这一节除了讨论invariant subspaces外,还有很多其他扩展性的内容。例如EXAMPLE 8说明:和TTT可交换的operator的range和null space都是在TTT下invariant的。对于invariant subspace WWW,限制在某一subspace WWW上的operator TWT_WTW​可以定义,通过对WWW和TTT的矩阵形式讨论,可以得到TWT_WTW​的特征多项式、最小多项式都整除TTT的特征多项式、最小多项式这一结论。EXAMPLE 10实际是对Theorem 2在另一个层面的讨论。
下一部分内容是本节的核心,首先定义Conductor,用TTT取值时将某一向量α\alphaα送入WWW的所有多项式集合S(α;W)S(\alpha;W)S(α;W)是一个ideal,其generator称为TTT-conductor of α\alphaα into WWW。每一个TTT-conductor都整除TTT的最小多项式,因为最小多项式将α\alphaα送入0。利用conductor性质可以证明Lemma,继而证明Theorem 5,即TTT有三角化矩阵的充要条件是TTT的最小多项式可以被totally factored,或者说是一系列线性多项式的乘积。这一定理的推论说明,在algebraically closed的域上所有矩阵都与三角阵相似。Theorem 6的结论是对角化的充要条件是TTT的最小多项式是一次线性多项式的乘积,或者说没有重复根。这一定理可以用于判断是否对角化:在得到特征多项式后,直接计算factor一次幂的乘积所导致的operator是不是zero operator。
Theorem 5提供了一个新的对(algebraically closed field上)Cayley-Hamilton定理的证明,因为任何一个operatorTTT都有一组ordered basis{α1,⋯,αn}\{\alpha_1,\cdots,\alpha_n\}{α1​,⋯,αn​}下的上三角矩阵AAA,故TTT的特征多项式是f=(x−A11)⋯(x−Ann)f=(x-A_{11})\cdots(x-A_{nn})f=(x−A11​)⋯(x−Ann​),由于T−AiiIT-A_{ii}IT−Aii​I将αi\alpha_iαi​送入span {α1,⋯,αi−1}\text{span }\{\alpha_1,\cdots,\alpha_{i-1}\}span {α1​,⋯,αi−1​}中,因此f(T)=0f(T)=0f(T)=0.

Exercises

1.Let TTT be the linear operator on R2R^2R2, the matrix of which in the standard ordered basis is A=[1−122]A=\begin{bmatrix}1&-1\\2&2\end{bmatrix}A=[12​−12​].
( a ) Prove that the only subspaces of R2R^2R2 invariant under TTT are R2R^2R2 and the zero subspace.
( b ) If UUU is the linear operator on C2C^2C2, the matrix of which in the standard ordered basis is AAA, show that UUU has 111-dimensional invariant subspaces.
Solution:
( a ) The characteristic polynomial of TTT is
det⁡(xI−A)=∣x−11−2x−2∣=x2−3x+4\det (xI-A)=\begin{vmatrix}x-1&1\\-2&x-2\end{vmatrix}=x^2-3x+4det(xI−A)=∣∣∣∣​x−1−2​1x−2​∣∣∣∣​=x2−3x+4
Thus AAA has no characteristic value on RRR.
( b ) The characteristic polynomial of UUU is
det⁡(xI−A)=∣x−11−2x−2∣=(x−32+72i)(x−32−72i)\det (xI-A)=\begin{vmatrix}x-1&1\\-2&x-2\end{vmatrix}=\left(x-\frac{3}{2}+\frac{\sqrt{7}}{2}i\right)\left(x-\frac{3}{2}-\frac{\sqrt{7}}{2}i\right)det(xI−A)=∣∣∣∣​x−1−2​1x−2​∣∣∣∣​=(x−23​+27​​i)(x−23​−27​​i)
Thus UUU has characteristic value 32−72i\dfrac{3}{2}-\dfrac{\sqrt{7}}{2}i23​−27​​i, one characteristic vector associated with this value is (−4,1+7i)(-4,1+\sqrt{7}i)(−4,1+7​i). The subspace spanned by this vector is invariant under UUU.

2.Let WWW be an invariant subspace for TTT. Prove that the minimal polynomial for the restriction operator TWT_WTW​ divides the minimal polynomial for TTT, without referring to matrices.
Solution: Let ppp be the minimal polynomial for TTT, then p(T)=0p(T)=0p(T)=0, using the conclusion from Lemma we know that WWW is invariant under p(T)p(T)p(T), so for any α∈W\alpha\in Wα∈W, we have p(TW)α=p(T)α=0p(T_W)\alpha=p(T)\alpha=0p(TW​)α=p(T)α=0, so p(TW)=0p(T_W)=0p(TW​)=0, which means the minimal polynomial for TWT_WTW​ divides ppp.

3.Let ccc be a characteristic value of TTT and let WWW be the space of characteristic vectors associated with the characteristic value ccc. What is the restriction operator TWT_WTW​?
Solution: It is the operator which multiplies all vector in WWW by ccc. Since for any α∈W\alpha \in Wα∈W we have Tα=cαT\alpha=c\alphaTα=cα.

4.Let
A=[0102−222−32].A=\begin{bmatrix}0&1&0\\2&-2&2\\2&-3&2\end{bmatrix}.A=⎣⎡​022​1−2−3​022​⎦⎤​.
Is AAA similar over the field of real numbers to a triangular matrix? If so, find such a triangular matrix.
Solution: We shall compute the minimal polynomial for AAA. First the characteristic polynomial for AAA is
det⁡(xI−A)=∣x−10−2x+2−2−23x−2∣=x∣x+2−23x−2∣+∣−2−2−2x−2∣=x(x2−4+6)−2x=x3\begin{aligned}\det (xI-A)&=\begin{vmatrix}x&-1&0\\-2&x+2&-2\\-2&3&x-2\end{vmatrix}=x\begin{vmatrix}x+2&-2\\3&x-2\end{vmatrix}+\begin{vmatrix}-2&-2\\-2&x-2\end{vmatrix}\\&=x(x^2-4+6)-2x=x^3\end{aligned}det(xI−A)​=∣∣∣∣∣∣​x−2−2​−1x+23​0−2x−2​∣∣∣∣∣∣​=x∣∣∣∣​x+23​−2x−2​∣∣∣∣​+∣∣∣∣​−2−2​−2x−2​∣∣∣∣​=x(x2−4+6)−2x=x3​
Thus AAA is similar to a triangular matrix, and the minimal polynomial is x3x^3x3. The solution space of AX=0AX=0AX=0 is spanned by α1=(1,0,−1)\alpha_1=(1,0,-1)α1​=(1,0,−1). Choose (1,1,1)(1,1,1)(1,1,1) and we see α2=A(1,1,1)T=(1,2,1)\alpha_2=A(1,1,1)^T=(1,2,1)α2​=A(1,1,1)T=(1,2,1) satisfies Aα2=2α1A\alpha_2=2\alpha_1Aα2​=2α1​, now α3=(1,1,1)\alpha_3=(1,1,1)α3​=(1,1,1) is valid since Aα3=α2A\alpha_3=\alpha_2Aα3​=α2​. Thus we have
A[α1,α2,α3]=[0,2α1,α2]=[α1,α2,α3][020001000]A[\alpha_1,\alpha_2,\alpha_3]=[0,2\alpha_1,\alpha_2]=[\alpha_1,\alpha_2,\alpha_3]\begin{bmatrix}0&2&0\\0&0&1\\0&0&0\end{bmatrix}A[α1​,α2​,α3​]=[0,2α1​,α2​]=[α1​,α2​,α3​]⎣⎡​000​200​010​⎦⎤​

5.Every matrix AAA such that A2=AA^2=AA2=A is similar to a diagonal matrix.
Solution: If A=0A=0A=0 or A=IA=IA=I then AAA is already a diagonal matrix. Suppose A≠0,A≠IA\neq 0,A\neq IA​=0,A​=I, we have A(A−I)=0A(A-I)=0A(A−I)=0 and so the minimal polynomial of AAA is x(x−1)x(x-1)x(x−1), and the conclusion follows from Theorem 6.

6.Let TTT be a diagonalizable linear operator on the nnn-dimensional vector space VVV, and let WWW be a subspace which is invariant under TTT. Prove that the restriction operator TWT_WTW​ is diagonalizable.
Solution: If TTT is diagonalizable, then the minimal polynomial for TTT has the form p=(x−c1)⋯(x−ck)p=(x-c_1)\cdots(x-c_k)p=(x−c1​)⋯(x−ck​), since the minimal polynomial for TWT_WTW​ divides the minimal polynomial for TTT, it must have the form
(x−cj1)⋯(x−cji),j1,⋯,ji∈{1,⋯,k}(x-c_{j_1})\cdots(x-c_{j_i}),\quad j_1,\cdots,j_i\in \{1,\cdots,k\}(x−cj1​​)⋯(x−cji​​),j1​,⋯,ji​∈{1,⋯,k}
and the conclusion follows from Theorem 6.

7.Let TTT be a linear operator on a finite-dimensional vector space over the field of complex numbers. Prove that TTT is diagonalizable if and only if TTT is annihilated by some polynomial over CCC which has distinct roots.
Solution: If TTT is a diagonalizable linear operator, then the minimal polynomial for TTT is a product of distinct linear factors. Conversely, if TTT is annihilated by some polynomial ppp over CCC which has distinct roots, then the minimal polynomial must has no distinct roots since it divides this ppp, and the conclusion follows from Theorem 6.

8.Let TTT be a linear operator on VVV. If every subspace of VVV is invariant under TTT, then TTT is a scalar multiple of the identity operator.
Solution: Let {α1,⋯,αn}\{\alpha_1,\cdots,\alpha_n\}{α1​,⋯,αn​} be a basis for VVV, then the space spanned by αi\alpha_iαi​ is a subspace of VVV, thus invariant under TTT, which means we have Tαi=kiαiT\alpha_i=k_i\alpha_iTαi​=ki​αi​ for i=1,⋯,ni=1,\cdots,ni=1,⋯,n. Now assume ki≠kjk_i\neq k_jki​​=kj​ for some i,ji,ji,j, then consider the subspace WWW spanned by αi+αj\alpha_i+\alpha_jαi​+αj​, we have T(αi+αj)=kiαi+kjαj∉WT(\alpha_i+\alpha_j)=k_i\alpha_i+k_j\alpha_j\notin WT(αi​+αj​)=ki​αi​+kj​αj​∈/​W, a contradiction.

9.Let TTT be the indefinite integral operator (Tf)(x)=∫0xf(t)dt(Tf)(x)=\int_0^xf(t)dt(Tf)(x)=∫0x​f(t)dt on the space of continuous functions on the interval [0,1][0,1][0,1]. Is the space of polynomial functions invariant under TTT? The space of differentiable functions? The space of functions which vanish at x=12x=\frac{1}{2}x=21​?
Solution: The space of polynomial functions are invariant under TTT, since if p=∑i=0ncixip=\sum_{i=0}^nc_ix^ip=∑i=0n​ci​xi, then T(p)=∑i=1n+1ci−1ixiT(p)=\sum_{i=1}^{n+1}\dfrac{c_{i-1}}{i}x^iT(p)=∑i=1n+1​ici−1​​xi is still a polynomial function.
The space of differentiable functions are invariant under TTT, since if fff is differentiable, then fff is continuous and integrable, thus T(f)T(f)T(f) is differentiable and [(Tf)(x)]′=f(x)[(Tf)(x)]'=f(x)[(Tf)(x)]′=f(x).
The space of functions which vanish at x=12x=\frac{1}{2}x=21​ is not invariant under TTT. Consider f(x)=x−12f(x)=x-\frac{1}{2}f(x)=x−21​, we have (Tf)(x)=12(x2−x)(Tf)(x)=\frac{1}{2}(x^2-x)(Tf)(x)=21​(x2−x) and (Tf)(12)=−18≠0(Tf)(\frac{1}{2})=-\frac{1}{8}\neq 0(Tf)(21​)=−81​​=0.

10.Let AAA be a 3×33\times 33×3 matrix with real entries. Prove that, if AAA is not similar over RRR to a triangular matrix, then AAA is similar over CCC to a diagonal matrix.
Solution: By Theorem 5, if AAA is not similar over RRR to a triangular matrix, the minimal polynomial of AAA must be of the form
x2+ax+bor (x2+ax+b)(x−c),a2<4bx^2+ax+b\text{ or }(x^2+ax+b)(x-c),\quad a^2<4bx2+ax+b or (x2+ax+b)(x−c),a2<4b
Thus if we consider AAA over CCC, the minimal polynomial of AAA must have no distinct roots, which means AAA is diagonalizable.

11.True or false? If the triangular matrix AAA is similar to a diagonal matrix, then AAA is already diagonal.
Solution: False. Since if we let A=[1102]A=\begin{bmatrix}1&1\\0&2\end{bmatrix}A=[10​12​], and P=[1101]P=\begin{bmatrix}1&1\\0&1\end{bmatrix}P=[10​11​], then P−1=[1−101]P^{-1}=\begin{bmatrix}1&-1\\0&1\end{bmatrix}P−1=[10​−11​] and P−1AP=[1002]P^{-1}AP=\begin{bmatrix}1&0\\0&2\end{bmatrix}P−1AP=[10​02​].

12.Let TTT be a linear operator on a finite-dimensional vector space over an algebraically closed field FFF. Let fff be a polynomial over FFF. Prove that ccc is a characteristic value of f(T)f(T)f(T) if and only if c=f(t)c=f(t)c=f(t), where ttt is a characteristic value of TTT.
Solution: Since TTT is over an algebraically closed field FFF, there is an ordered basis B\mathfrak BB of the vector space under which TTT has an upper triangular matrix
[T]B=[a1⋯∗⋱⋮an]⟹[f(T)]B=[f(a1)⋯∗⋱⋮f(an)][T]_{\mathfrak B}=\begin{bmatrix}a_1&\cdots&*\\&\ddots&\vdots\\&&a_n\end{bmatrix}\implies [f(T)]_{\mathfrak B}=\begin{bmatrix}f(a_1)&\cdots&*\\&\ddots&\vdots\\&&f(a_n)\end{bmatrix}[T]B​=⎣⎢⎡​a1​​⋯⋱​∗⋮an​​⎦⎥⎤​⟹[f(T)]B​=⎣⎢⎡​f(a1​)​⋯⋱​∗⋮f(an​)​⎦⎥⎤​
thus we have det⁡(xI−T)=∏i=1n(x−ai)\det (xI-T)=\prod_{i=1}^n(x-a_i)det(xI−T)=∏i=1n​(x−ai​) and det⁡(xI−f(T))=∏i=1n(x−f(ai))\det (xI-f(T))=\prod_{i=1}^n(x-f(a_i))det(xI−f(T))=∏i=1n​(x−f(ai​)), thus ccc is a characteristic value of f(T)f(T)f(T) if and only if c=f(ai)c=f(a_i)c=f(ai​), and aia_iai​ is a characteristic value of TTT since det⁡(aiI−T)=0\det (a_iI-T)=0det(ai​I−T)=0.

13.Let VVV be the space of n×nn\times nn×n matrices over FFF. Let AAA be a fixed n×nn\times nn×n matrix over FFF. Let TTT and UUU be the linear operators on VVV defined by T(B)=AB,U(B)=AB−BAT(B)=AB,U(B)=AB-BAT(B)=AB,U(B)=AB−BA.
( a ) True or false? If AAA is diagonalizable (over FFF), then TTT is diagonalizable.
( b ) True or false? If AAA is diagonalizable, then UUU is diagonalizable.
Solution:
( a ) True, since if AAA is diagonalizable, then the minimal polynomial of AAA has the form p=(x−c1)⋯(x−ck)p=(x-c_1)\cdots(x-c_k)p=(x−c1​)⋯(x−ck​), now for any matrix BBB we have
p(T)(B)=(T−c1I)⋯(T−ckI)(B)=(A−c1I)⋯(A−ckI)(B)=p(A)(B)=0\begin{aligned}p(T)(B)&=(T-c_1I)\cdots(T-c_kI)(B)\\&=(A-c_1I)\cdots(A-c_kI)(B)\\&=p(A)(B)=0\end{aligned}p(T)(B)​=(T−c1​I)⋯(T−ck​I)(B)=(A−c1​I)⋯(A−ck​I)(B)=p(A)(B)=0​
thus the minimal polynomial of TTT divides ppp, which means the minimal polynomial of TTT has no distinct roots, thus TTT is diagonalizable.
( b ) True. If AAA is diagonalizable, then there is invertible PPP such that P−1AP=D=diag (d1,…,dn)P^{-1}AP=D=\text{diag }(d_1,\dots,d_n)P−1AP=D=diag (d1​,…,dn​). Let Ep,qE^{p,q}Ep,q be the matrix which has only 111 in the pppth row and the qqqth column, then {Ep,q,p,q=1,…,n}\{E^{p,q},p,q=1,\dots,n\}{Ep,q,p,q=1,…,n} form a basis for VVV. Since (DEp,q−Ep,qD)ij=∑k=1nDikEkjp,q−∑k=1nEikp,qDkj(DE^{p,q}-E^{p,q}D)_{ij}=\sum_{k=1}^nD_{ik}E^{p,q}_{kj}-\sum_{k=1}^nE^{p,q}_{ik}D_{kj}(DEp,q−Ep,qD)ij​=∑k=1n​Dik​Ekjp,q​−∑k=1n​Eikp,q​Dkj​, we see that the only nonzero item of the matrix DEp,q−Ep,qDDE^{p,q}-E^{p,q}DDEp,q−Ep,qD is (DEp,q−Ep,qD)pq=(dp−dq)(DE^{p,q}-E^{p,q}D)_{pq}=(d_p-d_q)(DEp,q−Ep,qD)pq​=(dp​−dq​), which means DEp,q−Ep,qD=(dp−dq)Ep,qDE^{p,q}-E^{p,q}D=(d_p-d_q)E^{p,q}DEp,q−Ep,qD=(dp​−dq​)Ep,q. Let Fp,q=PEp,qP−1F^{p,q}=PE^{p,q}P^{-1}Fp,q=PEp,qP−1, then {Fp,q,p,q=1,…,n}\{F^{p,q},p,q=1,\dots,n\}{Fp,q,p,q=1,…,n} is also a basis for VVV, since PPP is invertible. Now we have
U(Fp,q)=AFp,q−Fp,qA=APEp,qP−1−PEp,qP−1A=(PP−1)APEp,qP−1−PEp,qP−1A(PP−1)=P(P−1AP)Ep,qP−1−PEp,q(P−1AP)P−1=P[DEp,q−Ep,qD]P−1=(dp−dq)PEp,qP−1=(dp−dq)Fp,q\begin{aligned}U(F^{p,q})&=AF^{p,q}-F^{p,q}A=APE^{p,q}P^{-1}-PE^{p,q}P^{-1}A\\&=(PP^{-1})APE^{p,q}P^{-1}-PE^{p,q}P^{-1}A(PP^{-1})\\&=P(P^{-1}AP)E^{p,q}P^{-1}-PE^{p,q}(P^{-1}AP)P^{-1}\\&=P[DE^{p,q}-E^{p,q}D]P^{-1}\\&=(d_p-d_q)PE^{p,q}P^{-1}=(d_p-d_q)F^{p,q}\end{aligned}U(Fp,q)​=AFp,q−Fp,qA=APEp,qP−1−PEp,qP−1A=(PP−1)APEp,qP−1−PEp,qP−1A(PP−1)=P(P−1AP)Ep,qP−1−PEp,q(P−1AP)P−1=P[DEp,q−Ep,qD]P−1=(dp​−dq​)PEp,qP−1=(dp​−dq​)Fp,q​
This means Fp,qF^{p,q}Fp,q is a characteristic vector for UUU for any p,q=1,…,np,q=1,\dots,np,q=1,…,n, thus UUU is diagonalizable.

6.4 Invariant Subspaces相关推荐

  1. 超直线能否用于真实物理空间?

    所谓"超实线"(Hyperreal line)的原来意思就是"超真实直线". 半年来,我们向全国普通高校投放"超实线",要是"超实 ...

  2. 哥德尔预言无穷小微积分是未来的数学分析

    哥德尔预言无穷小微积分是未来的数学分析 二十世纪世界伟大的数学家哥德尔预言非标准分析是未来的数学分析. 哥德尔1974年预言的原文如下: "There are good reasons to ...

  3. 动态视频检索会议记录

    徐:建模误差,动作,背景 答:只需要关节点,动作 张子健:精度 答:精度尽量 子健:DMD在19年第一次用到关节点上,在动作预测领域预测得很好 李中禹:很适合的方法,让3D模型动起来,但是没有代码,看 ...

  4. 关于现代数学的前沿课题

    关于现代数学的前沿课题 今年7月,国家4部委发出通知,要求全国高校及科研院所设立"基础数学中心". 新学年即将开始.我们可以设想,"基础数学中心"不是空集合.他 ...

  5. Control-Theoretic Methods for Cyberphysical security(翻译)

    authors:Fabio Pasqualetti, Florian DÖrFler,and Francesco bullo   CPS广泛存在于现代社会的各个领域,如:能源生产.医疗和通信.CPS的 ...

  6. 统计学每日论文速递[02.26]

    stat 方向,今日共计86篇 公众号(arXiv每日学术速递),欢迎关注,感谢支持哦~ [1] A General Method for Robust Learning from Batches 标 ...

  7. 二十世纪模型论发展迅猛,势不可挡

    二十世纪模型论发展迅猛,势不可挡 希尔伯特在"几何基础"中最初形成了数学模型的思想,数学进入新的发展轨道. 1954年,塔尔斯基悬宣布数学模型论正式成为现代数学的一个新分支,而且, ...

  8. 6.7 Invariant Direct Sums

    这一节考虑direct sum中每一个子空间都是在TTT下invariant的情况,这种情况的好处是:TTT在每一个WiW_iWi​上都可以限制为一个linear operator TiT_iTi​. ...

  9. Wasserstein CNN: Learning Invariant Features for NIR-VIS Face Recognition

    承接上上篇博客,在其基础上,加入了Wasserstein distance和correlation prior .其他相关工作.网络细节(maxout operator).训练方式和数据处理等基本和前 ...

最新文章

  1. php类方法语法错误捕获,php语法错误捕获
  2. 【Ajax技术】使用XHR对象发送和接受数据
  3. USB和串口(COM)的区别,以及相互转换
  4. flash _currentframe+指定帧步 控制线程
  5. Java 8 Friday Goodies:Lambda和排序
  6. 对python的功能和扩展功能的认知_Python基础-基础认知和库了解
  7. oracle 查虚拟路径,Oracle 11g RMAN虚拟私有目录
  8. 华为云计算IE面试笔记-Fusionsphere架构及组件介绍(服务器虚拟化解决方案)
  9. php b2c是什么意思,bto c模式什么意思?
  10. linux灯控软件,Ubuntu下通过脚本控制键盘背光灯
  11. 从编译器源码中提取ARMv8的指令编码
  12. 笔记本怎么用android,电脑上如何使用Android系统
  13. 通达云OA被阿里云列为企业办公首推应用
  14. 设计模式还有行为模式。。。
  15. Centos6.8下ActivityMQ安装
  16. 《通信技术导论(原书第5版)》——2.2 下一代数据中心:虚拟化和千兆比特速率...
  17. 书写我的人生回忆录-这应该是给子女和父母最好的礼物
  18. windows版grub2在NTFS格式U盘安装并使用grub4dos引导win8pe
  19. Arduino开发实例-DIY酒精浓度检测计
  20. WAYOS 破解版,最完美破解,免授权,永不拉黑,支持官方非三天版

热门文章

  1. MVP+Retrofit+Rxjava网络请求购物车
  2. 使用显卡程序加速(opencl、cuda)
  3. 组合索引(MySQL查询优化器)
  4. 三星Samsung CLX-6260ND 驱动
  5. S3C2440之按键中断
  6. CSLA.Net 3.0.5 项目管理示例 UI RolesEdit.aspx
  7. 临时限速服务器向列控中心,-客运专线列控系统临时限速技术规范V2.0.doc
  8. 【Css】css中class之间>(大于号)、~(波浪号)、 (空格)、,(逗号)、+(加号)详解(转载,笔记用)
  9. Verilog自动售货机设计
  10. Cohen-Sutherland算法