简 介: 如果把硬币在变化磁场中感应涡流过程看成一个线性时不变系统,经过分析可以知道,它在冲激电磁场内应该所累积的冲量为零。 但考虑到电磁能量使得金属表层温度升高,它成为一个时变系统,此时硬币所受到的冲击力的累积量(冲量)就会出现静升力,从而可以将金属币弹开。建立线圈放电拉普拉斯模型,可以得到对应电流变化波形,通过分析计算获得金属币受力波形。

关键词信号与系统拉普拉斯变换金属硬币

#mermaid-svg-K4koNrjOmJ91Hv0l {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l .error-icon{fill:#552222;}#mermaid-svg-K4koNrjOmJ91Hv0l .error-text{fill:#552222;stroke:#552222;}#mermaid-svg-K4koNrjOmJ91Hv0l .edge-thickness-normal{stroke-width:2px;}#mermaid-svg-K4koNrjOmJ91Hv0l .edge-thickness-thick{stroke-width:3.5px;}#mermaid-svg-K4koNrjOmJ91Hv0l .edge-pattern-solid{stroke-dasharray:0;}#mermaid-svg-K4koNrjOmJ91Hv0l .edge-pattern-dashed{stroke-dasharray:3;}#mermaid-svg-K4koNrjOmJ91Hv0l .edge-pattern-dotted{stroke-dasharray:2;}#mermaid-svg-K4koNrjOmJ91Hv0l .marker{fill:#333333;stroke:#333333;}#mermaid-svg-K4koNrjOmJ91Hv0l .marker.cross{stroke:#333333;}#mermaid-svg-K4koNrjOmJ91Hv0l svg{font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;}#mermaid-svg-K4koNrjOmJ91Hv0l .label{font-family:"trebuchet ms",verdana,arial,sans-serif;color:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l .cluster-label text{fill:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l .cluster-label span{color:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l .label text,#mermaid-svg-K4koNrjOmJ91Hv0l span{fill:#333;color:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l .node rect,#mermaid-svg-K4koNrjOmJ91Hv0l .node circle,#mermaid-svg-K4koNrjOmJ91Hv0l .node ellipse,#mermaid-svg-K4koNrjOmJ91Hv0l .node polygon,#mermaid-svg-K4koNrjOmJ91Hv0l .node path{fill:#ECECFF;stroke:#9370DB;stroke-width:1px;}#mermaid-svg-K4koNrjOmJ91Hv0l .node .label{text-align:center;}#mermaid-svg-K4koNrjOmJ91Hv0l .node.clickable{cursor:pointer;}#mermaid-svg-K4koNrjOmJ91Hv0l .arrowheadPath{fill:#333333;}#mermaid-svg-K4koNrjOmJ91Hv0l .edgePath .path{stroke:#333333;stroke-width:2.0px;}#mermaid-svg-K4koNrjOmJ91Hv0l .flowchart-link{stroke:#333333;fill:none;}#mermaid-svg-K4koNrjOmJ91Hv0l .edgeLabel{background-color:#e8e8e8;text-align:center;}#mermaid-svg-K4koNrjOmJ91Hv0l .edgeLabel rect{opacity:0.5;background-color:#e8e8e8;fill:#e8e8e8;}#mermaid-svg-K4koNrjOmJ91Hv0l .cluster rect{fill:#ffffde;stroke:#aaaa33;stroke-width:1px;}#mermaid-svg-K4koNrjOmJ91Hv0l .cluster text{fill:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l .cluster span{color:#333;}#mermaid-svg-K4koNrjOmJ91Hv0l div.mermaidTooltip{position:absolute;text-align:center;max-width:200px;padding:2px;font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:12px;background:hsl(80, 100%, 96.2745098039%);border:1px solid #aaaa33;border-radius:2px;pointer-events:none;z-index:100;}#mermaid-svg-K4koNrjOmJ91Hv0l :root{--mermaid-font-family:"trebuchet ms",verdana,arial,sans-serif;}

冲激磁场
目 录
Contents
问题分析
高压电容线圈放电
硬币受力分析
为什么铝硬币被弹开?
结 论

§01 冲激磁场


  今天(2022-04-28)上午在西瓜视频看到短片 电容放电,金属块为何物飞起来了 中演示高压大电容对线圈放电,产生脉冲磁场如何将一枚硬币弹到高空的情况。

▲ 图1.1 铝质硬币被弹射到高空

  根据楞次定律,变化的磁场在金属中产生涡流后,形成磁场作用,推动硬币升空。对于这个现象并不会让人感到奇怪。但出乎我们意料的是:铝质硬币会被电磁脉冲瞬间弹开;而铜质硬币则没有离开电磁线圈。

  这是为啥?

▲ 图1.2 铜制硬币则没有被电磁脉冲弹开

  难道是铜质硬币太重了吗?

  视频制作又更换了一个更大的铝质金属环。 结果随着电磁放电, 更重的铝环被瞬间送上了天空。

▲ 图1.3 更重的铝环被电磁脉冲送上了天空

  那么,这其中的道理是什么呢?

  今天上午刚刚在信号与系统课程中讲完拉普拉斯变换性质, 如果能够利用拉普拉斯变换来分析这其中的原因,会很有趣的。

§02 问题分析


  上述视频中展示的硬币被电磁脉冲弹开,包括两个过程:

  • 高压大电容在线圈中放电产生脉冲磁场过程;
  • 脉冲磁场在硬币中感应出涡流后产生磁场作用力过程;

  下面分别对于这两个过程进行分析。

2.1 高压电容线圈放电

  本质上,线圈放电过程会同时受到高压电容放电和硬币感应电流的影响。考虑到硬币本身比较小,感应电流反过来影响线圈放电作用比较小。因此, 分析高压电容在线圈上放电就忽略硬币的影响。

2.1.1 参数假设

  视频中没有给出电容、线圈的具体参数,下面只能做初步的假设。

(1)三个高压电容

  三个高压电容,假设他们都是 1000 μ F 1000\mu F 1000μF , 450 V 450V 450V 耐压。所以总容量为 C = 3000 μ F C = 3000\mu F C=3000μF 。

  根据 Understanding ESR in electrolytic capacitors 叙述,电解电容的等效串联电阻(ESR)随着温度和频率会发生变化。 在这里对于三个高压电容并联后的等效串联电阻假设为 R C − E S R = 0.5 Ω R_{C - ESR} = 0.5\Omega RC−ESR​=0.5Ω 。

▲ 图2.1.1 电路中的各个元器件

(2)放电线圈

  用户放电的线圈是一个螺旋线圈,根据桌面蓝色坐标方格比对,它的直径大约为12格子宽度, 现在假设它的直径为 D S p i r a l = 12 c m D_{Spiral} = 12cm DSpiral​=12cm 。

  去线圈图像中间部分的图片,进行垂直投影,取亮度的变化。如下图所示。 这些变化显示了由于线圈形成的周期波动。

▲ 图2.1.2 线圈以及线圈的匝数

  对亮度曲线进行 FFT 变换,获得对应的频谱,如下图所示。 可以看到其中在 N = 50 N = 50 N=50 的地方形成了峰值。 因此,对应线圈变化空间频率为50Hz。(注意:1Hz对应整个图像宽度)。考虑到获取图像两个边缘各自还有大约两个线径宽度的空白,所以图中的线圈条数为 50 − 2 × 2 = 46 50 - 2 \times 2 = 46 50−2×2=46 。因此线圈匝数为 N c o i l = 46 / 2 = 23 N_{coil} = 46/2 = 23 Ncoil​=46/2=23 匝。

▲ 亮度曲线对应的FFT变换

from headm import *
import cv2imgid = 10imgfile = tspgetdopfile(imgid)img = cv2.imread(imgfile)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
avg = mean(gray, 0)printf(len(avg))
fftavg = abs(fft.fft(avg-mean(avg)))printf(avg)
plt.plot(fftavg)plt.xlabel("n")
plt.ylabel("gray")
plt.grid(True)
plt.tight_layout()
plt.show()

  根据上面参数,确定螺旋线圈几何参数如下。 根据 Spiral Coil Calculator 网页提供的计算工具,可以得到:

  • 线圈电感: L c o i l = 35.79 μ H L_{coil} = 35.79\mu H Lcoil​=35.79μH
  • 线圈长度:7.8米
  • 线圈自身谐振频率: f c o i l = 29.74 k H z f_{coil} = 29.74kHz fcoil​=29.74kHz

▲ 图2.1.4 线圈空间参数

  由于线圈匝数不多,而且线径比较粗,所以先忽略放电线圈中的等效串联电阻。

2.1.2 电容放电

  视频中,电容充电是对220V交流电整流充电。 假设电容充电电压 V C ( 0 − ) = 310 V V_C \left( {0_ - } \right) = 310V VC​(0−​)=310V 。那么电容在线圈放电回路如下图所示:

▲ 图2.1.5 线圈放电等效电路

  根据图中的参数,可以知道放电电流为: I ( s ) = V C ( 0 − 1 ) s ( R C − E S R + s L c o i l + 1 C s ) = V C ( 0 − ) ⋅ C s 2 C L c o i l + s C R C − E S R + 1 I\left( s \right) = {{V_C \left( {0_{ - 1} } \right)} \over {s\left( {R_{C - ESR} + sL_{coil} + {1 \over {Cs}}} \right)}} = {{V_C \left( {0_ - } \right) \cdot C} \over {s^2 CL_{coil} + sCR_{C - ESR} + 1}} I(s)=s(RC−ESR​+sLcoil​+Cs1​)VC​(0−1​)​=s2CLcoil​+sCRC−ESR​+1VC​(0−​)⋅C​

  根据已知参数:
V C ( 0 − ) = 310 V V_C \left( {0_ - } \right) = 310V VC​(0−​)=310V , C = 3000 × 1 0 − 6 F C = 3000 \times 10^{ - 6} F C=3000×10−6F , R C − E S R = 0.5 Ω R_{C - ESR} = 0.5\Omega RC−ESR​=0.5Ω , L c o i l = 35.79 μ H L_{coil} = 35.79\mu H Lcoil​=35.79μH ,所以 I ( s ) = 0.93 1.0737 × 1 0 − 7 s 2 + 0.0015 s + 1 I\left( s \right) = {{0.93} \over {1.0737 \times 10^{ - 7} s^2 + 0.0015s + 1}} I(s)=1.0737×10−7s2+0.0015s+10.93​ 下面是电流波形

▲ 图2.1.6 线圈放电电流波形

  可以看到 线圈放电基本上在10ms之内完成, 在 t max ⁡ = 0.23 μ s t_{\max } = 0.23\mu s tmax​=0.23μs 时, 电流达到峰值 I max ⁡ = 553 A I_{\max } = 553A Imax​=553A 。

from headm import *
from scipy import signalC = 3000e-6
Lcoil=35.79e-6
Rcesr = 0.5system = ([310*C], [C*Lcoil, Rcesr*C, 1])
printf(system)
t, y = signal.impulse(system, N=1000)maxid = list(y).index(max(y))
printf(maxid, y[maxid])plt.plot(t, y)plt.xlabel("t")
plt.ylabel("I(t)")
plt.grid(True)
plt.tight_layout()
plt.show()

2.2 硬币受力分析

  硬币所受到的电磁力与两个物理量有关系。

  • 线圈磁场: 电流在线圈放电,形成磁场 B c o i l = k 1 I ( t ) B_{coil} = k_1 I\left( t \right) Bcoil​=k1​I(t) ;
  • 感应涡流: 硬币中的感应涡流 I c o i n ( t ) = k 2 B c o i l ′ ( t ) I_{coin} \left( t \right) = k_2 B'_{coil} \left( t \right) Icoin​(t)=k2​Bcoil′​(t) , 与线圈磁场变化率成正比。

  硬币受力与上述两个量的乘积成正比: F c o i n ( t ) = k 3 ⋅ B c o i l ( t ) ⋅ I c o i n ( t ) = k 1 k 2 k 3 I c o i l ( t ) ⋅ k 1 I c o i l ′ ( t ) F_{coin} \left( t \right) = k_3 \cdot B_{coil} \left( t \right) \cdot I_{coin} \left( t \right) = k_1 k_2 k_3 I_{coil} \left( t \right) \cdot k_1 I'_{coil} \left( t \right) Fcoin​(t)=k3​⋅Bcoil​(t)⋅Icoin​(t)=k1​k2​k3​Icoil​(t)⋅k1​Icoil′​(t)

  为了方便分析, 我们假设上述所有的系数 k 1 , k 2 , k 3 k_1 ,k_2 ,k_3 k1​,k2​,k3​ 都是1。 根据 I ( s ) I\left( s \right) I(s) 的表达式, I c o i l ′ ( s ) = I c o i l ( s ) ⋅ s I'_{coil} \left( s \right) = I_{coil} \left( s \right) \cdot s Icoil′​(s)=Icoil​(s)⋅s 。这样可以计算出硬币所受的冲力波形

  下图为硬币所受到的冲击力

▲ 硬币所受到的冲击力波形

  可以看到,硬币在冲激磁场作用下,它所受到的电磁力包括正负两种力:

  • 在电流上升阶段,硬币所感应的电流磁场,根据楞次定理是排斥磁通量增加,所以磁场极性与线圈磁场极性相反,磁场作用力促使硬币离开线圈,所以是升力;
  • 在电流下降阶段, 硬币感应的电流磁场应该是组织磁通量减少,所以磁场极性与线圈磁场极性相同,磁场作用力是线圈吸引硬币,所以是下沉力;

  为了说明在磁场减小过程中,线圈会吸引硬币下沉,可以通过下面实验验证。 使用强磁铁迅速离开铝质硬币,通过硬币的磁场减小,所以会被磁铁吸引跳起来。

▲ 图2.2.2 快速撤离的磁铁会吸引铝质硬币

  如果对硬币所受到的电磁力波形进行积分,可以看到硬币所受到的冲量总和接近于 0, 因此,原则上,硬币不应该出现静升力。那么问题来了:为什么铝质硬币会被电磁脉冲弹开?

2.3 为什么铝硬币被弹开?

  根据上面分析,金属硬币所受到的电磁冲击力所产生的冲量应该是0,所以它不会被弹开。 这解释铜质硬币是说得通的。

  但对于铝质硬币和铝质金属环,为什么被冲激磁场弹开了呢?

  这里,需要对前面过程中的细节进行梳理。由于高压电容放电冲击电流的确非常大,因此硬币所感应产生的涡流电流也十分巨大,必然有一部分电磁能转换成热能,引起硬币表面温度升高,进而引起金属电阻增加。

  根据 金属电阻率及其温度系数 ,可以铝和铜的电阻温度系数基本相同,铝的电阻系数稍微大一些。 铝的电阻率比铜高了57%。 根据 金属的导热系数 来看,铜比铝高了近一倍。

  因此,在强大的冲击磁场下, 铝币或者铝环的表面温度(产生涡流主要存在金属的表面)会极速升高,并使得涡流降低。 由于升力主要集中在脉冲上升部分,这个时间非常短,因此铝币温度较低,涡流电流大,升力的累积(冲量)大。 但磁场降低过程相对比较缓慢,此时铝币温度升高,使得涡流电流迅速减小,线圈对硬币的吸引力减小。 这样就使得铝币所受到的电磁冲激里的累积冲量就会出现静上升冲量,从而将硬币弹开。

  但对于铜币,由于它的电阻较小,散热很快,硬币表层温度变动不大,这样它所受到的电磁冲击力累积接近于 0, 所以没有被弹开。

※ 结  论 ※


  如果把硬币在变化磁场中感应涡流过程看成一个线性时不变系统,经过分析可以知道,它在冲激电磁场内应该所累积的冲量为零。 但考虑到电磁能量使得金属表层温度升高,它成为一个时变系统,此时硬币所受到的冲击力的累积量(冲量)就会出现静升力,从而可以将金属币弹开。建立线圈放电拉普拉斯模型,可以得到对应电流变化波形,通过分析计算获得金属币受力波形。


■ 相关文献链接:

  • 电容放电,金属块为何物飞起来了
  • Understanding ESR in electrolytic capacitors
  • Spiral Coil Calculator
  • 金属电阻率及其温度系数
  • 金属的导热系数

● 相关图表链接:

  • 图1.1 铝质硬币被弹射到高空
  • 图1.2 铜制硬币则没有被电磁脉冲弹开
  • 图1.3 更重的铝环被电磁脉冲送上了天空
  • 图2.1.1 电路中的各个元器件
  • 图2.1.2 线圈以及线圈的匝数
  • 亮度曲线对应的FFT变换
  • 图2.1.4 线圈空间参数
  • 图2.1.5 线圈放电等效电路
  • 图2.1.6 线圈放电电流波形
  • 硬币所受到的冲击力波形
  • 图2.2.2 快速撤离的磁铁会吸引铝质硬币

拉普拉斯,帮我看看这个怎么回事呢?相关推荐

  1. 从另一个角度看拉普拉斯变换

    一.奥列弗. 赫维赛德是何许人也 二.傅里叶变换(轻量版拉普拉斯变换) 三.拉普拉斯变换(原来就是那么回事) 拉普拉斯变换可以说是现代工程学使用最广泛的数学工具,它通过数学变换将微积分方程转化成代数方 ...

  2. 神奇的拉普拉斯平滑(Laplacian Smoothing)及其在正则化上的应用~

    之前的博客介绍过自己对于正则化的理解,经过这段时间的进一步接触,尤其是看了一些关于这一方面的paper,做了一些简短的实验,发现正则化真是一个很给力的建模方法.近期,看到了Laplacian Smoo ...

  3. 测试脉冲电磁对于铝片和铜片的影响

    简 介: 利用自制的放电线圈与放电电容, 检查了放电脉冲磁场对于铝片和铜片作用. 看到它们在脉冲磁场线都能够被弹开. 这一点对于前面短视频中的现象并不一样. 也许还是需要找到铝币和铜币进行对比实验一下 ...

  4. 20179311《网络攻防实践》第一周作业

    一.对师生关系的理解 我认为好的师生关系在于多沟通交流,而非单向的输入输出关系.老师借助各种网络媒体平台来丰富教学课程内容,同学们互相交换学习心得,是一种非常好的教学模式. 二.如何提问 提问分前中后 ...

  5. python安装request失败_在python 虚拟环境下使用命令pip install -r request 安装软件失败?...

    各位好: 我使用下列命令建立和进入虚拟环境: (1)virtualenv homepage (2). homepage/bin/activate && cd homepage 然后,我 ...

  6. 我不要我觉得,我要你觉得--如何根据企业研发的现状实施DevOps

    引言 笔者 2012 年做为敏捷教练入职百度,到 2018 年年底一直做为敏捷教练,在百度内部进行敏捷开发的推广,DevOps 实施工作.在工作过程中,我被频繁的问到以下几个问题: 敏捷/DevOps ...

  7. 我要你觉得,我不要我觉得--根据企业现状实施DevOps

    引言 笔者 2012 年做为敏捷教练入职百度,到 2018 年年底一直做为敏捷教练,在百度内部进行敏捷开发的推广,DevOps 实施工作.在工作过程中,我被频繁的问到以下几个问题: 敏捷/DevOps ...

  8. WEB开发文档2 总结

    转自:http://blog.donews.com/lvjiyong/archive/2006/06/29/931071.aspx 怎样将后台生成的在内存中的图象显示到客户端 Microsoft IE ...

  9. MS-SQL Server 基础类 - SQL语句

      网址收藏夹 免费申请! 首页 |收藏夹 | 笑话 | 贴吧 | 交友 | 留言 | 软件 | 超市 | 网页特效 | 酷站导航 | 论坛 新闻 | 同学录 | 图片 | 跑商 | 动画 | 音乐 ...

最新文章

  1. 中国互联网+户外广告行业商业模式创新与投资机会深度研究报告
  2. mysql中的字符匹配查询
  3. 示波器到底选择多大的带宽合适
  4. 【未来可能用到】关于模型的100个问答-part2
  5. php网站入门鹿泉银山,01PHP编程新手入门第一步
  6. (九)模板方法模式详解(包含与类加载器不得不说的故事)
  7. Newbe.Claptrap 0.10.2 发布,Blazor 演示
  8. MySQL笔记创建表结构_MySQL表结构笔记9
  9. vue 获取id元素,vue.js怎么获取dom元素?
  10. 通过字节流来代替链接来下载小文件
  11. 关于使用OpenXml向Excel插入数据的一点总结
  12. Excel实现电子发票管理
  13. 【微信小程序】体验版获取不到接口数据
  14. 20_java使用谷歌邮箱发送邮件
  15. 悲观锁和乐观锁的理解以及实现方式-学习笔记
  16. uniapp:uni_modules组件开发与发布
  17. 视频监控系统由哪几部分组成?(视频监控入门基础-附思维导图)
  18. Python去除列表中元素的前后空格和换行
  19. python全双工聊天窗口编程学习之旅
  20. 3dsMax2022插件开发环境的搭建

热门文章

  1. flash builder4.6安装指南 想学android游戏必看 含结合eclipse内容
  2. windows 部署常见问题
  3. sysctl 默认值_设置Linux内核参数 /etc/sysctl.conf
  4. 数字中国,建设有我!锐捷网络亮相首届数字中国峰会
  5. iDigital2019数字营销广告主峰会
  6. java如何使用正则表达式替换所有前端标签
  7. Tensorflow整理[6].卷积神经网络
  8. 好心情:那个总爱逗我笑的朋友,得了抑郁症
  9. python的就业方向
  10. 五步—定位ip冲突主机设备