基本的计算步骤

时间复杂度的定义 
    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。

根据定义,可以归纳出基本的计算步骤 
1. 计算出基本操作的执行次数T(n) 
    基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。

2. 计算出T(n)的数量级 
    求T(n)的数量级,只要将T(n)进行如下一些操作:
    忽略常量、低次幂和最高次幂的系数

令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度 
    当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

一个示例: 
(1) int num1, num2;
(2) for(int i=0; i<n; i++){ 
(3)     num1 += 1;
(4)     for(int j=1; j<=n; j*=2){ 
(5)         num2 += num1;
(6)     }
(7) }

分析:
1.
语句int num1, num2;的频度为1;
语句i=0;的频度为1;
语句i<n; i++; num1+=1; j=1; 的频度为n;
语句j<=n; j*=2; num2+=num1;的频度为n*log2n;
T(n) = 2 + 4n + 3n*log2n

2.
忽略掉T(n)中的常量、低次幂和最高次幂的系数
f(n) = n*log2n

3.
lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n)
                     = 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3

当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0
所以极限等于3。

T(n) = O(n*log2n)

简化的计算步骤

再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。

并且,通常将求解极限是否为常量也省略掉?

于是,以上步骤可以简化为: 
1. 找到执行次数最多的语句 
2. 计算语句执行次数的数量级
3. 用大O来表示结果

继续以上述算法为例,进行分析:
1.
执行次数最多的语句为num2 += num1

2.
T(n) = n*log2n
f(n) = n*log2n

3.
// lim(T(n)/f(n)) = 1
T(n) = O(n*log2n)

--------------------------------------------------------------------------------
一些补充说明 
最坏时间复杂度 
    算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

求数量级 
即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

求极限的技巧 
要利用好1/n。当n趋于无穷大时,1/n趋向于0

--------------------------------------------------------------------------------
一些规则(引自:时间复杂度计算 ) 
1) 加法规则 
T(n,m) = T1(n) + T2(n) = O (max ( f(n), g(m) )

2) 乘法规则 
T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))

3) 一个特例(问题规模为常量的时间复杂度) 
在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有
T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) )

也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。

4) 一个经验规则 
复杂度与时间效率的关系:
c < log2n < n < n*log2n < n2 < n3 < 2n < 3n < n! (c是一个常量)
|--------------------------|--------------------------|-------------|
          较好                     一般              较差
其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

--------------------------------------------------------------------------------------------------
复杂情况的分析

以上都是对于单个嵌套循环的情况进行分析,但实际上还可能有其他的情况,下面将例举说明。

1.并列循环的复杂度分析 
将各个嵌套循环的时间复杂度相加。

例如:

  for (i=1; i<=n; i++)
      x++;

  for (i=1; i<=n; i++)
      for (j=1; j<=n; j++)
          x++;

解:
第一个for循环
T(n) = n
f(n) = n
时间复杂度为Ο(n)

第二个for循环
T(n) = n2
f(n) = n2
时间复杂度为Ο(n2)

整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。

2.函数调用的复杂度分析 
例如:
public void printsum(int count){
    int sum = 1;
    for(int i= 0; i<n; i++){
       sum += i;
    }   
    System.out.print(sum);
}

分析:
记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。
所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)

*这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:
public void printsum(int count){
    int sum = 1;
    sum = count * (count+1)/2;   
    System.out.print(sum);
}
这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。

3.混合情况(多个方法调用与循环)的复杂度分析 
例如:
public void suixiangMethod(int n){
    printsum(n);//1.1
    for(int i= 0; i<n; i++){
       printsum(n); //1.2
    }
    for(int i= 0; i<n; i++){
       for(int k=0; k
        System.out.print(i,k); //1.3
      }
  }
suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。
也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)

--------------------------------------------------------------------------------------------------
更多的例子

O(1) 
交换i和j的内容
temp=i;
i=j;
j=temp;

以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n2) 
    sum=0;                /* 执行次数1 */
    for(i=1;i<=n;i++)      
       for(j=1;j<=n;j++) 
         sum++;       /* 执行次数n2 */
解:T(n) = 1 + n2 = O(n2)

for (i=1;i<n;i++)
   { 
       y=y+1;        ①   
       for (j=0;j<=(2*n);j++)    
          x++;        ②      
   }         
解:  语句1的频度是n-1
         语句2的频度是(n-1)*(2n+1) = 2n2-n-1
         T(n) = 2n2-n-1+(n-1) = 2n2-2
         f(n) = n2
         lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2
         T(n) = O(n2).

O(n)                                         
   a=0;
   b=1;                     ①
   for (i=1;i<=n;i++) ②
   {  
      s=a+b;    ③
      b=a;     ④  
      a=s;     ⑤
   }
解:  语句1的频度:2,        
         语句2的频度:n,        
         语句3的频度:n,        
         语句4的频度:n,    
         语句5的频度:n,                                  
         T(n) = 2+4n
         f(n) = n
         lim(T(n)/f(n)) = 2*(1/n) + 4 = 4
         T(n) = O(n).     
                                                                            
O(log2n) 
   i=1;       ①
   while (i<=n)
      i=i*2; ②
解: 语句1的频度是1,  
       设语句2的频度是t,  则:nt<=n;  t<=log2n
       考虑最坏情况,取最大值t=log2n,
        T(n) = 1 + log2n
        f(n) = log2n
        lim(T(n)/f(n)) = 1/log2n + 1 = 1
        T(n) = O(log2n)

O(n3) 
   for(i=0;i<n;i++)
   {  
      for(j=0;j<i;j++)  
      {
         for(k=0;k<j;k++)
            x=x+2;  
      }
   }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 ,  所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次
T(n) = n(n+1)(n-1)/2 = (n3-n)/2
f(n) = n3

所以时间复杂度为O(n3)。

原文见:http://univasity.iteye.com/blog/1164707

【转】时间复杂度的计算相关推荐

  1. 算法时间复杂度的计算:从几道题目讲起

    引子 最近再来回顾一下算法相关的知识,那自然,首先要学习的就是 时间复杂度的概念,以及其计算方式.下面,我就会简单地介绍下时间复杂度,以及会给出几道典型的时间复杂度计算题. 时间复杂度 将算法中基本操 ...

  2. 时间复杂度的计算详解

    时间复杂度计算分为以下三个步骤(推导大O阶): 1.用常数1取代运行时间中的所有加法常数 2.在修改后的运行次数函数中,只保留最高阶项 3.如果最高阶项存在且不是1,则去除与这个项相乘的常数,得到的结 ...

  3. 排序算法之快速排序及其时间复杂度的计算

    快速排序由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分 ...

  4. 递归式的时间复杂度的计算

    递归算法的时间复杂度分析 在算法分析中,当一个算法中包含递归调用时,其时间复杂度的分析会转化为一个递归方程求解.实际上,这个问题是数学上求解渐近阶的问题,而递归方程的形式多种多样,其求解方法也是不一而 ...

  5. 数据结构::递归时间复杂度的计算

    开篇前言:为什么写这篇文章?笔者目前在学习各种各样的算法,在这个过程中,频繁地碰到到递归思想和分治思想,惊讶于这两种的思想的伟大与奇妙的同时,经常要面对的一个问题就是,对于一个给定的递归算法或者用分治 ...

  6. 算法的时间复杂度的计算

    前言: 算法的分析方式有两种: 事后分析统计方法:编写算法对应程序,统计其执行时间. 存在问题:编写程序的语言不同,执行程序的环境不同等因素 事前估算分析方法:撇开上述因素,认为算法的执行时间是问题规 ...

  7. 算法复杂度(时间频度,时间复杂度介绍计算,空间复杂度)

    算法的时间复杂度 度量一个程序(算法)执行时间的两种方法 事后统计的方法(直接运行看花了多长时间) 这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序:二是所得 ...

  8. 算法时间复杂度及其计算

    算法概念 解决特定问题求解步骤的一种描述. 特性 输入 : 算法具有0个或多个输入 输出 : 算法至少有1个或多个输出 有穷性 : 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可 ...

  9. 时间频度,时间复杂度的计算

    文章目录 一.时间频度 1. 概念 2. 特点 2.1 忽略常数项 2.2 忽略低次项 2.3 忽略系数 二.时间复杂度 1. 概念 2. 计算时间复杂度 3. 常见的时间复杂度 3.1 常数阶 O( ...

  10. 了解时间复杂度以及时间复杂度的计算

    首先,什么叫时间复杂度? 时间复杂度是一个函数,它定性描述该算法的运行时间.这是一个代表算法输入值的字符串的长度的函数.时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数.使用这种方式时,时 ...

最新文章

  1. python中的选择结构语句是语句_python3控制语句---选择结构语句
  2. android内存优化方法,Android开发内存优化注意事项和方法
  3. php pdo 执行多条语句,php – 在pdo预处理语句中执行多插入或多个不同插入是更好/更快?...
  4. C++ 学习笔记----类篇
  5. java activemq jmx_通过JMX 获取Activemq 队列信息
  6. 软件质量包括哪些特性?软件质量保证的主要任务是什么?
  7. code第一部分数组:从有序数组中移除重复的数据
  8. volatile关键字和Java线程安全问题
  9. linux终端中出现 cd: OLDPWD 未设定 的提示
  10. Mac|技巧:Mac电脑如何使用ping命令呢?
  11. 在 MAC下安装 Exuberant ctags
  12. 并查集路径压缩_并查集简单教学
  13. 【已解决】双系统 ubuntu wifi 图标消失,无法连接无线网,查询无线网卡型号安装驱动(含网络备用方案)
  14. 计算机的硬盘u盘属于什么,移动硬盘和机械硬盘有什么区别?
  15. 重走c语言—摸鱼大学生的c语言基础笔记
  16. 手机端页面的自适应设计的开发思路
  17. 适配器的作用计算机网络,网络适配器的作用
  18. restTemplate文件上传与下载
  19. c语言中体积用什么字母表示,C语言中求圆柱体体积符号
  20. 卡特尔16PF性格测试与答案

热门文章

  1. python-opencv 将连续图片写成视频格式
  2. 一些前端书写规范建议
  3. 小红书kol投放流程揭秘,想做好kol投放不能不懂这个
  4. 2008年4月23日 出差
  5. 第十六讲:神州交换机访问控制列表的配置
  6. 我所知道的富士康之四:培训
  7. 神经网络语音合成模型介绍-ClariNet及总结
  8. web课程设计网页规划与设计:体育运动主题网站设计——体育足球(5页) HTML+CSS+JavaScript 学生DW网页设计作业成品 HTML5期末大作业 大学生毕设网页设计源码HTML
  9. Windows 开机自启动VmWare指定虚拟机
  10. Windows下Nacos的安装与使用