简介

一个质点从t=0出发,随着时间有不同的构形,运动的描述是运动学。

所以需要建立运动方程来表征连续体是如何演化及其性质(例如位移、速度、加速度、质量密度、温度等)如何随时间变化

初始构形 或者 参考构形: B 0 \mathcal{B}_0 B0​

当前构形: B t \mathcal{B}_t Bt​


从描述单个质点的运动开始

研究在变形当中质点之间的相对距离

定义变形和应变张量,在这之前先定义连续性质

连续介质

任何介质都有质量

如果连续体在任何地方性质一致,被称为齐次的

考虑某个点P为中心的球作为初始构形:

体积: Δ V 0 \Delta V_0 ΔV0​
质量: Δ m \Delta m Δm
那么,质量密度:

质点: 一个微小体积元,所具有的确定的性质,例如 质量密度、速度、温度等

点: 空间中的一个点

质点迹线: 单个质点运动过程中的轨迹

运动的类型

刚体运动:保持原来的构形,表征为质点之间的距离保持一致;可以分类为:位移和旋转

带变形的运动:表征为质点之间的距离会发生变化

刚体运动

建立运动方程,直角坐标系 O X 1 X 2 X 3 OX_1X_2X_3 OX1​X2​X3​ 在刚体上,所以任意质点的位置向量在运动过程中是不会发生改变的

另一个直角坐标系 o x 1 x 2 x 3 ox_1x_2x_3 ox1​x2​x3​ 表示正交基 ( e ^ 1 , e ^ 2 , e ^ 3 ) (\hat e_1, \hat e_2, \hat e_3) (e^1​,e^2​,e^3​)


质点P在坐标系 e ^ i \hat e_i e^i​ 和 I ^ i \hat I_i I^i​ 的位置向量为 X ⃗ \vec X X 和 x ⃗ \vec x x
那么:
x ⃗ = c ⃗ + X ⃗ \vec x = \vec c + \vec X x =c +X
其中 c ⃗ ( t ) \vec c(t) c (t) 与时间相关,描述的是坐标系 I ^ i \hat I_i I^i​ 的位移运动
下标表示:

在 o x 1 x 2 x 3 ox_1x_2x_3 ox1​x2​x3​的分量 可以点乘 e ^ i \hat e_i e^i​ 得到:

其中 I ^ j ⋅ e ^ i = a j i \hat I_j \cdot \hat e_i = a_{ji} I^j​⋅e^i​=aji​ 表示从坐标系 I ^ i \hat I_i I^i​ 到坐标系 e ^ i \hat e_i e^i​ 的变换矩阵

并且 a i k a k j = δ i j a_{ik} a_{kj} = \delta_{ij} aik​akj​=δij​ , a j i a_{ji} aji​ 是一个正交矩阵

考虑 Q i j = a j i Q_{ij} = a_{ji} Qij​=aji​ , 那么:
x ⃗ = c ⃗ + Q ⋅ X ⃗ 刚体运动方程 \boxed{\vec x = \vec c + Q \cdot \vec X} 刚体运动方程 x =c +Q⋅X ​刚体运动方程

NOTE: 分量的变换定律和正交变换密切相关,但它们有着完全不同的含义

问题2.1 一个连续体是以b为边的正方形,受到一个刚体运动,这个刚体运动是以逆时针旋转30°的旋转运动,求出运动方程,并求出质点D的新的位置


c ⃗ = 0 ⃗ \vec c = \vec 0 c =0 , 所以空间坐标系和质点坐标系重叠了

构形的类型

参考构形 或者 初始构形: 在时间 t ≡ t 0 t \equiv t_0 t≡t0​, 即未变形之前的构形,质点P的位置向量为 X ⃗ P \vec X^P X P

当前构形 或者 变形构形: 在时间 t = t t = t t=t 的构形

运动可以表征为一个双射函数 φ \varphi φ ,这可以保证存在逆函数 φ − 1 \varphi ^{-1} φ−1

质量密度

当前构形的质量密度:

质量密度是一个标量场,是一个关于位置和时间的函数: ρ = ρ ( x ⃗ , t ) \rho=\rho(\vec x, t) ρ=ρ(x ,t)

运动的描述

质点和空间坐标系

质量体 B 0 \mathcal B_0 B0​ 在初始构形

在任意时间,质量体会占据一个新的空间 B t \mathcal B_t Bt​ ,考察质点P


质点P在参考构形,时间t=0的位置向量为:

定义质点坐标系:

质点P在当前构形位于位置 P’, 位置向量为:

其中,定义了空间坐标系:

位移向量

位移向量定义为当前构形的位置向量 x ⃗ \vec x x 和参考构形的位置向量 X ⃗ \vec X X 的差:

速度向量

定义为位置向量的变化率:

加速度向量

定义为速度向量的变化率:

拉格朗日描述和欧拉描述

连续的性质:质量密度、温度、速度、加速度是质点固有的,这些性质可以随着时间变化,连续运动可以表征为一个双射的函数 φ \varphi φ 和逆函数 φ − 1 \varphi^{-1} φ−1

这保证了我们可以联系当前构形和参考构形之间的连续性质

运动的拉格朗日描述

用质点坐标系 X ⃗ \vec X X 表示的质点运动:

这个运动方程被称为拉格朗日运动描述

这个方程给出了在当前时刻 t 的位置 x ⃗ \vec x x , 其中质点在时刻 t = t 0 t = t_0 t=t0​ 占据着位置 X ⃗ \vec X X

上面的方程如果应用于某个质点P, 则该方程描述的是这个质点的迹线

运动的欧拉描述

用空间坐标系 x ⃗ \vec x x 表示的质点运动:

这个方程给出了在初始时刻 t 0 t_0 t0​ 的初始位置 X ⃗ \vec X X , 该质点在当前时刻 t t t 具有坐标 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1​,x2​,x3​)


在 t = 0 t=0 t=0时刻有: x ⃗ P ( X ⃗ , t = 0 ) = X ⃗ P \vec x^P(\vec X, t=0)=\vec X^P x P(X ,t=0)=X P

质点P的迹线:
x ⃗ ( X ⃗ P , t 0 ) = X ⃗ P → x ⃗ ( X ⃗ P , t 1 ) = X ⃗ P ′ → x ⃗ ( X ⃗ P , t 2 ) = X ⃗ P ′ ′ \vec x(\vec X^P,t_0)=\vec X^P \rightarrow \vec x(\vec X^P,t_1)=\vec X^{P'} \rightarrow \vec x(\vec X^P,t_2)=\vec X^{P''} x (X P,t0​)=X P→x (X P,t1​)=X P′→x (X P,t2​)=X P′′

不同时刻在点P的质点:
X ⃗ ( x ⃗ P , t 0 ) = X ⃗ P → X ⃗ ( x ⃗ S ′ , t 1 ) = X ⃗ S → X ⃗ ( x ⃗ Q ′ ′ , t 2 ) = X ⃗ Q \vec X(\vec x^P,t_0)=\vec X^P \rightarrow \vec X(\vec x^{S'},t_1)=\vec X^{S} \rightarrow \vec X(\vec x^{Q''},t_2)=\vec X^Q X (x P,t0​)=X P→X (x S′,t1​)=X S→X (x Q′′,t2​)=X Q

其中 X ⃗ ( x ⃗ S ′ , t 1 ) = X ⃗ S \vec X(\vec x^{S'},t_1)=\vec X^{S} X (x S′,t1​)=X S 表示 在时刻 t 1 t_1 t1​ 位于点 P = S ‘ P=S‘ P=S‘的质点为S,其初始位置为 X ⃗ S \vec X^S X S

存在逆的充分必要条件是:雅可比行列式不为0

**不可穿透性公理:**两个粒子不能同时占据同一位置。如后所述,当雅可比行列式为正时,这个条件是确定的

拉格朗日变量和欧拉变量

在连续体 B \mathcal B B 上的物理量 Z \mathcal Z Z 可以表达成:

拉格朗日形式 : ( Z ( X ⃗ , t ) ) (Z(\vec X, t)) (Z(X ,t))

欧拉形式: z ( x ⃗ , t ) z(\vec x, t) z(x ,t)

问题2.2 考虑以下拉格朗日描述的运动方程:



质点时间导数

随时间变化的导数: D D t \frac{D}{Dt} DtD​

跟着质点P运动并且记录随着时间变化的温度


如果属性是由拉格朗日描述:
θ = θ ( X 1 , X 2 , X 3 , t ) \theta = \theta(X_1, X_2, X_3, t) θ=θ(X1​,X2​,X3​,t)

这种情况下,质点的时间导数表示为:

θ ˙ ( X ⃗ , t ) ≡ D θ ( X ⃗ , t ) D t = d θ ( X ⃗ , t ) d t \boxed{\dot \theta (\vec X, t)\equiv\frac{D\theta(\vec X, t)}{Dt}=\frac{d\theta (\vec X, t)}{dt}} θ˙(X ,t)≡DtDθ(X ,t)​=dtdθ(X ,t)​​

这个属性是由质点坐标系描述的,意味着该属性与同一个质点运动过程相连接

如果属性是由欧拉描述:
θ = θ ( x 1 , x 2 , x 3 , t ) \theta = \theta(x_1, x_2, x_3, t) θ=θ(x1​,x2​,x3​,t)

观察不再跟踪质点P,而是固定在某个点 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1​,x2​,x3​),观察经过的质点

在时刻 t 1 t_1 t1​: 观测到质点Q的属性
在时刻 t 2 t_2 t2​: 观测到质点R的属性
在时刻 t 3 t_3 t3​: 观测到质点P的属性

需要强调的是质点的时间导数与质点的固有属性关于时间的导数有关,例如,这是关于同一个质点的

然而,一个固定在某个点的观察者,只能得到当地的变化率的信息
为了得到完整的信息,我们需要知道质点沿着迹线其属性是怎么变化的,而这个额外的信息被称为对流的变化率,这与质量输运有关

所以,为了得到质点的时间导数,必须考虑以下两项:

  • 当地变化率
  • 对流变化率
    所以:

质点速度: v ⃗ ( X ⃗ , t ) = x ⃗ ˙ ( X ⃗ , t ) \vec v(\vec X, t)=\dot {\vec x}(\vec X, t) v (X ,t)=x ˙(X ,t)

欧拉描述: v ⃗ ( X ⃗ ( x ⃗ , t ) , t ) = v ⃗ ( x ⃗ , t ) \vec v(\vec X(\vec x, t), t)=\vec v(\vec x, t) v (X (x ,t),t)=v (x ,t)

可以定义欧拉描述下的时间导数算子: ∗ ( x ⃗ , t ) *(\vec x, t) ∗(x ,t)
D ∗ ( x ⃗ , t ) D t = ∂ ∗ ( x ⃗ , t ) ∂ t + ∇ x ⃗ ∗ ( x ⃗ , t ) ⋅ v ⃗ ( x ⃗ , t ) 欧拉描述的质点时间导数 \boxed{\frac{D * (\vec x, t)}{Dt}=\frac{\partial *(\vec x, t)}{\partial t}+\nabla_{\vec x}*(\vec x, t)\cdot \vec v(\vec x, t)}欧拉描述的质点时间导数 DtD∗(x ,t)​=∂t∂∗(x ,t)​+∇x ​∗(x ,t)⋅v (x ,t)​欧拉描述的质点时间导数

下标形式:

欧拉描述的速度和加速度

质点P的速度:

这是拉格朗日描述

为了得到欧拉描述,需要代入运动逆方程:
V ⃗ P ( X ⃗ , t ) = V ⃗ P ( X ⃗ ( x ⃗ , t ) , t ) = v ⃗ P ( x ⃗ , t ) \vec V^P(\vec X, t)=\vec V^P(\vec X (\vec x, t), t)=\vec v^P(\vec x, t) V P(X ,t)=V P(X (x ,t),t)=v P(x ,t)

质点的加速度:

欧拉描述可以用逆方程代入得到或者通过应用欧拉描述的质点时间导数的定义


欧拉加速度的矩阵形式:

回到问题2.2

欧拉速度场:

那么,欧拉加速度也可以用定义得到:


加速的各个分量如下:

与问题2.2得到的结果一样

定常场

一个场 ϕ ( x ⃗ , t ) \phi(\vec x, t) ϕ(x ,t) 是定常的,如果其当地变化率不随时间发生变化:

定常的速度场: 在时刻 t 1 t_1 t1​ 和时刻 t 2 t_2 t2​ 不发生改变

然而,这不意味着质点的速度在场当中不随时间变化

在固定的空间点 x ⃗ ∗ \vec x^* x ∗:
质点Q在时刻 t 1 t_1 t1​ 以速度 v ⃗ ∗ \vec v^* v ∗通过点Q, 此时另一个质点P的速度为 v ⃗ P ( t 1 ) ≠ v ⃗ ∗ \vec v^P(t_1)\neq \vec v^* v P(t1​)=v ∗

质点P在时刻 t 2 t_2 t2​ 通过点 x ⃗ ∗ \vec x^* x ∗, 由于是定常场,所以 v ⃗ P ( t 2 ) = v ⃗ ∗ \vec v^P(t_2)=\vec v^* v P(t2​)=v ∗
所以,在定常场,质点的速度是可以发生改变的

那么,质点速度的时间导数为:

由于定常场,所以速度的变化率(加速度)为0, 如果是定常场 ∂ v ⃗ ( x ⃗ , t ) ∂ t = 0 \frac{\partial \vec v(\vec x, t)}{\partial t}=0 ∂t∂v (x ,t)​=0且均匀的( ∇ x ⃗ v ⃗ = 0 \nabla_{\vec x}\vec v =0 ∇x ​v =0)

同样地,可以验证虽然空间速度与时间无关,但这不意味着物质速度也是,例如:
v ⃗ ( x ⃗ ) = v ⃗ ( x ⃗ ( X ⃗ , t ) ) = v ⃗ ( X ⃗ , t ) \vec v(\vec x)=\vec v(\vec x(\vec X, t))=\vec v(\vec X, t) v (x )=v (x (X ,t))=v (X ,t)

流线

在时刻 t 给定一个空间速度场,可以定义流线为:每个点的切线与速度的方向相同所组成的曲线

一般情况下:流线和迹线并不重合,但在定常场下重合

问题2.3 加速度向量场定义如下

问题2.4: 考虑运动方程 x ⃗ ( X ⃗ , t ) \vec x(\vec X, t) x (X ,t) 以及温度场 T ( x ⃗ , t ) T(\vec x, t) T(x ,t)



参考教材:

Eduardo W.V. Chaves, Notes On Continuum Mechanics

【连续介质力学】连续体运动学相关推荐

  1. 关于连续介质力学的基本认识

    连续介质力学最基本的假设是连续介质假设.因此连续介质力学内用到的概念都是场的概念--相对于坐标和时间的依存关系都是连续的.连续介质力学是一门唯象的理论,是实验现象概括的总结和凝练.唯象理论对物理现象具 ...

  2. Nature综述:微生物沿着寄生-共生连续体进化和转变!

    自然界中广泛存在着寄生和互惠共生的微生物关系.当微生物(即细菌.真菌和病毒)在动物或植物体内或身上栖息,并对宿主造成损害或赋予其利益时,就会发生这些相互作用.寄生微生物(包括病原体)可以利用宿主,并对 ...

  3. MPB:南京​湖泊所王建军组-​群落构建过程的定量指标——扩散-生态位连续体指数...

    为进一步提高<微生物组实验手册>稿件质量,本项目新增大众评审环节.文章在通过同行评审后,采用公众号推送方式分享全文,任何人均可在线提交修改意见.公众号格式显示略有问题,建议电脑端点击文末阅 ...

  4. 从有理数到实数和数的连续体

    本文来自微信公众号"高数变简单"的作者,最新版原文请看https://www.cnblogs.com/iMath/p/8257142.html 本文来自微信公众号"高数变 ...

  5. 空间连续体上接触力的无线传感和定位

    WiForce: Wireless Sensing and Localization of Contact Forces on a Space Continuum WiForce:空间连续体上接触力的 ...

  6. 【连续介质力学】粘性、弹性和塑性的区别,非牛顿流体

    这是我写的太极图形学帖子的回复,现在转载如下: 原文链接:请问粘弹性和弹塑性的区别是什么? 感谢师兄的回复.这些天我旁听了一些塑性力学的课并且看了一些连续介质力学的书.我的总结如下: 1)该问题属于连 ...

  7. 数理方程和连续介质力学 考试复习笔记

    这是我为了准备研究生考试制作的复习笔记. 为了让知识能记忆的更久和传承,我制作下面的仓库并公开. 请读者批评指正! 数理方程仓库地址 连续介质力学仓库地址

  8. 坦南鲍姆的领导行为连续体理论(1958)--轉載

    坦南鲍姆和施米特于1958年提出了领导行为连续体理论.他们不知道是应该自己做出决定还是授权给下属做决策.为了使人们从决策的角度深刻认识领导作风的意义,他们提出了下面这个连续体模型. 领导风格与领导者运 ...

  9. 连续体结构拓扑优化方法介绍

    连续体结构拓扑优化方法介绍 材料的有效利用一直是人类追求的目标,也是许多研究领域不变的话题,并伴随着结构优化理论和方法的产生而发展.早期结构优化主要是针对尺寸的优化问题,设计域形状是固定的.后来随着结 ...

最新文章

  1. 转换前台javascript传递过来的时间字符串到.net的DateTime
  2. Vim改装编辑器的安装与使用简介
  3. 160个Crackme011
  4. java 手动编译打包_Maven 手动添加第三方依赖包及编译打包和java命令行编译JAVA文件并使用jar命令打包...
  5. ARM 之十一__weak 和 __attribute__((weak)) 关键字的使用
  6. XML Parsing in a Producer-Consumer Model
  7. CodeForces - 946E Largest Beautiful Number(贪心+模拟)
  8. Android之IPC通信中的UID和PID识别
  9. python的django_django能用来做什么
  10. 链表的一些leetcode题目+python(c++)
  11. 2020直播电商研究报告
  12. Python requests库中文乱码问题汇总(编码)
  13. 如何创建和自定义SQL Server模板
  14. 第 11 章 装饰者设计模式
  15. 双击java安装包没有反应_eclipse安装包双击没反应怎么回事?
  16. java高并发编程讲解_有人看过 java高并发编程详解 汪文君著 这本书吗?
  17. 基于Python的DELMIA二次开发(三):人体建模
  18. 密码正确 mysql 无法登录_MySQL密码正确却无法本地登录怎么办
  19. js颜色RGB转十六进制
  20. 二十二.基于国民MCU 的COMP模块的比较案例

热门文章

  1. 人工智能资料库:第39辑(20170223)
  2. 超Facebook,TikTok成全球下载量最大应用
  3. 云易分享最新laysns系统仿善恶模版完美自适应
  4. 相机标定的理解及采用opencv和matlab工具箱的标定方法
  5. 一文带你熟透Java线程池的使用及源码
  6. 基于django开发在线考试系统——(二)model模型设计
  7. 搞清这8点,教你用WMS仓库管理软件彻底玩转供应链
  8. 2017计算机应用基础实践,2017计算机应用基础
  9. 旅游必备的十款热门APP
  10. delivery route配送路线