Lectures on the Hyperreals

Contents

I What Are the Hyperreals? 3

1.1 Infinitely Small and Large 3

1.2 Historical Background  4

1.3 What Is a Real Number? 11

1.4 Historical References   14

2 Large Sets   15

2.1 Infinitesimals as Variable Quantities 15

2.2 Largeness 16

2.3 Filters   18

2.4 Examples of Filters 18

2.5 Facts About Filters 19

2.6 Zom's Lemma 19

2.7 Exercises on Filters  21

3 Ultrapower Construction of the Hyperreals 23

3.1 The Ring of Real-Valued Sequences 23

3.2 Equivalence Modulo an Ultrafilter 24

3.3 Exercises on Almost-Everywhere Agreement 24

3.4 A Suggestive Logical Notation 24 3.5 Exercises on Statement Values 25

3.6 The Ultrapower 25

3.7 Including the Reals in the Hyperreals 27

3.8 Infinitesimals and Unlimited Numbers 27

3.9 Enlarging Sets 28

3.10 Exercises on Enlargement 29

3.11 Extending Functions 30

3.12 Exercises on Extensions 30

3.13 Partial Functions and Hypersequences 31

3.14 Enlarging Relations 31

3.15 Exercises on Enlarged Relations 32

3.16 Is the Hyperreal System Unique? 33

4 The Transfer Principle 35

4.1 Transforming Statements 35

4.2 Relational Structures 38

4.3 The Language of a Relational Structure 38

4.4 *-Transforms 42

4.5 The Transfer Principle 44

4.6 Justifying Transfer 46

4.7 Extending Transfer 47

5 Hyperreals Great and Small 49

5.1 (Un)limited, Infinitesimal, and Appreciable Numbers ... 49

5.2 Arithmetic of Hyperreals 50

5.3 On the Use of "Finite" and "Infinite" 51

5.4 Halos, Galaxies, and Real Comparisons 52

5.5 Exercises on Halos and Galaxies 52

5.6 Shadows 53

5.7 Exercises on Infinite Closeness 54

5.8 Shadows and Completeness 54

5.9 Exercise on Dedekind Completeness 55

5.10 The Hypernaturals . . 56

5.11 Exercises on Hyperintegers and Primes 57

5.12 On the Existence of Infinitely Many Primes 57

II Basic Analysis   59

6 Convergence of Sequences and Series 61

6.1 Convergence 61

6.2 Monotone Convergence 62

6.3 Limits 63

6.4 Boundedness and Divergence 64 6.5 Cauchy Sequences 65

6.6 Cluster Points 66

6.7 Exercises on Limits and Cluster Points 66

6.8 Limits Superior and Inferior 67

6.9 Exercises on lim sup and lim inf 70

6.10 Series 71

6.11 Exercises on Convergence of Series   71

7 Continuous Functions 75

7.1 Cauchy's Account of Continuity 75

7.2 Continuity of the Sine Function 77

7.3 Limits of Functions 78

7.4 Exercises on Limits 78

7.5 The Intermediate Value Theorem 79

7.6 The Extreme Value Theorem 80

7.7 Uniform Continuity 81

7.8 Exercises on Uniform Continuity 82

7.9 Contraction Mappings and Fixed Points 82

7.10 A First Look at Permanence 84 7.11 Exercises on Permanence of Functions 85

7.12 Sequences of Functions 86

7.13 Continuity of a Uniform Limit 87

7.14 Continuity in the Extended Hypersequence 88

7.15 Was Cauchy Right? 90

8 Differentiation 91

8.1 The Derivative 91

8.2 Increments and Differentials 92

8.3 Rules for Derivatives 94

8.4 Chain Rule 94

8.5 Critical Point Theorem 95

8.6 Inverse Function Theorem 96

8.7 Partial Derivatives . . . 97

8.8 Exercises on Partial Derivatives 100

8.9 Taylor Series 100

8.10 Incremental Approximation by Taylor's Formula 102

8.11 Extending the Incremental Equation 103

8.12 Exercises on Increments and Derivatives 104

9 The Riemann Integral 105

9.1 Riemann Sums 105

9.2 The Integral as the Shadow of Riemann Sums 108

9.3 Standard Properties of the Integral 110

9.4 Differentiating the Area Function

9.5 Exercise on Average Function Values 112

10 Topology of the Reals 113

10.1 Interior, Closure, and Limit Points 113

10.2 Open and Closed Sets 115

10.3 Compactness 116

10.4 Compactness and (Uniform) Continuity 119

10.5 Topologies on the Hyperreals 120

III Internal and External Entities 123

11 Internal and External Sets 125

11.1 Internal Sets 125

11.2 Algebra of Internal Sets 127

11.3 Internal Least Number Principle and Induction 128

11.4 The Overflow Principle 129

11.5 Internal Order-Completeness 130

11.6 External Sets 131

11.7 Defining Internal Sets 133

11.8 The Underflow Principle 136

11.9 Internal Sets and Permanence 137

11.10 Saturation of Internal Sets 138 11.11 Saturation Creates Nonstandard Entities 140

11.12 The Size of an Internal Set 141 11.13 Closure of the Shadow of an Internal Set 142

11.14 Interval Topology and Hyper-Open Sets 143

12 Internal Functions and Hyperfinite Sets 147

12.1 Internal Functions 147

12.2 Exercises on Properties of Internal Functions 148

12.3 Hyperfinite Sets 149

12.4 Exercises on Hyperfiniteness 150

12.5 Counting a Hyperfinite Set 151 12.6 Hyperfinite Pigeonhole Principle 151

12.7 Integrals as Hyperfinite Sums 152

IV Nonstandard Frameworks 155

13 Universes and Frameworks 157

13.1 What Do We Need in the Mathematical World? 158

13.2 Pairs Are Enough 159

13.3 Actually, Sets Are Enough 160 13.4 Strong Transitivity 161

13.5 Universes 162

13.6 Superstructures 164

13.7 The Language of a Universe 166

13.8 Nonstandard Frameworks 168 13.9 Standard Entities 170

13.10 Internal Entities 172

13.11 Closure Properties of Internal Sets '. 173

13.12 Transformed Power Sets 174 13.13 Exercises on Internal Sets and Functions 176

13.14 External Images Are External 176

13.15 Internal Set Definition Principle 177

13.16 Internal Function Definition Principle 178

13.17 Hyperfiniteness 178

13.18 Exercises on Hyperfinite Sets and Sizes 180

13.19 Hyperfinite Summation 180 13.20 Exercises on Hyperfinite Sums 181

14 The Existence of Nonstandard Entities 183

14.1 Enlargements 183

14.2 Concurrence and Hyperfinite Approximation 185

14.3 Enlargements as Ultrapowers 187

14.4 Exercises on the Ultrapower Construction 189

15 Permanence, Comprehensiveness, Saturation 191

15.1 Permanence Principles 191

15.2 Robinson's Sequential Lemma 193

15.3 Uniformly Converging Sequences of Functions ....... 193

15.4 Comprehensiveness 195

15.5 Saturation 198

V Applications 201

16 Loeb Measure 203

16.1 Rings and Algebras 204

16.2 Measures 206

16.3 Outer Measures 208

16.4 Lebesgue Measure 210

16.5 Loeb Measures 210

16.6 /i-Approximability 212

16.7 Loeb Measure as Approximability 214

16.8 Lebesgue Measure via Loeb Measure 215

17 Ramsey Theory 221

17.1 Colourings and Monochromatic Sets 221

17.2 A Nonstandard Approach 223

17.3 Proving Ramsey's Theorem 224

17.4 The Finite Ramsey Theorem 227

17.5 The Paris-Harrington Version 228

17.6 Reference 229

18 Completion by Enlargement 231 18.1 Completing the Rationals 231

18.2 Metric Space Completion 233 18.3 Nonstandard Hulls 234

18.4 p-adic Integers 237

18.5 p-adic Numbers 245

18.6 Power Series 249

18.7 Hyperfinite Expansions in Base p 255

18.8 Exercises 257

19 Hyperfinite Approximation 259

19.1 Colourings and Graphs 260

19.2 Boolean Algebras 262

19.3 Atomic Algebras 265

19.4 Hyperfinite Approximating Algebras 267

19.5 Exercises on Generation of Algebras 269

19.6 Connecting with the Stone Representation 269

19.7 Exercises on Filters and Lattices 272

19.8 Hyperfinite-Dimensional Vector Spaces 273

19.9 Exercises on (Hyper) Real Subspaces 275

19.10 The Hahn-Banach Theorem 275

19.11 Exercises on (Hyper) Linear Functionals 278

20 Books on Nonstandard Analysis

(教材目录全文

Lectures on the hyperreals相关推荐

  1. 汇报:阳光事业在阳光下进行

    ​        今年8月5日,我们发出预告:电子版微积分向全国高校投放安排,阳光事业在阳光下进行,时至今日,刚好"满月".阅读人数高达8839,距离珠峰高度还差9米. ​     ...

  2. 隆重纪念鲁宾逊诞辰,不走样,不离谱

    ​    ​在数学界,鲁宾逊是无穷小的代名词.菲氏微积分徒子徒孙不喜欢无穷小,当然不会纪念鲁宾逊的诞辰,所以我们要特别隆重地纪念数学家鲁宾逊的100周年诞辰. ​    ​当前,无穷小在中国高校数学教 ...

  3. 无穷小微积分理论的“根”扎的有多深?

    上世纪三十年代初期,伟大数学家哥德尔首次证明了完全性定理,这是现代数理逻辑的基础定理.但是,哥德尔完全性定理等价于著名的的紧致性定理,而紧致性定理是无穷小微积分的数学基础.由此可见,无穷小微积分理论的 ...

  4. 预告:无穷小微积分改版,寻找接班人

    敬告广大读者,新年将至.无穷小微积分网站将要改版,寻找接班人.     特此公告. 袁萌  陈启清  12月30日 附件:超实微积分原文 Hyperreal Calculus MAT2000 –– P ...

  5. gtm - ebooks

    [图书信息] [图书发布] Graduate Texts in Mathematics (GTM) 书名 : Graduate Texts in Mathematics 图书作者 : 很多人 出版社 ...

  6. 国内数学守旧派为何惧怕超实微积分?

    国内数学守旧派为何惧怕超实微积分? 坦率地说,进入二十一世纪,数学形态发生巨变,形式化方法广泛流行. 国内数学守旧派,故步自封,沉迷于十九世纪数学,"亲"不够,惧怕 "对 ...

  7. 超实无穷小,来自何方?

    从古至今,在日常生活与工作中,超实无穷小(量)的朴素观念,一直伴随着人类. 超实无穷小是什么?多么小才算是超实无穷小?超实无穷小真的存在吗?这些实质性问题一直困扰着世界数学家们. 上世纪30年代,数学 ...

  8. 超实数理论基础更为坚固

    超实数理论基础更为坚固 回顾历史,1960年,鲁宾逊借助模型论第一次发明了超实数的存在性. 但是,后来的历史发展发展表明:超实数理论没有必要必要与模型论"捆绑"在一起来,只需代数与 ...

  9. 哥德尔(Kurt Godel)的预言实现了

    在上世纪60年代,世界著名的数学家.思想家哥德尔曾经大胆地预言:"无穷小分析是未来的(数学)分析".大家应该知道(或记住),哥德尔对现代公理化数学有着特殊的重大贡献与影响.他的学术 ...

最新文章

  1. oracle virtualbox 添加共享硬盘
  2. 腾讯Angel升级:加入图算法,支持十亿节点、千亿边规模!中国首个毕业于Linux AI基金会的开源项目...
  3. 第十八课.动态图模型
  4. mysql互为主从利弊_MySQL互为主从复制常见问题
  5. AspNetCoreApi 跨域处理(CORS )
  6. [ Javascript ] JavaScript中的定时器(Timer) 是怎样工作的!
  7. 终于有人把Python讲清楚了!!
  8. 重磅:为ES6系列设计的2套习题+答案解析
  9. jmeter java 关联_使用Jmeter进行数据关联和并发用户
  10. Cpp STL - vector常用语法
  11. mysql函数操作(5)
  12. 配置并初始化oracle的网络环境
  13. linux下利用图形化工具合并分区
  14. SpringBoot2整合ElasticSearch(包含ElasticSearch入门+spring-boot-starter-data-elasticsearch)
  15. GEA 1.7 工具及资产管道
  16. OI中组合数学公式和定理90%歼灭
  17. 花裤衩-nx-admin好多轮子-动态路由
  18. 更改计算机图标,Win7如何修改桌面图标
  19. 小白也能自己完成APP制作
  20. java ntohl 类似函数_关于 htonl 和 ntohl 的实现

热门文章

  1. vs2010 MFC开发 导出Excel 方法及步骤
  2. MySQL的JDBC编程(Java)
  3. 软件设计中的高内聚、低耦合
  4. 名家语录(持续更新)
  5. 14、JavaEE--Mybatis注解与Ajax技术
  6. 小王学JAVA 1.2计算机基本知识
  7. 小程序如何实现打分功能
  8. 2019年,CSDN上最受欢迎的10篇文章
  9. Class-agnostic
  10. ARMv8 Debug