转载请说明出处:http://blog.csdn.net/cywosp/article/details/38965239

1. 概述
    在Linux系统中一切皆可以看成是文件,文件又可分为:普通文件、目录文件、链接文件和设备文件。文件描述符(file descriptor)是内核为了高效管理已被打开的文件所创建的索引,其是一个非负整数(通常是小整数),用于指代被打开的文件,所有执行I/O操作的系统调用都通过文件描述符。程序刚刚启动的时候,0是标准输入,1是标准输出,2是标准错误。如果此时去打开一个新的文件,它的文件描述符会是3。POSIX标准要求每次打开文件时(含socket)必须使用当前进程中最小可用的文件描述符号码,因此,在网络通信过程中稍不注意就有可能造成串话。标准文件描述符图如下:

文件描述与打开的文件对应模型如下图:
2. 文件描述限制
    在编写文件操作的或者网络通信的软件时,初学者一般可能会遇到“Too many open files”的问题。这主要是因为文件描述符是系统的一个重要资源,虽然说系统内存有多少就可以打开多少的文件描述符,但是在实际实现过程中内核是会做相应的处理的,一般最大打开文件数会是系统内存的10%(以KB来计算)(称之为系统级限制),查看系统级别的最大打开文件数可以使用sysctl -a | grep fs.file-max命令查看。与此同时,内核为了不让某一个进程消耗掉所有的文件资源,其也会对单个进程最大打开文件数做默认值处理(称之为用户级限制),默认值一般是1024,使用ulimit -n命令可以查看。在Web服务器中,通过更改系统默认值文件描述符的最大值来优化服务器是最常见的方式之一,具体优化方式请查看http://blog.csdn.net/kumu_linux/article/details/7877770。
3. 文件描述符合打开文件之间的关系
    每一个文件描述符会与一个打开文件相对应,同时,不同的文件描述符也会指向同一个文件。相同的文件可以被不同的进程打开也可以在同一个进程中被多次打开。系统为每一个进程维护了一个文件描述符表,该表的值都是从0开始的,所以在不同的进程中你会看到相同的文件描述符,这种情况下相同文件描述符有可能指向同一个文件,也有可能指向不同的文件。具体情况要具体分析,要理解具体其概况如何,需要查看由内核维护的3个数据结构。
    1. 进程级的文件描述符表
    2. 系统级的打开文件描述符表
    3. 文件系统的i-node表
进程级的描述符表的每一条目记录了单个文件描述符的相关信息。
    1. 控制文件描述符操作的一组标志。(目前,此类标志仅定义了一个,即close-on-exec标志)
    2. 对打开文件句柄的引用
内核对所有打开的文件的文件维护有一个系统级的描述符表格(open file description table)。有时,也称之为打开文件表(open file table),并将表格中各条目称为打开文件句柄(open file handle)。一个打开文件句柄存储了与一个打开文件相关的全部信息,如下所示:
    1. 当前文件偏移量(调用read()和write()时更新,或使用lseek()直接修改)
    2. 打开文件时所使用的状态标识(即,open()的flags参数)
    3. 文件访问模式(如调用open()时所设置的只读模式、只写模式或读写模式)
    4. 与信号驱动相关的设置
    5. 对该文件i-node对象的引用
    6. 文件类型(例如:常规文件、套接字或FIFO)和访问权限
    7. 一个指针,指向该文件所持有的锁列表
    8. 文件的各种属性,包括文件大小以及与不同类型操作相关的时间戳
下图展示了文件描述符、打开的文件句柄以及i-node之间的关系,图中,两个进程拥有诸多打开的文件描述符。
    在进程A中,文件描述符1和30都指向了同一个打开的文件句柄(标号23)。这可能是通过调用dup()、dup2()、fcntl()或者对同一个文件多次调用了open()函数而形成的。
    进程A的文件描述符2和进程B的文件描述符2都指向了同一个打开的文件句柄(标号73)。这种情形可能是在调用fork()后出现的(即,进程A、B是父子进程关系),或者当某进程通过UNIX域套接字将一个打开的文件描述符传递给另一个进程时,也会发生。再者是不同的进程独自去调用open函数打开了同一个文件,此时进程内部的描述符正好分配到与其他进程打开该文件的描述符一样。
    此外,进程A的描述符0和进程B的描述符3分别指向不同的打开文件句柄,但这些句柄均指向i-node表的相同条目(1976),换言之,指向同一个文件。发生这种情况是因为每个进程各自对同一个文件发起了open()调用。同一个进程两次打开同一个文件,也会发生类似情况。
4. 总结
    1. 由于进程级文件描述符表的存在,不同的进程中会出现相同的文件描述符,它们可能指向同一个文件,也可能指向不同的文件
    2. 两个不同的文件描述符,若指向同一个打开文件句柄,将共享同一文件偏移量。因此,如果通过其中一个文件描述符来修改文件偏移量(由调用read()、write()或lseek()所致),那么从另一个描述符中也会观察到变化,无论这两个文件描述符是否属于不同进程,还是同一个进程,情况都是如此。
    3. 要获取和修改打开的文件标志(例如:O_APPEND、O_NONBLOCK和O_ASYNC),可执行fcntl()的F_GETFL和F_SETFL操作,其对作用域的约束与上一条颇为类似。
    4. 文件描述符标志(即,close-on-exec)为进程和文件描述符所私有。对这一标志的修改将不会影响同一进程或不同进程中的其他文件描述符
参考
[1] http://blog.chinaunix.net/uid-20633888-id-2747146.html
[2] http://www.cppblog.com/guojingjia2006/archive/2012/11/21/195450.html
[3] http://blog.csdn.net/kumu_linux/article/details/7877770
[4] 《Linux/UNIX系统编程手册》

linux 文件描述符的一些底层实现相关推荐

  1. [转帖]linux文件描述符文件/etc/security/limits.conf

    linux文件描述符文件/etc/security/limits.conf https://blog.csdn.net/fanren224/article/details/79971359 需要多学习 ...

  2. 玩转Linux文件描述符和重定向

    本文介绍linux中文件描述符与重定向的相关知识,文件描述符是与文件输入.输出相关联的整数,它们用来跟踪已打开的文件.有需要的朋友参考下. 原文出处:http://www.jbxue.com/arti ...

  3. linux文件描述符导致squid拒绝服务

    linux文件描述符导致squid拒绝服务   前几天因工作需要在RHEL4.8上面架设了一个squid双网代理,刚开始测试一切正常,然后就在前台负载均衡服务器把这个代理地址加上,运行一段时间后,客服 ...

  4. linux文件描述符、软硬连接、输入输出重定向

    引用链接:https://blog.csdn.net/qq769651718/article/details/79459346 文件描述符的作用: 文件描述符是linux操作系统中特有的概念.其相当于 ...

  5. linux文件描述符与标识符,文件描述符fd

    这里以问答的方式来讨论这个问题: 1. 文件描述符 fd 和文件指针 FILE *的关系? 文件描述符是什么?我们知道每一个进程都有一个自己的PCB(进程控制块),进程控制块的结构是: struct ...

  6. linux文件描述符 0 1 2,文件描述符

    内核(kernel)利用文件描述符(file descriptor)来访问文件.文件描述符是非负整数.打开现存文件或新建文件时,内核会返回一个文件描述符.读写文件也需要使用文件描述符来指定待读写的文件 ...

  7. linux文件 i节点结构,Linux 文件描述符 文件表项 i节点结构

    Linux的VFS(虚拟文件系统)学习起来很痛苦,看源码不太明智,看完分析完就忘且太浪费时间,懂了后也无法应用在实际场合中.所以这里只是讨论下文件描述符,文件表项(file结构体)和inode,理清实 ...

  8. OS / Linux / 文件描述符以及 file 结构体

    零.前言 程序可以理解为硬盘上的普通二进制文件:进程是加载到内存中的二进制文件,除了加载到内存中的二进制文件外,还附有所有对于该二进制文件描述信息的结构体,描述该进程的结构体叫PCB(进程控制块),在 ...

  9. 玩转linux文件描述符和重定向,玩转Linux文件描述符和重定向

    本文介绍linux中文件描述符与重定向的相关知识,文件描述符是与文件输入.输出相关联的整数,它们用来跟踪已打开的文件.有需要的朋友参考下. 原文出处: linux下的文件描述符是与文件输入.输出相关联 ...

最新文章

  1. 让我们带着感恩的心生活
  2. ESB学习笔记(Spring Integration实战)
  3. HTTP协议容易犯的误区
  4. 制造机器人的现状和发展趋势
  5. POJ 2431 Expedition 优先队列
  6. netatalk,轻松将linux变成你的Mac File Server!!!
  7. “寒门状元之死”刷屏后备受质疑 创作团队终于回应了...
  8. a大于10小于15C语言,计算机基础复习模拟试卷
  9. python按照多个key排序
  10. 12、设计模式-结构型模式-外观模式
  11. WPF教程二:布局之StackPanel面板
  12. (二) GNU/GCC 编译器及其编译流程概述
  13. keil教程——串口调试
  14. 在线API 工具之SosoApi
  15. Clip_by_norm 函数理解
  16. 共享计算机如何重新登录密码,电脑共享后怎么登陆密码怎样设置
  17. android graphics,Android graphics值Bitmap
  18. 使用kaminari实现分页
  19. ​机器如何“猜你喜欢”?深度学习模型在1688的应用实践...
  20. Buuctf:[MRCTF2020]你传你呢

热门文章

  1. php网页游戏学习之xnova(ogame)源码解读,PHP网页游戏学习之Xnova(ogame)源码解读(十六)...
  2. 软件工程是不是教会不怎么写程序的人开发软件?你的观点。
  3. 软件工程是不是教会不怎么会写程序的人开发软件的?
  4. 绿色数治开采工艺: 3D 可视化智慧矿山
  5. 博士是什么(Matt Might) (科学网)
  6. 我为什么要开发微信小程序来记录成长锻炼成绩
  7. Levenberg-Marquardt(LM算法)的理解
  8. 安全和访问控制键盘行业调研报告 - 市场现状分析与发展前景预测(2021-2027年)
  9. 非线性卡尔曼滤波及可观测性、观测度
  10. python 结构体 c_Python与C/C++中结构体