目录

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 3.01, 3.02, 3.30

Attenuated Backscatter Profiles

Total Attenuated Backscatter 532

Perpendicular Attenuated Backscatter 532

Attenuated Backscatter 1064

Calibration Coefficients and Uncertainties

Column Reflectance

Geolocation and Altitude Registration

Latitude

Longitude

Lidar Data Altitude

Number Bins Shift

Surface Altitude Shift

Orbit Number

Path Number

Meteorological Data

Time Parameters

Profile Identification

Ancillary Data

Day Night Flag

IGBP Surface Type

Land Water Mask

NSIDC Surface Type

Surface Elevation

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 2.01, 2.02


CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 3.01, 3.02, 3.30

CALIOP_L1ProfileProducts_3-01-v02.pdf

Attenuated Backscatter Profiles

Total Attenuated Backscatter 532

The total attenuated backscatter at 532 nm,β’532n Section 6.2.2 of the Lidar Level I ATBD (PDF),是主要的激光雷达一级数据产品之一。β’532是是532nm体积后向散射系数和532nm处的双向光学透射的乘积。Lidar Level I ATBD (PDF)第6节详细描述了来自两个组成偏振分量的532nm总衰减后向散射的构造。衰减的反向散射剖面是从校准的(除以校准常数)、距离校正的、激光能量归一化的、基线减去激光雷达返回信号中得到的。

532nm衰减后向散射系数被记录在每个激光脉冲的对应的583个元素的阵列中,对应于由激光雷达数据高度字段定义的恒定高度网格(元数据中Lidar Data Altitudes字段中记录)。(https://blog.csdn.net/wokaowokaowokao12345/article/details/79790675)

为了减少下行链路数据量,对不同的高度范围使用不同的水平和垂直分辨率,如下表所示。

The total attenuated backscatter at 532 nm, β'532 in Section 6.2.2 of the Lidar Level I ATBD (PDF), is one of the primary lidar Level 1 data products. β'532 is the product of the 532 nm volume backscatter coefficient and the two-way optical transmission at 532 nm from the lidar to the sample volume. The construction of the 532 nm total attenuated backscatter from the two constituent polarization components is described in detail in Section 6 of the Lidar Level I ATBD (PDF). The attenuated backscatter profiles are derived from the calibrated (divided by calibration constant), range-corrected, laser energy normalized, baseline subtracted lidar return signal.

The 532 nm attenuated backscatter coefficients are reported for each laser pulse as an array of 583 elements that have been registered to a constant altitude grid defined by the Lidar Data Altitude field.

Note that to reduce the downlink data volume, an on-board averaging scheme is applied using different horizontal and vertical resolutions for different altitude regimes, as shown in the following table.

Uncertainties for the attenuated backscatter are not explicitly reported in the CALIOP Level 1 data products to save data volume, which would otherwise approximately double the Level 1 data volume. If needed, users can compute random errors for the attenuated backscatter products as described in Uncertainties for Attenuated Backscatter (PDF). IDL code for computing the attenuated backscatter uncertainties is contained in IDL Code for Uncertainty Calculations (PDF).

Perpendicular Attenuated Backscatter 532

532nm总衰减后向散射的垂直分量。垂直通道532nm衰减后向散射的轮廓以与532nm总后向散射的轮廓相同的方式记录。反向散射的平行分量的轮廓可以通过从总量中简单地减去垂直分量来获得。

This field reports the perpendicular component of the 532 nm total attenuated backscatter, as described in section 6 of the CALIPSO Lidar Level I ATBD (PDF). Profiles of the perpendicular channel 532 nm attenuated backscatter are reported in the same manner as are profiles of the 532 nm total backscatter. Profiles of the parallel component of the backscatter can be obtained by simple subtraction of the perpendicular component from the total.

Attenuated Backscatter 1064

The attenuated backscatter at 1064 nm, β'1064, is computed according to equation 7.23 in section 7.2 of the Lidar Level I ATBD (PDF). Like β'532, β'1064 is one of the primary lidar Level 1 data products. β'1064 is the product of the 1064 nm volume backscatter coefficient and the two-way optical transmission at 1064 nm from the lidar to the sample volume. Profiles of the 1064 nm attenuated backscatter are reported in the same manner as are profiles of the 532 nm total backscatter. However, the first 34 bins of each profile contain fill values (-9999), because no 1064 nm data is downlinked from the 30.1 - 40 km altitude range.

Calibration Coefficients and Uncertainties

Column Reflectance

Geolocation and Altitude Registration

Latitude

Geodetic latitude, in degrees, of the laser footprint on the Earth's surface.

Longitude

Longitude, in degrees, of the laser footprint on the Earth's surface.

Lidar Data Altitude

这是一个HDF元数据字段,定义激光雷达1级剖面产品注册到的583个距离仓的高度(请参考表1:下行链路数据的不同高度范围的距离分辨率)。

This is an HDF metadata field that defines the altitudes of the 583 range bins (refer to Table 1: Range Resolutions of Different Altitude Ranges for Downlinked Data) to which lidar Level 1 profile products are registered.

Number Bins Shift

Number bins shift contains the number of 30 meter bins the profile specific 30 meter array elements are shifted to match the lowest altitude bin of the fixed 30 meter altitude array. Profile specific altitude arrays are computed as a function of the actual spacecraft offnadir angle, which varies slightly from the commanded spacecraft off-nadir angle. The fixed altitude array is computed using the commanded spacecraft off-nadir angle (0.3 or 3.0 degrees). The profile specific array elements may be shifted up or down.

Surface Altitude Shift

Surface altitude shift contains the altitude difference between the profile specific 30 meter altitude array and the fixed 30 meter altitude array at the array element that includes mean sea level. Profile specific altitude arrays are computed as a function of the actual spacecraft off-nadir angle, which varies slightly from the commanded spacecraft off-nadir angle. The fixed altitude array is computed using the commanded spacecraft off-nadir angle (0.3 or 3.0 degrees). The units are in kilometers and the values may be positive or negative. The difference is calculated as: Surface_Altitude_Shift = altitude (profile specific 30 meter mean sea level bin) - altitude (fixed 30 meter mean sea level bin).

Orbit Number

Orbit Number consists of three HDF metadata fields that define the number of revolutions by the CALIPSO spacecraft around the Earth and is incremented as the spacecraft passes the equator at the ascending node. To maintain consistency between the CALIPSO and CloudSat orbit parameters, the Orbit Number is keyed to the Cloudsat orbit 2121 at 23:00:47 on 2006/09/20. Because the CALIPSO data granules are organized according to day and night conditions, day/night boundaries do not coincide with transition points for defining orbit number. As such, three parameters are needed to describe the orbit number for each granule as:

  • Orbit Number at Granule Start: orbit number at the granule start time
  • Orbit Number at Granule End: orbit number at the granule stop time
  • Orbit Number Change Time: time at which the orbit number changes in the granule

Path Number

Orbit Number Path Number consists of three HDF metadata fields that define an index ranging from 1-233 that references orbits to the Worldwide Reference System (WRS). This global grid system was developed to support scene identification for LandSat imagery. Since the A-Train is maintained to the WRS grid within +/- 10 km, the Path Number provides a convenient index to support data searches, instead of having to define complex latitude and longitude regions along the orbit track. The Path Number is incremented after the maximum latitude in the orbit is realized and changes by a value of 16 between successive orbits. Because the CALIPSO data granules are organized according to day and night conditions, day/night boundaries do not coincide with transition points for defining path number. As such, three parameters are needed to describe the path number for each granule as:

  • Path Number at Granule Start: path number at the granule start time
  • Path Number at Granule End: path number at the granule stop time
  • Path Number Change Time: time at which the path number changes in the granule

Meteorological Data

Time Parameters

Profile Identification

Ancillary Data

Day Night Flag

This field indicates the lighting conditions at an altitude of ~24 km above mean sea level;

0 = day,

1 = night.

IGBP Surface Type

International Geosphere/Biosphere Programme (IGBP) classification of the surface type at the laser footprint. The IGBP surface types reported by CALIPSO are the same as those used in the CERES/SARB surface map.

Land Water Mask

This is an 8-bit integer indicating the surface type at the laser footprint, with

  • 0 = shallow ocean;
  • 1 = land;
  • 2 = coastlines;
  • 3 = shallow inland water;
  • 4 = intermittent water;
  • 5 = deep inland water;
  • 6 = continental ocean;
  • 7 = deep ocean.

NSIDC Surface Type

Snow and ice coverage for the surface at the laser footprint; data obtained from the National Snow and Ice Data Center (NSIDC).

Surface Elevation

这是从GTOPO30数字高程图(DEM)获得的激光足迹的表面高程,以高于当地平均海平面的公里为单位。

This is the surface elevation at the laser footprint, in kilometers above local mean sea level, obtained from the GTOPO30 digital elevation map (DEM).

CALIPSO Quality Statements Lidar Level 1B Profile Products Version Releases: 2.01, 2.02

CALIOP_L1ProfileProducts_2.01.pdf

【记录】CALIPSO Lidar Level 1B产品介绍相关推荐

  1. 使用MODIS Level 1B 1KM 数据反演AOD实验流程

    1.实验思路 实验的整体思路: 第一部分是MODIS数据预处理工作. 数据预处理工作主要包括对 MODIS LIB数据进行去除蝴蝶结效应.几何校正.波段合成.裁剪等操作 第二部分为城市地区AOD及PM ...

  2. CALIPSO Quality Statements Lidar Level 2 Cloud and Aerosol Layer Products

    集结号 大气.海洋.陆地遥感交流QQ群:831106035.欢迎大家的加入,群内可以讨论与大气.陆地.海洋-遥感相关的问题,可以分享与上述兴趣相关的资源.祝大家学习愉快. 官方数据产品文档及简介 ht ...

  3. 【粗翻】CALIPSO数据用户指南-激光雷达等级1B 4.x数据质量声明

    CALIPSO Data User's Guide - Lidar Level 1B v4.x Data Quality Statement 2016年11月8日发布的CALIPSO 4.10版本激光 ...

  4. 星载激光雷达CALIPSO-VFM产品数据读取与显示

    Calipso-VFM产品数据读取与显示 介绍 一.数据下载 二.数据说明 三.代码 四.代码整体简易分析 五.代码细致分析 介绍 因为制备标签数据集,所以需要使用星载激光雷达的产品.从激光雷达的准确 ...

  5. CALIPSO学习笔记

    目录 一.卫星简介 二.数据下载网址 三.数据说明 四.python资料参考 一.卫星简介 CALIPSO (Cloud–Aerosol Lidar and Infrared Path nder Sa ...

  6. lightweight;lidar;slam

    汇总: 以上述三个为关键词搜索,共汇总顶会顶刊13篇,大致分为以下几种: 1.有离线地图的定位---2篇 2.语义信息辅助定位,解决耗时问题---1篇 3.基于激光雷达的位置识别问题---3篇 4.固 ...

  7. 1st Workshop on Leveraging Artificial Intelligence (AI) NOAA 2019 年会议报告总结记录

    Leveraging Modern Artificial Intelligence for Remote Sensing and NWP 感觉摘要就是说ML和DM的重要和优势.个人觉得总结性最好的一句 ...

  8. log4net按照不同的【LEVEL】级别输出到不同文件

    Log4net按照不同级别写入多个日志文件 2012-02-08 15:06 by Fred-Xu, ... 阅读, ... 评论, 收藏, 编辑 在一个Web应用项目中,我使用了Fluent NHi ...

  9. 《InsideUE4》GamePlay 架构(二)Level 和 World

    我发现了新大陆! 引言 上文谈到Actor和Component的关系,UE利用Actor的概念组成一片游戏对象森林,并利用Component组装扩展Actor的能力,让世界里拥有了形形色色的Actor ...

  10. php日志分析,PHP SeasLog实现高性能日志记录

    简介 为什么使用SeasLog log日志,通常是系统或软件.应用的运行记录.通过log的分析,可以方便用户了解系统或软件.应用的运行情况:如果你的应用log足够丰富,也可以分析以往用户的操作行为.类 ...

最新文章

  1. 使用Spring容器
  2. ICLR 2020被爆半数审稿人无相关领域经验,同行评审制度在垮塌?
  3. for循环10000次花多长时间_java循环经典案例学会它入行java
  4. 播放失败246106异常代码_web前端面试题:您能读懂的Promise源码实现(手写代码)...
  5. IE兼容问题IE6,IE7,IE8,IE9,IE10
  6. 【译】Linux概念架构的理解
  7. 降Mail十八章(下)
  8. hdu 1443 Joseph
  9. OSG的垃圾回收机制
  10. phpstudy(自己电脑主机做服务器,手机网站界面打不开)
  11. I2C总线串行串行输入输出结构
  12. checkbox click和change事件
  13. 对于java中接口的作用与理解
  14. AndroidStudio学习
  15. happy number(快乐数)
  16. HTML5 语义元素
  17. js 彻底理解回调函数
  18. pycharm新建项目时选择virtualenv与existing interpreter
  19. 075-数组越界异常-ArrayIndexOutOfBoundsException-【视频讲解】
  20. python编写程序判断今天是今年的第几天_python怎么判断当前日期是今年的第几天...

热门文章

  1. 考研初试结束,除了坐等成绩之外,还需干些什么?
  2. 14岁女生戴耳机损伤听力,我们该如何使用耳机保护自己的耳朵?
  3. 概念卡片】查理芒格(一)
  4. ARMv8-A编程指导之ARMv8寄存器(3)
  5. Java Jsp MVC+mysql实现的物资租赁管理系统(管理员管理 客户管理 建材管理 租赁管理 财务管理)
  6. Web3中文|恐惧vs伦理:AI艺术评论家错在哪里?
  7. 数据结构之时间复杂度笔记
  8. mac安装helm工具_Docker for mac 安装 Istio
  9. Portraiture(PS磨皮滤镜) V4.5.3 免费版
  10. 【Linux 内核 内存管理】分区伙伴分配器 ⑥ ( zone 结构体中水线控制相关成员 | 在 Ubuntu 中查看内存区域水位线 )