian Score SPEC FEATURE ...

  4. 文本特征选择 java代码_文本分类入门(十)特征选择算法之开方检验

    前文提到过,除了分类算法以外,为分类文本作处理的特征提取算法也对最终效果有巨大影响,而特征提取算法又分为特征选择和特征抽取两大类,其中特征选择算法有互信息,文档频率,信息增益,开方检验等等十数种,这次 ...

  5. 文本分类入门(十)特征选择算法之开方检验

    前文提到过,除了分类算法以外,为分类文本作处理的特征提取算法也对最终效果有巨大影响,而特征提取算法又分为特征选择和特征抽取两大类,其中特征选择算法有互信息,文档频率,信息增益,开方检验等等十数种,这次 ...

  6. python分类时特征选择_关于python:是否有可用于分类数据输入的特征选择算法?...

    我正在训练一个具有10个左右分类输入的神经网络. 在对这些分类输入进行一次热编码之后,我最终将大约500个输入馈入网络. 我希望能够确定我每个分类输入的重要性. Scikit-learn具有许多功能重 ...

  7. python特征选择relieff图像特征优选_基于Relief特征选择算法的研究与应用

    作者姓名导师姓名文献出处论文摘要伴随着当代科学技术的高速发展,人类已经进入了信息爆炸的时代.数据挖掘技术通过从大量数据中揭示出隐含的信息,将海量的高维数据转换为有用的信息和知识.特征选择是数据挖掘中的 ...

  8. Relief特征选择算法

    Relief特征选择算法 Relief算法最早由Kira提出,最初局限于两类数据的分类问题.Relief算法是一种特征权重算法(Feature weighting algorithms),根据各个特征 ...

  9. 互信息特征选择python_基于互信息的特征选择算法MATLAB实现 – OmegaXYZ

    在概率论和信息论中,两个随机变量的互信息(Mutual Information,简称MI)或转移信息(transinformation)是变量间相互依赖性的量度.不同于相关系数,互信息并不局限于实值随 ...

最新文章

  1. 轻松理解汉诺塔问题(图解java描述)
  2. 01-密码学基础-前言
  3. 【Java】6.5 抽象类
  4. 服务器flask远程访问_在Flask中使用什么API来检查远程(其他)服务器的连接?...
  5. InputStream,BufferedImage与byte数组之间的转换
  6. 3 QM配置-质量计划配置-编辑特性属性的选择集
  7. C语言小知识---特殊的字符串
  8. AR、VR、MR的那些事儿
  9. Spring源码系列(十一)——Spring源码总结
  10. 书籍的新增及上下架功能
  11. 德乐Derler T-1series 120G SSD固态硬盘不认盘修复/开卡一例(SM2258XT主控),SM2259XT2可参考
  12. 软件研发成本构成中的间接成本包括哪些?
  13. 2020 — 只争朝夕,不负韶华
  14. (P57-P61)正则表达式
  15. 外文文献阅读时切忌通读全文,这样做效率翻倍!
  16. Mysql存储引擎Innodb的读写锁、行级锁
  17. Windows自带的加密算法Crypto实现MD5, AES256以及RSA算法
  18. WEB开发(7) Hibernate篇(上)
  19. proteus8 Professional和keil4联调流水灯程序
  20. i春秋公益赛WriteUp-MISC套娃

热门文章

  1. 基于uniapp开发的ZEBRA(斑马) PDA使用广播扫码监听功能(文件配置+插件使用)
  2. android安卓开发入门视频教程资料百度网盘下载
  3. visio的一些使用技巧(常更)
  4. 免费Java游戏源代码素材推荐
  5. linux上如何写脚本运行?
  6. python可视化疫情事实报告(pyecharts)——可视化
  7. 服务器许可证密钥,如何生成和验证软件许可证密钥?
  8. 电源大师课笔记 1.9
  9. php去除字符串空格
  10. 基于微信小程序的校园自助打印系统小程序