介绍词向量word2evc概念,及CBOW和Skip-gram的算法实现。
项目链接: https://aistudio.baidu.com/aistudio/projectdetail/5009409

在自然语言处理任务中,词向量(Word Embedding)是表示自然语言里单词的一种方法,即把每个词都表示为一个N维空间内的点,即一个高维空间内的向量。通过这种方法,实现把自然语言计算转换为向量计算。

图1 所示的词向量计算任务中,先把每个词(如queen,king等)转换成一个高维空间的向量,这些向量在一定意义上可以代表这个词的语义信息。再通过计算这些向量之间的距离,就可以计算出词语之间的关联关系,从而达到让计算机像计算数值一样去计算自然语言的目的。

因此,大部分词向量模型都需要回答两个问题:

  1. 如何把词转换为向量?

自然语言单词是离散信号,比如“香蕉”,“橘子”,“水果”在我们看来就是3个离散的词。

如何把每个离散的单词转换为一个向量?

  1. 如何让向量具有语义信息?

比如,我们知道在很多情况下,“香蕉”和“橘子”更加相似,而“香蕉”和“句子”就没有那么相似,同时“香蕉”和“食物”、“水果”的相似程度可能介于“橘子”和“句子”之间。

那么,我们该如何让词向量具备这样的语义信息?

1.如何把词转换为向量

自然语言单词是离散信号,比如“我”、“ 爱”、“人工智能”。如何把每个离散的单词转换为一个向量?通常情况下,我们可以维护一个如 图2 所示的查询表。表中每一行都存储了一个特定词语的向量值,每一列的第一个元素都代表着这个词本身,以便于我们进行词和向量的映射(如“我”对应的向量值为 [0.3,0.5,0.7,0.9,-0.2,0.03] )。给定任何一个或者一组单词,我们都可以通过查询这个excel,实现把单词转换为向量的目的,这个查询和替换过程称之为Embedding Lookup。

上述过程也可以使用一个字典数据结构实现。事实上如果不考虑计算效率,使用字典实现上述功能是个不错的选择。然而在进行神经网络计算的过程中,需要大量的算力,常常要借助特定硬件(如GPU)满足训练速度的需求。GPU上所支持的计算都是以张量(Tensor)为单位展开的,因此在实际场景中,我们需要把Embedding Lookup的过程转换为张量计算,如 图3 所示。

假设对于句子"我,爱,人工,智能",把Embedding Lookup的过程转换为张量计算的流程如下:

  1. 通过查询字典,先把句子中的单词转换成一个ID(通常是一个大于等于0的整数),这个单词到ID的映射关系可以根据需求自定义(如图3中,我=>1, 人工=>2,爱=>3,…)。

  2. 得到ID后,再把每个ID转换成一个固定长度的向量。假设字典的词表中有5000个词,那么,对于单词“我”,就可以用一个5000维的向量来表示。由于“我”的ID是1,因此这个向量的第一个元素是1,其他元素都是0([1,0,0,…,0]);同样对于单词“人工”,第二个元素是1,其他元素都是0。用这种方式就实现了用一个向量表示一个单词。由于每个单词的向量表示都只有一个元素为1,而其他元素为0,因此我们称上述过程为One-Hot Encoding。

  3. 经过One-Hot Encoding后,句子“我,爱,人工,智能”就被转换成为了一个形状为 4×5000的张量,记为VVV。在这个张量里共有4行、5000列,从上到下,每一行分别代表了“我”、“爱”、“人工”、“智能”四个单词的One-Hot Encoding。最后,我们把这个张量VVV和另外一个稠密张量WWW相乘,其中WWW张量的形状为5000 × 128(5000表示词表大小,128表示每个词的向量大小)。经过张量乘法,我们就得到了一个4×128的张量,从而完成了把单词表示成向量的目的。

2.如何让向量具有语义信息

得到每个单词的向量表示后,我们需要思考下一个问题:比如在多数情况下,“香蕉”和“橘子”更加相似,而“香蕉”和“句子”就没有那么相似;同时,“香蕉”和“食物”、“水果”的相似程度可能介于“橘子”和“句子”之间。那么如何让存储的词向量具备这样的语义信息呢?

我们先学习自然语言处理领域的一个小技巧。在自然语言处理研究中,科研人员通常有一个共识:使用一个单词的上下文来了解这个单词的语义,比如:

“苹果手机质量不错,就是价格有点贵。”

“这个苹果很好吃,非常脆。”

“菠萝质量也还行,但是不如苹果支持的APP多。”

在上面的句子中,我们通过上下文可以推断出第一个“苹果”指的是苹果手机,第二个“苹果”指的是水果苹果,而第三个“菠萝”指的应该也是一个手机。事实上,在自然语言处理领域,使用上下文描述一个词语或者元素的语义是一个常见且有效的做法。我们可以使用同样的方式训练词向量,让这些词向量具备表示语义信息的能力。

2013年,Mikolov提出的经典word2vec算法就是通过上下文来学习语义信息。word2vec包含两个经典模型:CBOW(Continuous Bag-of-Words)和Skip-gram,如 图4 所示。

  • CBOW:通过上下文的词向量推理中心词。
  • Skip-gram:根据中心词推理上下文。

假设有一个句子“Pineapples are spiked and yellow”,两个模型的推理方式如下:

  • CBOW中,先在句子中选定一个中心词,并把其它词作为这个中心词的上下文。如 图4 CBOW所示,把“spiked”作为中心词,把“Pineapples、are、and、yellow”作为中心词的上下文。在学习过程中,使用上下文的词向量推理中心词,这样中心词的语义就被传递到上下文的词向量中,如“spiked → pineapple”,从而达到学习语义信息的目的。

  • Skip-gram中,同样先选定一个中心词,并把其他词作为这个中心词的上下文。如 图4 Skip-gram所示,把“spiked”作为中心词,把“Pineapples、are、and、yellow”作为中心词的上下文。不同的是,在学习过程中,使用中心词的词向量去推理上下文,这样上下文定义的语义被传入中心词的表示中,如“pineapple → spiked”,
    从而达到学习语义信息的目的。


说明:

一般来说,CBOW比Skip-gram训练速度快,训练过程更加稳定,原因是CBOW使用上下文average的方式进行训练,每个训练step会见到更多样本。而在生僻字(出现频率低的字)处理上,skip-gram比CBOW效果更好,原因是skip-gram不会刻意回避生僻字。

2.1 CBOW和Skip-gram的算法实现

我们以这句话:“Pineapples are spiked and yellow”为例分别介绍CBOW和Skip-gram的算法实现。

图5 所示,CBOW是一个具有3层结构的神经网络,分别是:

  • 输入层: 一个形状为C×V的one-hot张量,其中C代表上线文中词的个数,通常是一个偶数,我们假设为4;V表示词表大小,我们假设为5000,该张量的每一行都是一个上下文词的one-hot向量表示,比如“Pineapples, are, and, yellow”。
  • 隐藏层: 一个形状为V×N的参数张量W1,一般称为word-embedding,N表示每个词的词向量长度,我们假设为128。输入张量和word embedding W1进行矩阵乘法,就会得到一个形状为C×N的张量。综合考虑上下文中所有词的信息去推理中心词,因此将上下文中C个词相加得一个1×N的向量,是整个上下文的一个隐含表示。
  • 输出层: 创建另一个形状为N×V的参数张量,将隐藏层得到的1×N的向量乘以该N×V的参数张量,得到了一个形状为1×V的向量。最终,1×V的向量代表了使用上下文去推理中心词,每个候选词的打分,再经过softmax函数的归一化,即得到了对中心词的推理概率:

词向量word2vec(图学习参考资料)相关推荐

  1. [人工智能-深度学习-55]:循环神经网络 - 样本数据的几种编码方式:OneHot、ASCII、词向量word2vec

    作者主页(文火冰糖的硅基工坊):文火冰糖(王文兵)的博客_文火冰糖的硅基工坊_CSDN博客 本文网址:https://blog.csdn.net/HiWangWenBing/article/detai ...

  2. 秒懂词向量Word2vec的本质

    [NLP] 秒懂词向量Word2vec的本质 穆文 4 个月前 转自我的公众号: 『数据挖掘机养成记』 1. 引子 大家好 我叫数据挖掘机 皇家布鲁斯特大学肄业 我喝最烈的果粒橙,钻最深的牛角尖 -- ...

  3. gensim词向量Word2Vec安装及《庆余年》中文短文本相似度计算 | CSDN博文精选

    作者 | Eastmount 来源 | CSDN博文精选 (*点击阅读原文,查看作者更多精彩文章) 本篇文章将分享gensim词向量Word2Vec安装.基础用法,并实现<庆余年>中文短文 ...

  4. [Python人工智能] 九.gensim词向量Word2Vec安装及《庆余年》中文短文本相似度计算

    从本专栏开始,作者正式开始研究Python深度学习.神经网络及人工智能相关知识.前一篇详细讲解了卷积神经网络CNN原理,并通过TensorFlow编写CNN实现了MNIST分类学习案例.本篇文章将分享 ...

  5. 知识图谱入门知识(五)【转】秒懂词向量Word2Vec的本质

    博文: 秒懂词向量Word2Vec的本质 什么是Word2Vec? 词性标注:是动词还是名词,样本(x,y)中,x是词语,y是它们的词性 f(x)->y 中的f(神经网络.SVM)只接受数值型输 ...

  6. Python Djang 搭建自动词性标注网站(基于Keras框架和维基百科中文预训练词向量Word2vec模型,分别实现由GRU、LSTM、RNN神经网络组成的词性标注模型)

    引言 本文基于Keras框架和维基百科中文预训练词向量Word2vec模型,分别实现由GRU.LSTM.RNN神经网络组成的词性标注模型,并且将模型封装,使用python Django web框架搭建 ...

  7. [NLP] 秒懂词向量Word2vec的本质+word2vec资源总结

    转自作者的公众号: 『数据挖掘机养成记』 1. 引子 大家好 我叫数据挖掘机 皇家布鲁斯特大学肄业 我喝最烈的果粒橙,钻最深的牛角尖 --执着如我 今天我要揭开Word2vec的神秘面纱 直窥其本质 ...

  8. cbow word2vec 损失_词向量word2vec之CBOW算法

    词向量模型之CBOW模型的原理与实现 关于词向量模型word2rec,平台里只有skip-gram一个模型的代码实现,本项目将对word2rec算法的第二个模型--CBOW模型进行补充 此项目用于交流 ...

  9. 词向量Word2Vec(深度细致分析)

    本文以博客园刘建平Pinard对于word2vec的解释为基础,同时参考了其他相关博客的分析并加入了自己的理解,希望站在巨人的肩膀上进行一定的学习输出.至于本片文章的属性,个人认为是伪原创吧,有需要的 ...

最新文章

  1. TF.VARIABLE和TENSOR的区别(转)
  2. 微软或允许 Android 应用运行于 Windows 和 WP
  3. 2018中国互联网企业100强揭晓!阿里巴巴名列榜首
  4. 在github上面下载文件夹的方法666
  5. Xposed如何实现类中函数的调用
  6. JavaWeb(七)——Cookie、Session
  7. Java 网关-Servlet Gateway
  8. 神经网络与深度学习——TensorFlow2.0实战(笔记)(五)(Matplotlib绘图基础<1>python)
  9. Linux的环境变量总结
  10. Chrome最新版下载地址
  11. matlab许可证_MATLAB校园许可证更新指南
  12. 偶然 --徐志摩
  13. 3dmax导出glb格式_教你如何用ArcGIS 和 3DMax 建模,长知识
  14. redis安装,redis安装windows服务
  15. 为什么人生下来就有意识 人脑五大未解之谜
  16. URP Lit Shader解析(1)
  17. 备份数据库的sql server语句
  18. TOOM网络舆情监控系统定制开发,舆情监控开源系统源码有哪些?
  19. html表单标签-------注册页面
  20. Chrome插件MV3简单开发

热门文章

  1. 这个技术的出现,可能会颠覆阿里云、AWS!
  2. 【工作反思】热爱工作成为更好的自己(毕业季留言)
  3. Monkey测试问题及解决方法
  4. mkfs.ubifs/hashtable/hashtable_itr.c:42:1: error: redefinition of ‘hashtable_iterator_key’
  5. Oracle安装过程中,报ORA-27102 out of memory错误
  6. 深度解析内容生成式AI背后的大语言模型,探寻智能浪潮下的存储机遇
  7. 虚拟魔方——使用python对普通三阶魔方进行建模
  8. tensorflow.reduce_xxx函数
  9. 如何购买腾讯云服务器(详细教程指南)
  10. Javascript运算符知多少