ARM926EJ-S/ARM920T 协处理器 CP14, CP15详解

ARM 微处理器可支持多达 16 个协处理器,用于各种协处理操作,在程序执行的过程中,每个协处理器只执行针对自身的协处理指令,忽略 ARM 处理器和其他协处理器的指令。ARM 的协处理器指令主要用于 ARM 处理器初始化 ARM 协处理器的数据处理操作,以及在ARM 处理器的寄存器和协处理器的寄存器之间传送数据,和在 ARM 协处理器的寄存器和存储器之间传送数据。 ARM 协处理器指令包括以下 5 条:

CDP 协处理器数操作指令

LDC 协处理器数据加载指令

STC 协处理器数据存储指令

MCR ARM 处理器寄存器到协处理器寄存器的数据传送指令

MRC 协处理器寄存器到ARM 处理器寄存器的数据传送指令

1CDP 指令

CDP 指令的格式为:

CDP{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理 器操作码2 CDP 指令用于ARM 处理器通知ARM 协处理器执行特定的操作,若协处理器不能成功完成特定的操作,则产生未定义指令异常。其中协处理器操作码1 和协处理器操作码2 为协处理器将要执行的操作,目的寄存器和源寄存器均为协处理器的寄存器,指令不涉及ARM 处理器的寄存器和存储器。

指令示例:

CDP P3 2 C12 C10 C3 4 ;该指令完成协处理器 P3 的初始化

2LDC 指令

LDC 指令的格式为:

LDC{条件}{L} 协处理器编码,目的寄存器,[源寄存器]

LDC 指令用于将源寄存器所指向的存储器中的字数据传送到目的寄存器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

LDC P3 C4 [R0] ;将 ARM 处理器的寄存器 R0 所指向的存储器中的字数据传送到协处理器 P3 的寄存器 C4 中。

3STC 指令

STC 指令的格式为:

STC{条件}{L} 协处理器编码,源寄存器,[目的寄存器]

STC 指令用于将源寄存器中的字数据传送到目的寄存器所指向的存储器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

STC P3 C4 [R0] ;将协处理器 P3 的寄存器 C4 中的字数据传送到 ARM 处理器的寄存器R0 所指向的存储器中。

4MCR 指令

MCR 指令的格式为:

MCR{条件} 协处理器编码,协处理器操作码1,源寄存器,目的寄存器1,目的寄存器2,协处理器操作码2

MCR 指令用于将ARM 处理器寄存器中的数据传送到协处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1 和协处理器操作码2 为协处理器将要执行的操作,源寄存器为ARM 处理器的寄存器,目的寄存器1 和目的寄存器2 均为协处理器的寄存器。

指令示例:

MCR P33R0C4C56;该指令将 ARM 处理器寄存器 R0 中的数据传送到协处理器 P3 的寄存器 C4 C5 中。

5MRC 指令

MRC 指令的格式为:

MRC{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2

MRC 指令用于将协处理器寄存器中的数据传送到ARM 处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1 和协处理器操作码2 为协处理器将要执行的操作,目的寄存器为ARM 处理器的寄存器,源寄存器1 和源寄存器2 均为协处理器的寄存器。

指令示例:

MRC P33R0C4C56;该指令将协处理器 P3 的寄存器中的数据传送到 ARM 处理器寄存器中.

The ARM920T 有两个具体协处理器

CP14调试通信通道协处理器

调试通信通道协处理器DCC(the Debug Communications Channel)提供了两个32bits寄存器用于传送数据,还提供了6bits通信数据控制寄存器控制寄存器中的两个位提供目标和主机调试器之间的同步握手。

通信数据控制寄存器

以下指令在 Rd 中返回控制寄存器的值:

MRC p14, 0, Rd, c0, c0

此控制寄存器中的两个位提供目标和主机调试器之间的同步握手:

1W 位) 从目标的角度表示通信数据写入寄存器是否空闲:

W = 0 目标应用程序可以写入新数据。

W = 1 主机调试器可以从写入寄存器中扫描出新数据。

0R 位) 从目标的角度表示通信数据读取寄存器中是否有新数据:

R = 1 有新数据,目标应用程序可以读取。

R = 0 主机调试器可以将新数据扫描到读取寄存器中。

注意

调试器不能利用协处理器 14 直接访问调试通信通道,因为这对调试器无意义。 但调试器可使用扫描链读写 DCC 寄存器。 DCC 数据和控制寄存器可映射到 EmbeddedICE 逻辑单元中的地址。 若要查看 EmbeddedICE 逻辑寄存器,请参阅您的调试器和调试目标的相关文档。

通信数据读取寄存器

用于接收来自调试器的数据的 32 位宽寄存器。 以下指令在 Rd 中返

回读取寄存器的值:

MRC p14, 0, Rd, c1, c0

通信数据写入寄存器

用于向调试器发送数据的 32 位宽寄存器。 以下指令将 Rn 中的值写

到写入寄存器中:

MCR p14, 0, Rn, c1, c0

注意

有关访问 ARM10 ARM11 内核 DCC 寄存器的信息,请参阅相应的技术参考手册。 ARM9 之后的各处理器中,所用指令、状态位位置以及对状态位的解释都有所不同。

目标到调试器的通信

这是运行于 ARM 内核上的应用程序与运行于主机上的调试器之间的通信事件

顺序:

1. 目标应用程序检查 DCC 写入寄存器是否空闲可用。 为此,目标应用程序使

MRC 指令读取调试通信通道控制寄存器,以检查 W 位是否已清除。

2. 如果 W 位已清除,则通信数据写入寄存器已清空,应用程序对协处理器 14

使用 MCR 指令将字写入通信数据写入寄存器。 写入寄存器操作会自动设置

W 位。如果 W 位已设置,则表明调试器尚未清空通信数据写入寄存器。此

时,如果应用程序需要发送另一个字,它必须轮询 W 位,直到它已清除。

3. 调试器通过扫描链 2 轮询通信数据控制寄存器。 如果调试器发现 W 位已设

置,则它可以读 DCC 数据寄存器,以读取应用程序发送的信息。 读取数据

的进程会自动清除通信数据控制寄存器中的 W 位。

以下代码显示了这一过程

AREA OutChannel, CODE, READONLY

ENTRY

MOV r1,#3 ; Number of words to send

ADR r2, outdata ; Address of data to send

pollout

MRC p14,0,r0,c0,c0 ; Read control register

TST r0, #2

BNE pollout ; if W set, register still full

write

LDR r3,[r2],#4 ; Read word from outdata

; into r3 and update the pointer

MCR p14,0,r3,c1,c0 ; Write word from r3

SUBS r1,r1,#1 ; Update counter

BNE pollout ; Loop if more words to be written

MOV r0, #0x18 ; Angel_SWIreason_ReportException

LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit

SVC 0x123456 ; ARM semihosting (formerly SWI)

outdata

DCB "Hello there!"

END

调试器到目标的通信

这是运行于主机上的调试器向运行于内核上的应用程序传输消息的事件顺序:

1. 调试器轮询通信数据控制寄存器的 R 位。 如果 R 位已清除,则通信数据读

取寄存器已清空,可将数据写入此寄存器,以供目标应用程序读取。

2. 调试器通过扫描链 2 将数据扫描到通信数据读取寄存器中。 此操作会自动

设置通信数据控制寄存器中的 R 位。

3. 目标应用程序轮询通信数据控制寄存器中的 R 位。 如果该位已经设置,则

通信数据读取寄存器中已经有数据,应用程序可使用 MRC 指令从协处理器

14 读取该数据。 同时,读取指令还会清除 R 位。

以下显示的目标应用程序代码演示了这一过程

AREA InChannel, CODE, READONLY

ENTRY

MOV r1,#3 ; Number of words to read

LDR r2, =indata ; Address to store data read

pollin

MRC p14,0,r0,c0,c0 ; Read control register

TST r0, #1

BEQ pollin ; If R bit clear then loop

read

MRC p14,0,r3,c1,c0 ; read word into r3

STR r3,[r2],#4 ; Store to memory and

; update pointer

SUBS r1,r1,#1 ; Update counter

BNE pollin ; Loop if more words to read

MOV r0, #0x18 ; Angel_SWIreason_ReportException

LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit

SVC 0x123456 ; ARM semihosting (formerly SWI)

AREA Storage, DATA, READWRITE

indata

DCB "Duffmessage#"

END

CP15系统控制协处理器

CP15 —系统控制协处理器 the system control coprocessor)他通过协处理器指令MCRMRC提供具体的寄存器来配置和控制cachesMMU、保护系统、配置时钟模式(在bootloader时钟初始化用到)

CP15的寄存器只能被MRCMCRMove to Coprocessor from ARM Register )指令访问

MCR{cond} p15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

MRC{cond} p15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

其中L位用来区分MCR(L=1)MRC(L=0)操作. CP15包括15个具体的寄存器如下:

-R0ID号寄存器

-R0:缓存类型寄存器

-R1:控制寄存器

-R2:转换表基址寄存器(Translation Table Base --TTB

-R3:域访问控制寄存器(Domain access control

-R4:保留

-R5:异常状态寄存器(fault status -FSR

-R6:异常地址寄存器(fault address -FAR

-R7:缓存操作寄存器

-R8TLB操作寄存器

-R9:缓存锁定寄存器

-R10TLB 锁定寄存器

-R11-12&14:保留

-R13:处理器ID

-R15:测试配置寄存器 2-24

要注意有2R0,根据MCR操作数的不同传送不同的值,这也一个只读寄存器

-R0ID号寄存器 这是一个只读寄存器,返回一个32位的设备ID号,具体功能参考ARM各个系列型号的的CP15 Register 0说明.

MRC p15, 0, <Rd>, c0, c0, {0, 3-7} ;returns ID

以下为ID Code详细描叙(ARM926EJ-S); ARM920T Part Number0x920,Architecture (ARMv4T) 为0x2具体可参照ARM各型号.

-R0:缓存类型寄存器(CACHE TYPE REGISTER),包含了caches的信息。读这个寄存器的方式是通过设置协处理操作码为1.

MRC p15, 0, <Rd>, c0, c0, 1; returns cache details

以下为CP15的一些应用示例

U32 ARM_CP15_DeviceIDRead(void)

{

U32 id;

__asm { MRC P15, 0, id, c0, c0; }

return id;

}

void ARM_CP15_SetPageTableBase(P_U32 TableAddress)

{

__asm { MCR P15, 0, TableAddress, c2, c0, 0; }

}

void ARM_CP15_SetDomainAccessControl(U32 flags)

{

__asm { MCR P15, 0, flags, c3, c0, 0; }

}

void ARM_CP15_ICacheFlush()

{

unsigned long dummy;

__asm { MCR p15, 0, dummy, c7, c5, 0; }

}

void ARM_CP15_DCacheFlush()

{

unsigned long dummy;

__asm { MCR p15, 0, dummy, c7, c6, 0; }

}

void ARM_CP15_CacheFlush()

{

unsigned long dummy;

__asm { MCR p15, 0, dummy, c7, c7, 0; }

}

void ARM_CP15_TLBFlush(void)

{

unsigned long dummy;

__asm { MCR P15, 0, dummy, c8, c7, 0; }

}

void ARM_CP15_ControlRegisterWrite(U32 flags)

{

__asm { MCR P15, 0, flags, c1, c0; }

}

void ARM_CP15_ControlRegisterOR(U32 flag)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2,flag

orr r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

}

void ARM_CP15_ControlRegisterAND(U32 flag)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2,flag

and r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

}

void ARM_MMU_Init(P_U32 TableAddress)

{

ARM_CP15_TLBFlush();

ARM_CP15_CacheFlush();

ARM_CP15_SetDomainAccessControl(0xFFFFFFFF);

ARM_CP15_SetPageTableBase(TableAddress);

}

void Enable_MMU (void)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2, #0x00000001

orr r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

printf("MMU enabled/n");

}

void Disable_MMU (void)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2, #0xFFFFFFFE

and r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

printf("MMU disabled/n");

}

ARM926EJ-S/ARM920T 协处理器 CP14, CP15详解相关推荐

  1. arm 协处理器cp14 cp15

    ARM926EJ-S/ARM920T 协处理器 CP14, CP15详解 ARM 微处理器可支持多达 16 个协处理器,用于各种协处理操作,在程序执行的过程中,每个协处理器只执行针对自身的协处理指令, ...

  2. neon浮点运算_ARM 浮点运算详解

    原标题:ARM 浮点运算详解 一:早期 上的浮点模拟器: 早期的ARM没有协处理器,所以是由CPU来模拟的,即所需浮点运算均在浮点运算模拟器(float math emulation)上进行,需要的浮 ...

  3. ARM协处理器(CP15)指令介绍

    什么是协处理器 协处理器是一种芯片,用于减轻系统微处理器的特定处理任务.例如,数学协处理器可以控制数字处理:图形协处理器可以处理视频绘制.例如,intel pentium微处理器就包括内置的数学协处理 ...

  4. uboot启动第一阶段详解——汇编代码部分start.S

    前言 uboot启动第一阶段是用汇编语言实现的,大部分都是Soc内部的初始化,可以理解成一些通用的初始化,只要使用该款Soc,第一阶段的初始化流程基本是一样的.不直接用C语言进行初始化是因为,C语言运 ...

  5. arm-linux-ld中的参数,arm-linux-ld指令详解

    arm-linux-ld指令详解 我们对每个c或者汇编文件进行单独编译,但是不去连接,生成很多.o 的文件,这些.o文件首先是分散的,我们首先要考虑的如何组合起来:其次,这些.o文件存在相互调用的关系 ...

  6. 以SIGSEGV为例详解信号处理(与栈回溯)

    以SIGSEGV为例详解信号处理(与栈回溯) 信号是内核提供的向用户态进程发送信息的机制, 常见的有使用SIGUSR1唤醒用户进程执行子程序或发生段错误时使用SIGSEGV保存用户错误现场. 本文以S ...

  7. bootloader详解(转载)

    一.bootloader介绍 bootloader是硬件在加电开机后,除BIOS固化程序外最先运行的软件,负责载入真正的操作系统,可以理解为一个超小型的os.目前在Linux平台中主要有lilo.gr ...

  8. 4.6 W 字总结!Java 11—Java 17特性详解

    作者 | 民工哥技术之路 来源 | https://mp.weixin.qq.com/s/SVleHYFQeePNT7q67UoL4Q Java 11 特性详解 基于嵌套的访问控制 与 Java 语言 ...

  9. u-boot-2009.08在2440上的移植详解(三)

    一.移植环境 主  机:VMWare--Fedora 9 开发板:Mini2440--64MB Nand,Kernel:2.6.30.4 编译器:arm-linux-gcc-4.3.2.tgz u-b ...

  10. STM32—— AHB、APB详解

     STM32-- AHB.APB详解 2016-07-14 20:35 590人阅读 评论(0) 收藏 举报 本文章已收录于: 版权声明:本文为博主原创文章,未经博主允许不得转载. 一.概括 首先 ...

最新文章

  1. [分享]iOS开发-UI篇:CAlayer层的属性
  2. 计算机主机房的消防配置包括,信息安全等级保护之技术要求→物理安全→防火...
  3. oracle SQL 命令行(二.视图)
  4. leetcode算法题--会议室★★
  5. Switch命令汇总
  6. 面试必会系列 - 5.2 详解OSI模型与七层协议,网络TCP/IP基础,三次握手、四次挥手等
  7. HiveJDBC与其他JDBC一起使用时出现java.lang.IllegalArgumentException: Bad URL format
  8. P6378 [PA2010] Riddle 2-sat + 前缀和优化建图
  9. mitmproxy https抓包的原理是什么?
  10. python 3 并发编程之多进程 multiprocessing模块
  11. HBase权威指南,架构:存储
  12. 新手学计算机编程怎么入门 从哪学起
  13. Android中矢量图形的相关知识
  14. 【CDAS峰会】吴喜之:数据科学的未来发展
  15. 工商管理硕士(MBA)提前面试案例与技巧
  16. 高品质摄影作图台式计算机推荐,摄影后期做图用什么电脑
  17. OpenHarmony鸿蒙 润和Pegasus套件样例--智能安防
  18. 如何使用keepalive实现虚拟IP
  19. 【ElenmentUI el-date-picker日期选择器,结束时间不得早于开始时间,且只能选择距开始时间指定天数的日期】
  20. kubeadm部署kubernetes集群

热门文章

  1. 机器学习:matlab实现异常检测
  2. 异步操作之后让await后续的代码能够继续执行
  3. vue2项目中全局引入scss变量
  4. java webview事件_捕获“页面已完成加载”事件,并使用xwalk Webview在ionic / cordova MainActivity.java中进行操作...
  5. android编译log中_安卓编译 Jack server 错误问题解决办法
  6. 去重仅保留一条_重庆磁器口只是一条商业街?看过它的发展历史,你就不会这么想了...
  7. html如何在第二个网页中显示第一个网页参数_接口测试平台代码实现5:亲手创造第一个首页...
  8. File类的基本操作方法
  9. android 获取service 实例化,在Activity中,如何获取service对象?a.可以通过直接实例化得到。b.可以通过绑定得到。c.通过star - 众答网问答...
  10. UCBCS188 AI学习笔记(2)informed search (启发函数搜索)