前言

  • 在前面的章节我们已经知道,可以使用二极管、晶体管来作为buck、boost和其他一些DC-DC变换器的开关元件。但是为什么会这样呢?或者说,如何实现半导体的开关呢?
  • 半导体功率器件表现为单刀单掷开关,即SPST。如下图
  • 通常,对于一个buck电路,我们使用理想的单刀双掷(SPDT)开关来绘制电路图,如下图
  • 但是实际情况下,使用两个SPST更为接近现实,如下图
  • 使用两个SPST开关 实现SPDT开关并不像看起来那么简单,电路并不是完全等效,两个SPST开关可能同时处于导通状态或断开状态,状态不明确。且开关状态有可能会取决于其两端的电压或电流波形,类似二极管。在一些常见的轻载或重载下运行的变换器,很容易因此明显改变变换器的属性。
  • 使用半导体实现理想开关,那要求器件在截止状态下必须阻断电压,在导通状态必须导通电流。如上图的buck变换器,开关A在截止状态下必须阻断正向电压 V g V_g Vg​,在导通状态下必须传导正向电流 i L i_L iL​。开关的关断电压和导通电流位于如下图所示的单个象限中,利用二极管或晶体管实现。单象限开关在DC-DC转换器中很常见。
  • 在逆变器电路中,则需要用到两象限开关。输出电流是交流电,因此半导体开关的实现更加复杂。可以使用晶体管和二极管来实现两象限SPST开关。有时也会出现双重情况,开关电流始终为正,但阻断电压为交流。这时需要使用晶体管和二极管的不同组合来构造这种类型的双象限开关。
  • Cycloconverter通常需要四象限开关,这种开关能够阻断交流电压,且传导交流电流。
  • 同步整流器,MOSFET的反向导电能力使其可以用于需要二极管的地方,如果MOS的导通电阻足够小,则其导通损耗会小于使用二极管产生的导通损耗。在一些低压大电流应用中使用同步整流器,来提高效率。

开关应用

  • 理想的SPST如下图所示,开关包含电源端子1和0。
  • 在接通状态下, v = 0 v=0 v=0;在断开状态下, i = 0 i=0 i=0。有时,也会有第三端子 C C C,施加控制信号。SPST开关有一个显著特征,它们可以工作在一个 i − v i-v i−v平面区域。无源开关不包含控制端子 C C C。

无源开关

  • 无源开关的状态由施加在0和1的电流和电压决定。最常见的例子是二极管

    • 理想二极管: v ( t ) ⩽ 0 v(t) \leqslant0 v(t)⩽0 和 i ( t ) ⩾ 0 i(t)\geqslant0 i(t)⩾0
    • 当 v < 0 v<0 v<0,二极管关断, i = 0 i=0 i=0;当 v = 0 v=0 v=0,二极管导通, i > 0 i>0 i>0。
    • 能阻止负电压,而不能阻止正电压。
    • 当设计条件满足二极管导通和关断的工作特性曲线,则可以使用二极管来实现无源SPST的开关功能。

有源开关

  • 有源开关的导通状态取决于施加在控制端子 C C C的信号。开关的状态不直接取决于施加在0和1的电流和电压。
  • 常见示例:BJT,MOSFET,IGBT,GTO,MCT等等。
  • BJT和IGBT的理想特性 i − v i-v i−v如下
    • 当控制端使晶体管处于截止状态时, i = 0 i=0 i=0,且该器件能够阻断正向电压, v ≥ 0 v≥0 v≥0。
    • 当控制端使晶体管处于导通状态时,该器件能够传导正电流, i ≥ 0 i≥0 i≥0。
    • BJT和IGBT的反向导通特性很差或不存在,在功率转换器领域基本没有应用。
  • MOSFET具有相似的特性,但是它能反向传导电流。
  • 下面我们试着用BJT应用到包含两个SPST的buck电路中

    • 当开关A闭合,开关B断开,此时开关A传导正电感电流 i A = i L i_A=i_L iA​=iL​,开关B阻断负电压 v B = − V g v_B=-V_g vB​=−Vg​,其工作点如下图所示;当开关A断开,开关B闭合,此时开关B传导正电感电流 i B = i L i_B=i_L iB​=iL​,开关A阻止正电压 v A = V g v_A=V_g vA​=Vg​,其工作点如下图所示。
    • 利用工作点特性,得开关A可以使用晶体管,开关B可使用二极管,得到如下的有效开关实现。
    • 当控制器使晶体管导通,二极管反向偏置,此时 v B = − V g v_B=-V_g vB​=−Vg​,要求 V g V_g Vg​是正的,否则二极管将正向偏置导通;晶体管传导电流 i L i_L iL​,该电流也应为正,以便晶体管正向导电。
    • 当控制器使晶体管关断,二极管必须导通,电感电流需要继续流动。关断晶体管会导致电感器电流 i L i_L iL​减小。电感器电压 v L ( t ) = L d i L ( t ) / d t v_L(t)=Ldi_L(t)/dt vL​(t)=LdiL​(t)/dt可知,其电压变为能使二极管正向偏置的负电压,因此二极管导通。工作在这种模式下的二极管称为续流二极管。
  • 上图是单象限开关实现的示例,只能传导一种极性的电流,只能阻断一种极性的电压。

电流双向二象限开关

  • 在有的场合,如DC-AC逆变器和伺服放大器(servo amplifiers),都要求开关元件能够传导两种极性的电流,且只用阻断正向电压。
  • 这种电流双向二象限开关SPST开关可以使用晶体管和二极管实现(反并联形式连接)。
  • MOSFET也是一个二象限开关,实际功率MOS内部包含一个内置二极管,通常称为体二极管。体二极管的开关速度比MOS慢得多。
  • 如果允许体二极管导通,在二极管关断过渡期间可能会出现较高峰值电流,大多数MOS无法承受这些电流,会产生器件故障。为了避免这种情况,可以如b图所示,外部串联和反并联二极管。
  • 功率MOS可以专门设计为具有快速恢复的体二极管,并在允许体二极管传输MOS额定电流时可靠工作,但是这种体二极管开关速度仍然有些慢,且由于体二极管存储的电荷会导致明显的开关损耗。
  • 如下图,进行分析,该变换器通过正负直流电源,且可以产生具有任一极性的交流输出电压 v ( t ) v(t) v(t)。

    • 晶体管Q1与Q2的开关驱动信号互补。当Q1在子区间 0 < t < D T s 0<t<DT_s 0<t<DTs​中导通,Q2在子区间 D T s < t < T s DT_s<t<T_s DTs​<t<Ts​中导通。
    • 开关必须阻断电压 2 V g 2V_g 2Vg​,且要求 V g > 0 V_g>0 Vg​>0,否则,二极管 D 1 D_1 D1​和 D 2 D_2 D2​将同时导通,电源短路。
    • 0 < t < D T s 0<t<DT_s 0<t<DTs​内,电感电压 v L ( t ) = V g − v o v_L(t)=V_g-v_o vL​(t)=Vg​−vo​, D T s < t < T s DT_s<t<T_s DTs​<t<Ts​内,电感电压 v L ( t ) = − V g − v o v_L(t)=-V_g-v_o vL​(t)=−Vg​−vo​。
    • 通过电感伏秒平衡可得 v 0 = ( 2 D − 1 ) V g v_0=(2D-1)V_g v0​=(2D−1)Vg​
  • 输入输出变换比图形如下

    • D > 0.5 D>0.5 D>0.5时,变换器输出为正; D < 0.5 D<0.5 D<0.5时,输出电压为负。如果输入一个正弦变化的占空比: D ( t ) = 0.5 + D m s i n ( w t ) D(t)=0.5+D_msin(wt) D(t)=0.5+Dm​sin(wt) D m D_m Dm​为小于0.5的常数,则可使输出电压为正弦。
    • 因此这个变换器可以用来做DC-AC逆变器。
  • 在平衡条件下,负载电流与电感电流保持一致: i L = v o R = ( 2 D − 1 ) V g R i_L=\frac{v_o}{R}=(2D-1)\frac{V_g}{R} iL​=Rvo​​=(2D−1)RVg​​
  • 开关必须流过这个电流。因此,当 D > 0.5 D>0.5 D>0.5时,开关电流为正;当 D < 0.5 D<0.5 D<0.5时,开关电流为负。
  • 在高频占空比变化的情况下,LC滤波器可能会在电感电流波形中引入相位滞后,但是会存在两种极性的开关电流。
  • 开关管Q1导通时
  • 开关管Q1进入截止,开关管Q2开始导通,利用二极管D2续流

    同理,Q2导通后
  • 同理,Q2开始慢慢关断,Q1慢慢导通,这个过程通过D1续流
  • 总结:当 i L i_L iL​为正时,Q1和D2交替导通;当 i L i_L iL​为负时,Q2与D1交替导通。
  • 电压逆变器(VSI),就是上述类似的工作方式。如下图,包含三个两象限SPDT开关,每相一个。这些开关阻止直流输入电压,且分别输出交流电流 i a , i b , i c 。 i_a,i_b,i_c。 ia​,ib​,ic​。
  • 双向电池充放电器。如下图,直流母线电压 v b u s v_{bus} vbus​和电池电压 v b a t t v_{batt} vbatt​始终为正。开关器件在电池充电时,阻断母线电压 v b u s v_{bus} vbus​, i L i_L iL​为正,Q1和D2交替传导电流。电池放电时,电流 i L i_L iL​为负,Q2和D1交替传导电流。

电压双向二象限开关

  • 对应电流双向二象限开关,存在一种电压双向二象限开关。即开关必须同时阻止正电压和负电压,而只能传导正电流。
  • 同样可以使用串联的晶体管和二极管来构建SPST开关。如下图
  • 要想开关关断,控制信号C使晶体管关断,而二极管阻断负电压,晶体管阻断正电压。
  • 可控硅整流器就是电压双向二象限的一个实例。
  • 如下图所示的 降压-升压逆变器。

四象限开关

  • 四象限开关,他能传导任一极性的电流和阻断任一极性的电压,如下图所示。
  • 构造四象限开关的方法有多种。
    • 两个电流双向二象限开关背对背连接,晶体管同时被驱动导通或关断。
    • 两个电压双向二象限开关反并联连接。
    • 使用一个晶体管,使用附加的二极管。
  • 循环变换器是需要四象限开关的转换器。通过正确控制开关,这个变换器可以从给定的三相交流输入产生可变频率和电压的三相输出。该变换器种没有直流信号,输入电流电压和输出电流电压均为交流电。

同步整流

  • MOSFET沟道反向传导电流的能力使得在其他需要二极管特性的情况下使用
  • 注意下图的连接方式,与前面提到的连接方式不同,可以产生不同的象限区间。
  • MOSFET用到buck变换器的二极管,如下图。MOS管Q2由Q1控制信号的互补信号驱动。这便是同步整流电路,用MOS管代替续流二极管,适用低压大电流电源。
  • 计算机及电源等产品的趋势是将输出电压降到更低(比如从5V降到3.3V),但是随着输出电压的降低,二极管的导通损耗所占的比例增加。而二极管的势垒电势限制了减小二极管压降的措施。虽然可以使用结电位较低的肖特基二极管,但是传导输出电流的二极管在低压大电流应用时,会有较高损耗。可以使用同步整流的MOS来替换二极管,损耗由mos的导通电阻造成,而可以使用较大的MOS来降低其导通电阻。

Part-Ⅰ4. 开关实现(一)相关推荐

  1. 开关面板如何自己印字_如何自己动手做一个智能开关

    现在的智能家居这么火,对于想自己动手的小伙伴们来说,都想自己去做一些家里使用 的智设备.现在的中国不缺卖唱卖惨的,缺的是能动手创造一些能实际使用的而不是哗众取宠的人,天天喊着要反击外国技术封锁.那么我 ...

  2. javascript开关_JavaScript开关案例简介

    javascript开关 In this short article, I will introduce you to JavaScript switch cases and how to use t ...

  3. 多键开关 android8.0,手机桌面多键开关(SwitchPro Widget )

    7键开关SwitchPro Widget 是款主屏幕窗口小部件工具,可用于开启/关闭多种系统功能,支持多种自定义设置,比原生的电量控制开关好用很多. 7键开关SwitchPro Widget并非只有7 ...

  4. ansys大变形开关要不要打开_ANSYS不收敛问题的解决办法

    笔者应聘时发现此公众号内容也备受同行专家认可, 继续努力,再接再厉! 本文经验是基于仿真秀专家学者总结,在此感谢仿真秀的支持与鼓励. 80%的线性不收敛都是因为接触问题!!! 一.材料问题的不收敛可以 ...

  5. Matlab编程与数据类型 -- 开关语句switch/end

    本微信图文详细介绍了Matlab中switch/end开关语句.

  6. 九、将cs文件快速的转换成可执行文件和响应文件(配置编译开关的文件)

    1.将包含多个类型的源代码文件转换为可以部署的文件.有如下Program.cs的文件,代码如下: public sealed class Program{public static void Main ...

  7. 77底盒和86底盒的区别_86型开关底盒的具体参数

    展开全部 86型开关底盒参数: 1. 标准尺寸:86毫米62616964757a686964616fe4b893e5b19e31333365663533*86毫米. 2.安装孔中心距 60毫米. 2. ...

  8. 上线稳定性如何保证?开关编程很有用

    在日常工作中,无论是一周一个迭代,还是两周一个迭代,都避免不了上线的环节.唯一的区别就是上线的频次不同而已.那么我们如何保证在这么高频次的发版里面同时保证稳定性呢? 答案就是开关编程,所谓的开关编程其 ...

  9. 漫画:骚操作系列(灯泡开关的经典面试题)

    来自:小浩算法 昨天的排版简直逊爆了,让我很不满意!小浩作为一个处女座,追求完美是必须的.所以呢,今天的文章进行了多次的审阅才发出(当然,如果大家还觉得很丑.那我也只能再继续努力.毕竟我不是一个专业的 ...

  10. Nat. Commun. | 深度学习探索可编程RNA开关

    1.背景 具有特定生物学功能的工程RNA分子在合成生物学中发挥着重要作用,特别是作为小分子.蛋白质和核酸的可编程反应元件:例如作为核糖开关.核糖调节因子和核酶,且在体内和体外都可应用.工程RNA分子功 ...

最新文章

  1. mysql json类型数组索引_MySQL JSON 类型数据操作
  2. 扑克牌图片一张一张_Python 制作一副扑克牌,有趣的案例
  3. SpringMVC一些功能
  4. iOS开发-简单工厂模式
  5. 广东春运安保工作提前10天启动
  6. 链栈的建立、判空、入栈、出栈、求长、访顶、清空和销毁
  7. STM8学习笔记---串口uart1
  8. java 像素级碰撞检测,» 像素级碰撞检测类
  9. channel(4)定时器
  10. 不要在循环,条件或嵌套函数中调用 Hook
  11. Javaweb中EL 表达式和JSTL 的使用
  12. push_back讲解
  13. IOS开发音频与视频
  14. 《数据结构》 李春葆 第一章-绪论
  15. 云服务器怎么做成文件共享系统,怎样实现云服务器文件共享
  16. 视频接口CVBS/Component/BNC/VGA/DVI/HDMI/SDI/DP/Type-C
  17. Nokia5233手机和我装的几个symbian V5手机软件
  18. MATLAB如何保存高质量大图
  19. LeetCode Summary of Data Structure Algorithms
  20. python能不能互动执行_细思恐极,插上U盘就开始执行Python代码

热门文章

  1. Consumer<T>和BiConsumer<T,U>
  2. C++的 INT_MAX 和 INT_MIN
  3. 两种闪存:NAND Flash与NOR Flash对比
  4. Linux下使用JRTPLIB进行实时流媒体编程
  5. linux 线程与进程的简单区别
  6. 成功好助手——晨间日记软件
  7. 什么是jdk jre jvm ?
  8. 伺服调试—结合图像分析(以松下伺服为例)
  9. 教程篇(6.0) 07. Web过滤 ❀ FortiGate 安全 ❀ Fortinet 网络安全专家 NSE 4
  10. 计算机专业香港msc,协助申请研究生MSc博士PhD,香港高校【计算机2021提前批】已经开放,含【港府奖学金】...