黎曼曲率张量漫谈

  • 黎曼曲率张量
    • 计算黎曼曲率张量
      • 用Newman-Penrose形式计算

黎曼曲率张量

计算黎曼曲率张量

用Newman-Penrose形式计算

本节我们使用 ( + , − , − , − ) (+, -, -, -) (+,−,−,−)号差。设 p p p是4维时空 ( M , g a b ) (M, g_{ab}) (M,gab​)的一点, { ( e μ ) a } \{(e_\mu)^a\} {(eμ​)a}是 p p p点的一个正交归一标架,定义 p p p点的4个特殊矢量如下:
l a = 1 2 [ ( e 0 ) a + ( e 1 ) a ] , n a = 1 2 [ ( e 0 ) a − ( e 1 ) a ] m a = 1 2 [ ( e 2 ) a + i ( e 3 ) a ] , m ˉ a = 1 2 [ ( e 2 ) a − i ( e 3 ) a ] l^a = \frac{1}{\sqrt 2}[(e_0)^a + (e_1)^a], ~ n^a = \frac{1}{\sqrt 2}[(e_0)^a - (e_1)^a] \\ m^a = \frac{1}{\sqrt 2}[(e_2)^a + i(e_3)^a], ~ \bar m^a = \frac{1}{\sqrt 2}[(e_2)^a - i(e_3)^a] la=2 ​1​[(e0​)a+(e1​)a], na=2 ​1​[(e0​)a−(e1​)a]ma=2 ​1​[(e2​)a+i(e3​)a], mˉa=2 ​1​[(e2​)a−i(e3​)a]
容易验证 l a l a = n a n a = m a m a = m ˉ a m ˉ a = 0 l_al^a = n_an^a = m_am^a = \bar m_a\bar m^a = 0 la​la=na​na=ma​ma=mˉa​mˉa=0,即它们都是类光矢量。这4个矢量构成 p p p点的一个基底,称为 p p p点的一个类光标架。以下以 { ( ε μ ) a } \{(\varepsilon_\mu)^a\} {(εμ​)a}代表类光标架,并规定其编号为
( ε 1 ) a = l a , ( ε 2 ) a = n a , ( ε 3 ) a = m a , ( ε 4 ) a = m ˉ a (\varepsilon_1)^a = l^a, ~ (\varepsilon_2)^a = n^a, ~ (\varepsilon_3)^a = m^a, ~ (\varepsilon_4)^a = \bar m^a (ε1​)a=la, (ε2​)a=na, (ε3​)a=ma, (ε4​)a=mˉa
相应的对偶基矢为
( ε 1 ) a = n a , ( ε 2 ) a = l a , ( ε 3 ) a = − m ˉ a , ( ε 4 ) a = − m a (\varepsilon^1)_a = n_a, ~ (\varepsilon^2)_a = l_a, ~ (\varepsilon^3)_a = -\bar m_a, ~ (\varepsilon^4)_a = -m^a (ε1)a​=na​, (ε2)a​=la​, (ε3)a​=−mˉa​, (ε4)a​=−ma
不难看出类光标架中任意两个基矢的内积只有以下两对非零:
l a n a = 1 , m a m ˉ a = − 1 l^an_a = 1, ~ m^a\bar m_a = -1 lana​=1, mamˉa​=−1
因此度规 g a b g_{ab} gab​及其逆 g a b g^{ab} gab在该标架的分量 g μ ν g_{\mu\nu} gμν​和 g μ ν g^{\mu\nu} gμν组成的矩阵为
( g μ ν ) = [ 0 1 0 0 1 0 0 0 0 0 0 − 1 0 0 − 1 0 ] = ( g μ ν ) (g_{\mu\nu}) = \begin{bmatrix} 0 &1 &0 &0 \\ 1 &0 &0 &0 \\ 0 &0 &0 &-1 \\ 0 &0 &-1 &0 \end{bmatrix} = (g^{\mu\nu}) (gμν​)=⎣⎢⎢⎡​0100​1000​000−1​00−10​⎦⎥⎥⎤​=(gμν)
这表明类光标架是刚性标架。与上节类似,联络1形式可以表示为
( ω μ ν ) a = ( ε μ ) c ∇ a ( ε ν ) c (\omega_\mu{}^\nu)_a = (\varepsilon_\mu)^c\nabla_a(\varepsilon^\nu)_c (ωμ​ν)a​=(εμ​)c∇a​(εν)c​
同样地
( ω μ ν ) a = ( ε μ ) b ∇ a ( ε ν ) b = − ( ω ν μ ) a (\omega_{\mu\nu})_a = (\varepsilon_\mu)^b\nabla_a(\varepsilon_\nu)_b = -(\omega_{\nu\mu})_a (ωμν​)a​=(εμ​)b∇a​(εν​)b​=−(ωνμ​)a​
相应的里奇旋转系数为 ω μ ν ρ = ( ω μ ν ) a ( ε ρ ) a \omega_{\mu\nu\rho} = (\omega_{\mu\nu})_a(\varepsilon_\rho)^a ωμνρ​=(ωμν​)a​(ερ​)a. 黎曼曲率张量的计算过程与上节一样,只是其中的 ( e μ ) a (e_\mu)^a (eμ​)a现在应理解为 ( ε μ ) a (\varepsilon_\mu)^a (εμ​)a.

由于 ε 3 \varepsilon_3 ε3​和 ε 4 \varepsilon_4 ε4​的共轭性,容易证明交换3、4下标就得到对应量的共轭,例如 ω 421 = ω ˉ 321 , ω 14 = ω ˉ 13 , R 24 = R ˉ 23 \omega_{421} = \bar\omega_{321}, ~ \omega_{14} = \bar\omega_{13}, ~ R_{24} = \bar R_{23} ω421​=ωˉ321​, ω14​=ωˉ13​, R24​=Rˉ23​等。这导致24个复 ω μ ν ρ \omega_{\mu\nu\rho} ωμνρ​中只有12个是独立的,以12个不带指标的希腊字母表示它们为
κ = − ω 311 , ρ = − ω 314 , ε = 1 2 ( ω 211 − ω 341 ) σ = − ω 313 , μ = ω 243 , γ = 1 2 ( ω 212 − ω 342 ) λ = ω 244 , τ = − ω 312 , α = 1 2 ( ω 214 − ω 344 ) ν = ω 242 , π = ω 241 , β = 1 2 ( ω 213 − ω 343 ) \begin{aligned} &\kappa = -\omega_{311}, ~ \rho = -\omega_{314}, ~ &\varepsilon = \frac{1}{2}(\omega_{211} - \omega_{341}) \\ &\sigma = -\omega_{313}, ~ \mu = \omega_{243}, ~ &\gamma = \frac{1}{2}(\omega_{212} - \omega_{342}) \\ &\lambda = \omega_{244}, ~ \tau = -\omega_{312}, ~ &\alpha = \frac{1}{2}(\omega_{214} - \omega_{344}) \\ &\nu = \omega_{242}, ~ \pi = \omega_{241}, ~ &\beta = \frac{1}{2}(\omega_{213} - \omega_{343}) \end{aligned} ​κ=−ω311​, ρ=−ω314​, σ=−ω313​, μ=ω243​, λ=ω244​, τ=−ω312​, ν=ω242​, π=ω241​, ​ε=21​(ω211​−ω341​)γ=21​(ω212​−ω342​)α=21​(ω214​−ω344​)β=21​(ω213​−ω343​)​
这12个希腊字母称为自旋系数。又引入4个求导符号 D = l a ∇ a , Δ = n a ∇ a , δ = m a ∇ a , δ ˉ = m ˉ a ∇ a D = l^a\nabla_a, ~ \Delta = n^a\nabla_a, ~ \delta = m^a\nabla_a, ~ \bar\delta = \bar m^a\nabla_a D=la∇a​, Δ=na∇a​, δ=ma∇a​, δˉ=mˉa∇a​它们之间满足如下的对易关系:
Δ D − D Δ = ( γ + γ ˉ ) D + ( ε + ε ˉ ) Δ − ( τ ˉ + π ) δ − ( τ + π ˉ ) δ ˉ δ D − D δ = ( α ˉ + β − π ˉ ) D + κ Δ − ( ρ ˉ + ε − ε ˉ ) δ − σ δ ˉ δ Δ − Δ δ = − ν ˉ D + ( τ − α ˉ − β ) Δ + ( μ − γ + γ ˉ ) δ + λ ˉ δ ˉ δ ˉ δ − δ δ ˉ = ( μ ˉ − μ ) D + ( ρ ˉ − ρ ) Δ + ( α − β ˉ ) δ − ( α ˉ − β ) δ ˉ \begin{aligned} \Delta D-D\Delta&=(\gamma+\bar{\gamma})D+(\varepsilon+\bar{\varepsilon})\Delta-(\bar{\tau}+\pi)\delta-(\tau+\bar{\pi})\bar{\delta} \\ \delta D-D\delta&=(\bar{\alpha}+\beta-\bar{\pi})D+\kappa\Delta-(\bar{\rho}+\varepsilon-\bar{\varepsilon})\delta-\sigma\bar{\delta} \\ \delta\Delta-\Delta\delta&=-\bar{\nu}D+(\tau-\bar{\alpha}-\beta)\Delta+(\mu-\gamma+\bar{\gamma})\delta+\bar{\lambda}\bar{\delta} \\ \bar{\delta}\delta-\delta\bar{\delta}&=(\bar{\mu}-\mu)D+(\bar{\rho}-\rho)\Delta+(\alpha-\bar{\beta})\delta-(\bar{\alpha}-\beta)\bar{\delta} \end{aligned} ΔD−DΔδD−DδδΔ−Δδδˉδ−δδˉ​=(γ+γˉ​)D+(ε+εˉ)Δ−(τˉ+π)δ−(τ+πˉ)δˉ=(αˉ+β−πˉ)D+κΔ−(ρˉ​+ε−εˉ)δ−σδˉ=−νˉD+(τ−αˉ−β)Δ+(μ−γ+γˉ​)δ+λˉδˉ=(μˉ​−μ)D+(ρˉ​−ρ)Δ+(α−βˉ​)δ−(αˉ−β)δˉ​
外尔张量有10个实的独立分量,用5个复数代表,定义为 Ψ 0 = − C 1313 , Ψ 1 = − C 1213 , Ψ 2 = − C 1342 , Ψ 3 = − C 1242 , Ψ 4 = − C 2424 \Psi_0 = -C_{1313}, ~ \Psi_1 = -C_{1213}, ~ \Psi_2 = -C_{1342}, ~ \Psi_3 = -C_{1242}, ~ \Psi_4 = -C_{2424} Ψ0​=−C1313​, Ψ1​=−C1213​, Ψ2​=−C1342​, Ψ3​=−C1242​, Ψ4​=−C2424​里奇张量有10个,其中 R 11 , R 12 , R 22 R_{11}, ~ R_{12}, ~R_{22} R11​, R12​, R22​显然为实数, R 34 = R 43 = R ˉ 34 R_{34} = R_{43} = \bar R_{34} R34​=R43​=Rˉ34​也是实数,由此定义以下四个实数 Φ 00 = − 1 2 R 11 , Φ 11 = − 1 4 ( R 12 + R 34 ) , Φ 22 = − 1 2 R 22 , Λ = 1 12 ( R 12 − R 34 ) \Phi_{00} = -\frac{1}{2}R_{11}, ~ \Phi_{11} = -\frac{1}{4}(R_{12} + R_{34}), ~ \Phi_{22} = -\frac{1}{2}R_{22}, ~ \Lambda = \frac{1}{12}(R_{12} - R_{34}) Φ00​=−21​R11​, Φ11​=−41​(R12​+R34​), Φ22​=−21​R22​, Λ=121​(R12​−R34​)其余6个分量为复数,分别为 Φ 01 = − 1 2 R 13 , Φ 10 = − 1 2 R 14 , Φ 02 = − 1 2 R 33 , Φ 20 = − 1 2 R 44 , Φ 12 = − 1 2 R 23 , Φ 21 = − 1 2 R 24 \Phi_{01} = -\frac{1}{2}R_{13}, ~ \Phi_{10} = -\frac{1}{2}R_{14}, ~ \Phi_{02} = -\frac{1}{2}R_{33}, ~ \Phi_{20} = -\frac{1}{2}R_{44}, ~ \Phi_{12} = -\frac{1}{2}R_{23}, ~ \Phi_{21} = -\frac{1}{2}R_{24} Φ01​=−21​R13​, Φ10​=−21​R14​, Φ02​=−21​R33​, Φ20​=−21​R44​, Φ12​=−21​R23​, Φ21​=−21​R24​易见 Φ \Phi Φ构成一个厄米矩阵。由这些符号,我们可以写出黎曼曲率张量的分量表达式
D ρ − δ ˉ κ = ( ρ 2 + σ σ ˉ ) + ( ε + ε ˉ ) ρ − κ ˉ τ − κ ( 3 α + β ˉ − π ) + Φ 00 , [ R 1314 ] D σ − δ κ = ( ρ + ρ ˉ ) σ + ( 3 ε − ε ˉ ) σ − ( τ − π ˉ + α ˉ + 3 β ) κ + Ψ 0 , [ R 1313 ] D τ − Δ κ = ( τ + π ˉ ) ρ + ( τ ˉ + π ) σ + ( ε − ε ˉ ) τ − ( 3 γ + γ ˉ ) κ + Ψ 1 + Φ 01 , [ R 1312 ] D α − δ ˉ ε = ( ρ + ε ˉ − 2 ε ) α + β σ ˉ − β ˉ ε − κ λ − κ ˉ γ + ( ε + ρ ) π + Φ 10 , [ 1 2 ( R 3414 − R 1214 ) ] D β − δ ε = ( α + π ) σ + ( ρ ˉ − ε ˉ ) β − ( μ + γ ) κ − ( α ˉ − π ˉ ) ε + Ψ 1 , [ 1 2 ( R 1213 − R 3413 ) ] D γ − Δ ε = ( τ + π ˉ ) α + ( τ ˉ + π ) β − ( ε + ε ˉ ) γ − ( γ + γ ˉ ) ε + τ π − ν κ + Ψ 2 + Φ 11 − Λ , [ 1 2 ( R 1212 − R 3412 ) ] D λ − δ ˉ π = ( ρ λ + σ ˉ μ ) + π 2 + ( α − β ˉ ) π − ν κ ˉ − ( 3 ε − ε ˉ ) λ + Φ 20 , [ R 2441 ] D μ − δ π = ( ρ ˉ μ + σ λ ) + π π ˉ − ( ε + ε ˉ ) μ − ( α ˉ − β ) π − ν κ + Ψ 2 + 2 Λ , [ R 2431 ] D ν − Δ π = ( π + τ ˉ ) μ + ( π ˉ + τ ) λ + ( γ − γ ˉ ) π − ( 3 ε + ε ˉ ) ν + Ψ 3 + Φ 21 , [ R 2421 ] Δ λ − δ ˉ ν = − ( μ + μ ˉ ) λ − ( 3 γ − γ ˉ ) λ + ( 3 α + β ˉ + π − τ ˉ ) ν − Ψ 4 , [ R 2442 ] δ ρ − δ ˉ σ = ρ ( α ˉ + β ) − σ ( 3 α − β ˉ ) + ( ρ − ρ ˉ ) τ + ( μ − μ ˉ ) κ − Ψ 1 + Φ 01 , [ R 3143 ] δ α − δ ˉ β = ( μ ρ − λ σ ) + α α ˉ + β β ˉ − 2 α β + γ ( ρ − ρ ˉ ) + ε ( μ − μ ˉ ) − Ψ 2 + Φ 11 + Λ , [ 1 2 ( R 1234 − R 3434 ) ] δ λ − δ ˉ μ = ( ρ − ρ ˉ ) ν + ( μ − μ ˉ ) π + ( α + β ˉ ) μ + ( α ˉ − 3 β ) λ − Ψ 3 + Φ 21 , [ R 2443 ] δ ν − Δ μ = ( μ 2 + λ λ ˉ ) + ( γ + γ ˉ ) μ − ν ˉ π + ( τ − 3 β − α ˉ ) ν + Φ 22 , [ R 2423 ] δ γ − Δ β = ( τ − α ˉ − β ) γ + μ τ − σ ν − ε ν ˉ − ( γ − γ ˉ − μ ) β + α λ ˉ + Φ 12 , [ 1 2 ( R 1232 − R 3432 ) ] δ τ − Δ σ = ( μ σ + λ ˉ ρ ) + ( τ + β − α ˉ ) τ − ( 3 γ − γ ˉ ) σ − κ ν ˉ + Φ 02 , [ R 1332 ] Δ ρ − δ ˉ τ = − ( ρ μ ˉ + σ λ ) + ( β ˉ − α − τ ˉ ) τ + ( γ + γ ˉ ) ρ + ν κ − Ψ 2 − 2 Λ , [ R 1324 ] Δ α − δ ˉ γ = ( ρ + ε ) ν − ( τ + β ) λ + ( γ ˉ − μ ˉ ) α + ( β ˉ − τ ˉ ) γ − Ψ 3 , [ 1 2 ( R 1242 − R 3442 ) ] \begin{aligned} D\rho -\bar{\delta}\kappa&=(\rho^2+\sigma\bar{\sigma})+(\varepsilon+\bar{\varepsilon})\rho-\bar{\kappa}\tau-\kappa(3\alpha+\bar{\beta}-\pi)+\Phi_{00}, ~ [R_{1314}] \\ D\sigma-\delta\kappa&=(\rho+\bar{\rho})\sigma+(3\varepsilon-\bar{\varepsilon})\sigma-(\tau-\bar{\pi}+\bar{\alpha}+3\beta)\kappa+\Psi_0, ~ [R_{1313}] \\ D\tau-\Delta\kappa&=(\tau+\bar{\pi})\rho+(\bar{\tau}+\pi)\sigma+(\varepsilon-\bar{\varepsilon})\tau-(3\gamma+\bar{\gamma})\kappa+\Psi_1+\Phi_{01}, ~ [R_{1312}] \\ D\alpha-\bar{\delta}\varepsilon&=(\rho+\bar{\varepsilon}-2\varepsilon)\alpha+\beta\bar{\sigma}-\bar{\beta}\varepsilon-\kappa\lambda-\bar{\kappa}\gamma+(\varepsilon+\rho)\pi+\Phi_{10}, ~ [\frac{1}{2}(R_{3414} - R_{1214})] \\ D\beta-\delta\varepsilon&=(\alpha+\pi)\sigma+(\bar{\rho}-\bar{\varepsilon})\beta-(\mu+\gamma)\kappa-(\bar{\alpha}-\bar{\pi})\varepsilon+\Psi_1, ~ [\frac{1}{2}(R_{1213} - R_{3413})] \\ D\gamma-\Delta\varepsilon&=(\tau+\bar{\pi})\alpha+(\bar{\tau}+\pi)\beta-(\varepsilon+\bar{\varepsilon})\gamma-(\gamma+\bar{\gamma})\varepsilon+\tau\pi-\nu\kappa+\Psi_2+\Phi_{11}-\Lambda, ~ [\frac{1}{2}(R_{1212} - R_{3412})] \\ D\lambda-\bar{\delta}\pi&=(\rho\lambda+\bar{\sigma}\mu)+\pi^2+(\alpha-\bar{\beta})\pi-\nu\bar{\kappa}-(3\varepsilon-\bar{\varepsilon})\lambda+\Phi_{20}, ~ [R_{2441}] \\ D\mu-\delta\pi&=(\bar{\rho}\mu+\sigma\lambda)+\pi\bar{\pi}-(\varepsilon+\bar{\varepsilon})\mu-(\bar{\alpha}-\beta)\pi-\nu\kappa+\Psi_2+2\Lambda, ~ [R_{2431}] \\ D\nu-\Delta\pi&=(\pi+\bar{\tau})\mu+(\bar{\pi}+\tau)\lambda+(\gamma-\bar{\gamma})\pi-(3\varepsilon+\bar{\varepsilon})\nu+\Psi_3+\Phi_{21}, ~ [R_{2421}] \\ \Delta\lambda-\bar{\delta}\nu&=-(\mu+\bar{\mu})\lambda-(3\gamma-\bar{\gamma})\lambda+(3\alpha+\bar{\beta}+\pi-\bar{\tau})\nu-\Psi_4, ~ [R_{2442}] \\ \delta\rho-\bar{\delta}\sigma&=\rho(\bar{\alpha}+\beta)-\sigma(3\alpha-\bar{\beta})+(\rho-\bar{\rho})\tau+(\mu-\bar{\mu})\kappa-\Psi_1+\Phi_{01}, ~ [R_{3143}] \\ \delta\alpha-\bar{\delta}\beta&=(\mu\rho-\lambda\sigma)+\alpha\bar{\alpha}+\beta\bar{\beta}-2\alpha\beta+\gamma(\rho-\bar{\rho})+\varepsilon(\mu-\bar{\mu})-\Psi_2+\Phi_{11}+\Lambda, ~ [\frac{1}{2}(R_{1234} - R_{3434})] \\ \delta\lambda-\bar{\delta}\mu&=(\rho-\bar{\rho})\nu+(\mu-\bar{\mu})\pi+(\alpha+\bar{\beta})\mu+(\bar\alpha-3\beta)\lambda-\Psi_3+\Phi_{21}, ~ [R_{2443}] \\ \delta\nu-\Delta\mu&=(\mu^2+\lambda\bar{\lambda})+(\gamma+\bar{\gamma})\mu-\bar{\nu}\pi+(\tau-3\beta-\bar{\alpha})\nu+\Phi_{22}, ~ [R_{2423}] \\ \delta\gamma-\Delta\beta&=(\tau-\bar{\alpha}-\beta)\gamma+\mu\tau-\sigma\nu-\varepsilon\bar{\nu}-(\gamma-\bar{\gamma}-\mu)\beta+\alpha\bar{\lambda}+\Phi_{12}, ~ [\frac{1}{2}(R_{1232} - R_{3432})] \\ \delta\tau-\Delta\sigma&=(\mu\sigma+\bar{\lambda}\rho)+(\tau+\beta-\bar{\alpha})\tau-(3\gamma-\bar{\gamma})\sigma-\kappa\bar{\nu}+\Phi_{02}, ~ [R_{1332}] \\ \Delta\rho-\bar{\delta}\tau&=-(\rho\bar{\mu}+\sigma\lambda)+(\bar{\beta}-\alpha-\bar{\tau})\tau+(\gamma+\bar{\gamma})\rho+\nu\kappa-\Psi_2-2\Lambda, ~ [R_{1324}] \\ \Delta\alpha-\bar{\delta}\gamma&=(\rho+\varepsilon)\nu-(\tau+\beta)\lambda+(\bar{\gamma}-\bar{\mu})\alpha+(\bar{\beta}-\bar{\tau})\gamma-\Psi_3, ~ [\frac{1}{2}(R_{1242} - R_{3442})] \end{aligned} Dρ−δˉκDσ−δκDτ−ΔκDα−δˉεDβ−δεDγ−ΔεDλ−δˉπDμ−δπDν−ΔπΔλ−δˉνδρ−δˉσδα−δˉβδλ−δˉμδν−Δμδγ−Δβδτ−ΔσΔρ−δˉτΔα−δˉγ​=(ρ2+σσˉ)+(ε+εˉ)ρ−κˉτ−κ(3α+βˉ​−π)+Φ00​, [R1314​]=(ρ+ρˉ​)σ+(3ε−εˉ)σ−(τ−πˉ+αˉ+3β)κ+Ψ0​, [R1313​]=(τ+πˉ)ρ+(τˉ+π)σ+(ε−εˉ)τ−(3γ+γˉ​)κ+Ψ1​+Φ01​, [R1312​]=(ρ+εˉ−2ε)α+βσˉ−βˉ​ε−κλ−κˉγ+(ε+ρ)π+Φ10​, [21​(R3414​−R1214​)]=(α+π)σ+(ρˉ​−εˉ)β−(μ+γ)κ−(αˉ−πˉ)ε+Ψ1​, [21​(R1213​−R3413​)]=(τ+πˉ)α+(τˉ+π)β−(ε+εˉ)γ−(γ+γˉ​)ε+τπ−νκ+Ψ2​+Φ11​−Λ, [21​(R1212​−R3412​)]=(ρλ+σˉμ)+π2+(α−βˉ​)π−νκˉ−(3ε−εˉ)λ+Φ20​, [R2441​]=(ρˉ​μ+σλ)+ππˉ−(ε+εˉ)μ−(αˉ−β)π−νκ+Ψ2​+2Λ, [R2431​]=(π+τˉ)μ+(πˉ+τ)λ+(γ−γˉ​)π−(3ε+εˉ)ν+Ψ3​+Φ21​, [R2421​]=−(μ+μˉ​)λ−(3γ−γˉ​)λ+(3α+βˉ​+π−τˉ)ν−Ψ4​, [R2442​]=ρ(αˉ+β)−σ(3α−βˉ​)+(ρ−ρˉ​)τ+(μ−μˉ​)κ−Ψ1​+Φ01​, [R3143​]=(μρ−λσ)+ααˉ+ββˉ​−2αβ+γ(ρ−ρˉ​)+ε(μ−μˉ​)−Ψ2​+Φ11​+Λ, [21​(R1234​−R3434​)]=(ρ−ρˉ​)ν+(μ−μˉ​)π+(α+βˉ​)μ+(αˉ−3β)λ−Ψ3​+Φ21​, [R2443​]=(μ2+λλˉ)+(γ+γˉ​)μ−νˉπ+(τ−3β−αˉ)ν+Φ22​, [R2423​]=(τ−αˉ−β)γ+μτ−σν−ενˉ−(γ−γˉ​−μ)β+αλˉ+Φ12​, [21​(R1232​−R3432​)]=(μσ+λˉρ)+(τ+β−αˉ)τ−(3γ−γˉ​)σ−κνˉ+Φ02​, [R1332​]=−(ρμˉ​+σλ)+(βˉ​−α−τˉ)τ+(γ+γˉ​)ρ+νκ−Ψ2​−2Λ, [R1324​]=(ρ+ε)ν−(τ+β)λ+(γˉ​−μˉ​)α+(βˉ​−τˉ)γ−Ψ3​, [21​(R1242​−R3442​)]​
以及比安基恒等式:
− δ ˉ Ψ 0 + D Ψ 1 + ( 4 α − π ) Ψ 0 − 2 ( 2 ρ + ε ) Ψ 1 + 3 κ Ψ 2 + R a = 0 , R 13 [ 13 , 4 ] = 0 δ ˉ Ψ 1 − D Ψ 2 − λ Ψ 0 + 2 ( π − α ) Ψ 1 + 3 ρ Ψ 2 − 2 κ Ψ 3 + R b = 0 , R 13 [ 21 , 4 ] = 0 − δ ˉ Ψ 2 + D Ψ 3 + 2 λ Ψ 1 − 3 π Ψ 2 + 2 ( ϵ − ρ ) Ψ 3 + κ Ψ 4 + R c = 0 , R 42 [ 13 , 4 ] = 0 δ ˉ Ψ 3 − D Ψ 4 − 3 λ Ψ 2 + 2 ( 2 π + α ) Ψ 3 − ( 4 ϵ − ρ ) Ψ 4 + R d = 0 , R 42 [ 21 , 4 ] = 0 − Δ Ψ 0 + δ Ψ 1 + 4 ( γ − μ ) Ψ 0 − 2 ( 2 τ + β ) Ψ 1 + 3 σ Ψ 2 + R e = 0 , R 13 [ 13 , 2 ] = 0 − Δ Ψ 1 + δ Ψ 2 + ν Ψ 0 − 2 ( γ − μ ) Ψ 1 − 3 τ Ψ 2 + 2 σ Ψ 3 + R f = 0 , R 13 [ 43 , 2 ] = 0 − Δ Ψ 2 + δ Ψ 3 + 2 ν Ψ 1 − 3 μ Ψ 2 + 2 ( β − τ ) Ψ 3 + σ Ψ 4 + R g = 0 , R 42 [ 13 , 2 ] = 0 − Δ Ψ 3 + δ Ψ 4 + 3 ν Ψ 2 − 2 ( γ − 2 μ ) Ψ 3 − ( τ − 4 β ) Ψ 4 + R h = 0 , R 42 [ 43 , 2 ] = 0 \begin{aligned} -\bar\delta\Psi_0 + D \Psi_1 + (4\alpha - \pi)\Psi_0 - 2(2\rho + \varepsilon)\Psi_1 + 3\kappa\Psi_2 + R_a = 0, ~ R_{13[13,4]} = 0 \\ \bar\delta\Psi_1 - D \Psi_2 -\lambda\Psi_0 + 2(\pi - \alpha)\Psi_1 + 3\rho\Psi_2 - 2\kappa\Psi_3 + R_b = 0, ~ R_{13[21,4]} = 0 \\ -\bar\delta\Psi_2 + D \Psi_3 + 2\lambda\Psi_1 - 3\pi\Psi_2 + 2(\epsilon - \rho)\Psi_3 + \kappa\Psi_4 + R_c = 0, ~ R_{42[13,4]} = 0 \\ \bar\delta\Psi_3 - D \Psi_4 - 3\lambda\Psi_2 + 2(2\pi + \alpha)\Psi_3 - (4\epsilon- \rho)\Psi_4 + R_d = 0, ~ R_{42[21,4]} = 0 \\ -\Delta\Psi_0 + \delta\Psi_1 + 4(\gamma - \mu)\Psi_0 - 2(2\tau + \beta)\Psi_1 + 3\sigma\Psi_2 + R_e = 0, ~ R_{13[13,2]} = 0 \\ -\Delta\Psi_1 + \delta\Psi_2 + \nu\Psi_0 - 2(\gamma- \mu)\Psi_1 - 3\tau\Psi_2 + 2\sigma\Psi_3 + R_f = 0, ~ R_{13[43,2]} = 0 \\ -\Delta\Psi_2 + \delta\Psi_3 + 2\nu\Psi_1 - 3\mu\Psi_2 + 2(\beta - \tau)\Psi_3 + \sigma\Psi_4 + R_g = 0, ~ R_{42[13,2]} = 0 \\ -\Delta\Psi_3 + \delta\Psi_4 + 3\nu\Psi_2 - 2(\gamma - 2\mu)\Psi_3 - (\tau - 4\beta)\Psi_4 + R_h = 0, ~ R_{42[43,2]} = 0 \end{aligned} −δˉΨ0​+DΨ1​+(4α−π)Ψ0​−2(2ρ+ε)Ψ1​+3κΨ2​+Ra​=0, R13[13,4]​=0δˉΨ1​−DΨ2​−λΨ0​+2(π−α)Ψ1​+3ρΨ2​−2κΨ3​+Rb​=0, R13[21,4]​=0−δˉΨ2​+DΨ3​+2λΨ1​−3πΨ2​+2(ϵ−ρ)Ψ3​+κΨ4​+Rc​=0, R42[13,4]​=0δˉΨ3​−DΨ4​−3λΨ2​+2(2π+α)Ψ3​−(4ϵ−ρ)Ψ4​+Rd​=0, R42[21,4]​=0−ΔΨ0​+δΨ1​+4(γ−μ)Ψ0​−2(2τ+β)Ψ1​+3σΨ2​+Re​=0, R13[13,2]​=0−ΔΨ1​+δΨ2​+νΨ0​−2(γ−μ)Ψ1​−3τΨ2​+2σΨ3​+Rf​=0, R13[43,2]​=0−ΔΨ2​+δΨ3​+2νΨ1​−3μΨ2​+2(β−τ)Ψ3​+σΨ4​+Rg​=0, R42[13,2]​=0−ΔΨ3​+δΨ4​+3νΨ2​−2(γ−2μ)Ψ3​−(τ−4β)Ψ4​+Rh​=0, R42[43,2]​=0​
其中
R a = − D Φ 01 + δ Φ 00 + 2 ( ρ ˉ + ϵ ) Φ 01 + 2 σ Φ 10 − 2 κ Φ 11 − κ ˉ Φ 02 + ( π ˉ − 2 α ˉ − 2 β ) Φ 00 R b = − Δ Φ 00 + δ ˉ Φ 01 − 2 ( τ ˉ + α ) Φ 01 + 2 ρ Φ 11 − 2 τ Φ 10 + σ ˉ Φ 02 − ( μ ˉ − 2 γ ˉ − 2 γ ) Φ 00 − 2 D Λ R c = − D Φ 21 + δ Φ 20 + 2 ( ρ ˉ − ϵ ) Φ 21 + 2 π Φ 11 − 2 μ Φ 10 − κ ˉ Φ 22 + ( π ˉ − 2 α ˉ + 2 β ) Φ 20 − 2 δ ˉ Λ R d = − Δ Φ 20 + δ ˉ Φ 21 − 2 ( τ ˉ − α ) Φ 21 + 2 ν Φ 10 − 2 λ Φ 11 + σ ˉ Φ 22 − ( μ ˉ − 2 γ ˉ + 2 γ ) Φ 20 R e = − D Φ 02 + δ Φ 01 + 2 ( π ˉ − β ) Φ 01 + 2 σ Φ 11 − 2 κ Φ 12 − λ ˉ Φ 00 + ( ρ ˉ − 2 ε ˉ + 2 ε ) Φ 02 R f = Δ Φ 01 − δ ˉ Φ 02 + 2 ( μ ˉ − γ ) Φ 01 + 2 τ Φ 11 − 2 ρ Φ 12 − ν ˉ Φ 00 + ( τ ˉ − 2 β ˉ + 2 α ) Φ 02 + 2 δ Λ R g = − D Φ 22 + δ Φ 21 + 2 ( π ˉ + β ) Φ 21 + 2 π Φ 12 − 2 μ Φ 11 − λ ˉ Φ 20 + ( ρ ˉ − 2 ε ˉ − 2 ε ) Φ 22 − 2 Δ Λ R h = Δ Φ 21 − δ ˉ Φ 22 + 2 ( μ ˉ + γ ) Φ 21 + 2 λ Φ 12 − 2 ν Φ 11 − ν ˉ Φ 20 + ( τ ˉ − 2 β ˉ − 2 α ) Φ 22 \begin{aligned} R_a &= -D\Phi_{01} + \delta\Phi_{00} + 2(\bar\rho + \epsilon)\Phi_{01} + 2\sigma\Phi_{10} - 2\kappa\Phi_{11} - \bar\kappa\Phi_{02} + (\bar\pi - 2\bar\alpha - 2\beta)\Phi_{00} \\ R_b &= - \Delta\Phi_{00} + \bar\delta\Phi_{01} - 2(\bar\tau + \alpha)\Phi_{01} + 2\rho\Phi_{11} - 2\tau\Phi_{10} + \bar\sigma\Phi_{02} - (\bar\mu - 2\bar\gamma -2\gamma)\Phi_{00} - 2D\Lambda \\ R_c &= -D\Phi_{21} + \delta\Phi_{20} + 2(\bar\rho - \epsilon)\Phi_{21} + 2\pi\Phi_{11} - 2\mu\Phi_{10} - \bar\kappa\Phi_{22} + (\bar\pi - 2\bar\alpha + 2\beta)\Phi_{20} -2\bar\delta\Lambda \\ R_d &= - \Delta\Phi_{20} + \bar\delta\Phi_{21} - 2(\bar\tau - \alpha)\Phi_{21} + 2\nu\Phi_{10} - 2\lambda\Phi_{11} + \bar\sigma\Phi_{22} - (\bar\mu - 2\bar\gamma + 2\gamma)\Phi_{20} \\ R_e &= -D\Phi_{02} + \delta\Phi_{01} + 2(\bar\pi - \beta)\Phi_{01} + 2\sigma\Phi_{11} - 2\kappa\Phi_{12} - \bar\lambda\Phi_{00} + (\bar\rho - 2\bar\varepsilon + 2\varepsilon)\Phi_{02} \\ R_f &= \Delta\Phi_{01} - \bar\delta\Phi_{02} + 2(\bar\mu - \gamma)\Phi_{01} + 2\tau\Phi_{11} - 2\rho\Phi_{12} - \bar\nu\Phi_{00} + (\bar\tau - 2\bar\beta + 2\alpha)\Phi_{02} + 2\delta\Lambda \\ R_g &= -D\Phi_{22} + \delta\Phi_{21} + 2(\bar\pi + \beta)\Phi_{21} + 2\pi\Phi_{12} - 2\mu\Phi_{11} - \bar\lambda\Phi_{20} + (\bar\rho - 2\bar\varepsilon - 2\varepsilon)\Phi_{22} - 2\Delta\Lambda \\ R_h &= \Delta\Phi_{21} - \bar\delta\Phi_{22} + 2(\bar\mu + \gamma)\Phi_{21} + 2\lambda\Phi_{12} - 2\nu\Phi_{11} - \bar\nu\Phi_{20} + (\bar\tau - 2\bar\beta - 2\alpha)\Phi_{22} \end{aligned} Ra​Rb​Rc​Rd​Re​Rf​Rg​Rh​​=−DΦ01​+δΦ00​+2(ρˉ​+ϵ)Φ01​+2σΦ10​−2κΦ11​−κˉΦ02​+(πˉ−2αˉ−2β)Φ00​=−ΔΦ00​+δˉΦ01​−2(τˉ+α)Φ01​+2ρΦ11​−2τΦ10​+σˉΦ02​−(μˉ​−2γˉ​−2γ)Φ00​−2DΛ=−DΦ21​+δΦ20​+2(ρˉ​−ϵ)Φ21​+2πΦ11​−2μΦ10​−κˉΦ22​+(πˉ−2αˉ+2β)Φ20​−2δˉΛ=−ΔΦ20​+δˉΦ21​−2(τˉ−α)Φ21​+2νΦ10​−2λΦ11​+σˉΦ22​−(μˉ​−2γˉ​+2γ)Φ20​=−DΦ02​+δΦ01​+2(πˉ−β)Φ01​+2σΦ11​−2κΦ12​−λˉΦ00​+(ρˉ​−2εˉ+2ε)Φ02​=ΔΦ01​−δˉΦ02​+2(μˉ​−γ)Φ01​+2τΦ11​−2ρΦ12​−νˉΦ00​+(τˉ−2βˉ​+2α)Φ02​+2δΛ=−DΦ22​+δΦ21​+2(πˉ+β)Φ21​+2πΦ12​−2μΦ11​−λˉΦ20​+(ρˉ​−2εˉ−2ε)Φ22​−2ΔΛ=ΔΦ21​−δˉΦ22​+2(μˉ​+γ)Φ21​+2λΦ12​−2νΦ11​−νˉΦ20​+(τˉ−2βˉ​−2α)Φ22​​

黎曼曲率张量漫谈(续)相关推荐

  1. 推荐一本数学科普:黎曼猜想漫谈

    链接: https://www.changhai.org/articles/science/mathematics/riemann_hypothesis/index.php https://www.d ...

  2. 丘成桐谈几何:从黎曼、爱因斯坦到弦论

    来源 : 超级数学建模 著名数学家丘成桐先生发表了题为"几何:从黎曼.爱因斯坦到弦论"的演讲,追溯了为广义相对论发展奠定基础的的黎曼几何,回顾了影响广义相对论发展的物理学突破,并谈 ...

  3. 黎曼猜想证明了?Michael Atiyah的愚人节难道在9月吗……

    雷锋网 AI 科技评论按:这个中秋,关心学术的小伙伴们看到的最多的消息大概就是英国数学家 Michael Atiyah 爵士宣布自己证明了黎曼猜想.如果这是真的,Atiyah 爵士将不仅获得由克雷数学 ...

  4. 黎曼猜想历史进展-大事记

    下面内容来自卢昌海的<黎曼猜想漫谈>一书.

  5. 如何将一个向量投影到一个平面上_如何在黎曼流形上避开鞍点?本文带你了解优化背后的数学知识...

    机器之心原创 作者:Joshua Chou 编辑:Joni Zhong翻译:魔王 在一篇名为<Escaping from saddle points on Riemannian manifold ...

  6. 只服这篇“神文”:基于老子哲学、相对论的超级人工智能模型

    作者 | Anonymous authors 译者 | TroyChang 出品 | AI科技大本营(ID:rgznai100) 在此前我们为大家介绍 ICLR 2020 论文投稿情况时,提到了一篇& ...

  7. 知识图谱嵌入(KGE)主流模型简介

    1. KGE简介 目前(2020.03)知识图谱嵌入研究方法众多,本文将对其中的主流方法进行简要介绍,如翻译.双线性.神经网络.双曲几何.旋转等.各方法细节请看原论文,文中错误欢迎指出,谢谢. 知识图 ...

  8. 《时空测量原理》韩春好著

    "时间.空间是最基本的物理量.科技问题在本质上是物质(能量)与时间.空间的问题.测量是科学的基础." 尸子说:"四方上下曰宇,往古来今曰宙." "宇宙 ...

  9. 转贴:粒子在施瓦西黑洞内部是如何运动的?

    粒子在施瓦西黑洞内部是如何运动的? - 知乎 一.何为施瓦西黑洞? 一谈到黑洞,大部分人可能会形象的将其看作是巨大的质量集中到了一起后形成的状态,也有的朋友知道大质量恒星晚年会塌缩成黑洞.于是,大部分 ...

最新文章

  1. I/O映射和内存映射
  2. adb devices 找不到设备的解决方法
  3. java excel 复杂表头_中国式复杂报表开发教程(4)—类Excel复杂表头报表
  4. opencv 通过标定摄像头测量物体大小_视觉激光雷达信息融合与联合标定
  5. 控件与应用程序许可授权的100%托管的先进控件IntelliLock
  6. Caffe2:添加CUDA路径
  7. 软RAID-mdadm折腾小记
  8. Linux find命令、Linux rmdir命令、Linux ls命令
  9. synchronized的4种用法
  10. netsuite中Mutiple Select的赋值问题的解决
  11. android 按钮列表,android – 如何使按钮看起来像列表
  12. 【Java必备技能二】防止表单重复提交方法
  13. android pgis地图,PGIS(警用地图)建设方案详细.doc
  14. SQL数据库-第一次试验-表与视图的基本操作
  15. Hive中4个By Sort By 、Order By、Distrbute By、 Cluster By区别
  16. Soft Filter Pruning(SFP)算法笔记
  17. SpringBoot+Schedule 定时任务的配置开关
  18. Swift学习笔记(5):集合类型
  19. ACrush 楼天成的回忆录
  20. java获取下周一_Java 根据查询日期,获取下周一、周日的日期

热门文章

  1. Android 无法解决第三方库依赖问题
  2. 阿里云X-Forwarded-For 发现tomcat记录的日志全部来自于SLB转发的IP地址,不能获取到请求的真实IP。
  3. 测试晶面间距软件_材料现代测试分析方法期末考试卷加答案(精)
  4. C#图像处理程序实现--Canny实现 笔记整理(其中的非极大值抑制点)
  5. “好奇号”顺利完成”火星第一勺“
  6. ​干货!影视剪辑大神常用避免侵权的8个秘籍首次公开【覃小龙课堂】
  7. 书评学习笔记《自动驾驶汽车环境感知》
  8. 亲测全套支付可用(微信支付宝)复制粘贴即可跑
  9. 找C++程序员工作被卡学历怎么办?我来分享一下实用的方法
  10. pt-archiver使用